summaryrefslogtreecommitdiff
path: root/src/librustc_trans/trans/cabi_powerpc64.rs
blob: 340de235732f920498fc8bca01ae0d19385eae37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// FIXME: The PowerPC64 ABI needs to zero or sign extend function
// call parameters, but compute_abi_info() is passed LLVM types
// which have no sign information.
//
// Alignment of 128 bit types is not currently handled, this will
// need to be fixed when PowerPC vector support is added.

use llvm::{Integer, Pointer, Float, Double, Struct, Array};
use trans::abi::{FnType, ArgType};
use trans::context::CrateContext;
use trans::type_::Type;

use std::cmp;

fn align_up_to(off: usize, a: usize) -> usize {
    return (off + a - 1) / a * a;
}

fn align(off: usize, ty: Type) -> usize {
    let a = ty_align(ty);
    return align_up_to(off, a);
}

fn ty_align(ty: Type) -> usize {
    match ty.kind() {
        Integer => ((ty.int_width() as usize) + 7) / 8,
        Pointer => 8,
        Float => 4,
        Double => 8,
        Struct => {
            if ty.is_packed() {
                1
            } else {
                let str_tys = ty.field_types();
                str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t)))
            }
        }
        Array => {
            let elt = ty.element_type();
            ty_align(elt)
        }
        _ => panic!("ty_align: unhandled type")
    }
}

fn ty_size(ty: Type) -> usize {
    match ty.kind() {
        Integer => ((ty.int_width() as usize) + 7) / 8,
        Pointer => 8,
        Float => 4,
        Double => 8,
        Struct => {
            if ty.is_packed() {
                let str_tys = ty.field_types();
                str_tys.iter().fold(0, |s, t| s + ty_size(*t))
            } else {
                let str_tys = ty.field_types();
                let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t));
                align(size, ty)
            }
        }
        Array => {
            let len = ty.array_length();
            let elt = ty.element_type();
            let eltsz = ty_size(elt);
            len * eltsz
        }
        _ => panic!("ty_size: unhandled type")
    }
}

fn is_homogenous_aggregate_ty(ty: Type) -> Option<(Type, u64)> {
    fn check_array(ty: Type) -> Option<(Type, u64)> {
        let len = ty.array_length() as u64;
        if len == 0 {
            return None
        }
        let elt = ty.element_type();

        // if our element is an HFA/HVA, so are we; multiply members by our len
        is_homogenous_aggregate_ty(elt).map(|(base_ty, members)| (base_ty, len * members))
    }

    fn check_struct(ty: Type) -> Option<(Type, u64)> {
        let str_tys = ty.field_types();
        if str_tys.len() == 0 {
            return None
        }

        let mut prev_base_ty = None;
        let mut members = 0;
        for opt_homog_agg in str_tys.iter().map(|t| is_homogenous_aggregate_ty(*t)) {
            match (prev_base_ty, opt_homog_agg) {
                // field isn't itself an HFA, so we aren't either
                (_, None) => return None,

                // first field - store its type and number of members
                (None, Some((field_ty, field_members))) => {
                    prev_base_ty = Some(field_ty);
                    members = field_members;
                },

                // 2nd or later field - give up if it's a different type; otherwise incr. members
                (Some(prev_ty), Some((field_ty, field_members))) => {
                    if prev_ty != field_ty {
                        return None;
                    }
                    members += field_members;
                }
            }
        }

        // Because of previous checks, we know prev_base_ty is Some(...) because
        //   1. str_tys has at least one element; and
        //   2. prev_base_ty was filled in (or we would've returned early)
        let (base_ty, members) = (prev_base_ty.unwrap(), members);

        // Ensure there is no padding.
        if ty_size(ty) == ty_size(base_ty) * (members as usize) {
            Some((base_ty, members))
        } else {
            None
        }
    }

    let homog_agg = match ty.kind() {
        Float  => Some((ty, 1)),
        Double => Some((ty, 1)),
        Array  => check_array(ty),
        Struct => check_struct(ty),
        _ => None
    };

    // Ensure we have at most eight uniquely addressable members
    homog_agg.and_then(|(base_ty, members)| {
        if members > 0 && members <= 8 {
            Some((base_ty, members))
        } else {
            None
        }
    })
}

fn classify_ret_ty(ccx: &CrateContext, ret: &mut ArgType) {
    if is_reg_ty(ret.ty) {
        return;
    }

    // The PowerPC64 big endian ABI doesn't return aggregates in registers
    if ccx.sess().target.target.target_endian == "big" {
        ret.make_indirect(ccx);
    }

    if let Some((base_ty, members)) = is_homogenous_aggregate_ty(ret.ty) {
        ret.cast = Some(Type::array(&base_ty, members));
        return;
    }
    let size = ty_size(ret.ty);
    if size <= 16 {
        let llty = if size <= 1 {
            Type::i8(ccx)
        } else if size <= 2 {
            Type::i16(ccx)
        } else if size <= 4 {
            Type::i32(ccx)
        } else if size <= 8 {
            Type::i64(ccx)
        } else {
            Type::array(&Type::i64(ccx), ((size + 7 ) / 8 ) as u64)
        };
        ret.cast = Some(llty);
        return;
    }

    ret.make_indirect(ccx);
}

fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType) {
    if is_reg_ty(arg.ty) {
        return;
    }

    if let Some((base_ty, members)) = is_homogenous_aggregate_ty(arg.ty) {
        arg.cast = Some(Type::array(&base_ty, members));
        return;
    }

    arg.cast = Some(struct_ty(ccx, arg.ty));
}

fn is_reg_ty(ty: Type) -> bool {
    match ty.kind() {
        Integer
        | Pointer
        | Float
        | Double => true,
        _ => false
    }
}

fn coerce_to_long(ccx: &CrateContext, size: usize) -> Vec<Type> {
    let long_ty = Type::i64(ccx);
    let mut args = Vec::new();

    let mut n = size / 64;
    while n > 0 {
        args.push(long_ty);
        n -= 1;
    }

    let r = size % 64;
    if r > 0 {
        args.push(Type::ix(ccx, r as u64));
    }

    args
}

fn struct_ty(ccx: &CrateContext, ty: Type) -> Type {
    let size = ty_size(ty) * 8;
    Type::struct_(ccx, &coerce_to_long(ccx, size), false)
}

pub fn compute_abi_info(ccx: &CrateContext, fty: &mut FnType) {
    if !fty.ret.is_ignore() {
        classify_ret_ty(ccx, &mut fty.ret);
    }

    for arg in &mut fty.args {
        if arg.is_ignore() { continue; }
        classify_arg_ty(ccx, arg);
    }
}