summaryrefslogtreecommitdiff
path: root/src/librustc_trans/trans/foreign.rs
blob: cace98a230f61a00c406b13c3e4f94d989abd597 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.


use back::{abi, link};
use llvm::{ValueRef, CallConv, get_param};
use llvm;
use middle::weak_lang_items;
use trans::attributes;
use trans::base::{llvm_linkage_by_name, push_ctxt};
use trans::base;
use trans::build::*;
use trans::cabi;
use trans::common::*;
use trans::debuginfo::DebugLoc;
use trans::declare;
use trans::expr;
use trans::machine;
use trans::monomorphize;
use trans::type_::Type;
use trans::type_of::*;
use trans::type_of;
use middle::infer;
use middle::ty::{self, Ty, TyCtxt};
use middle::subst::Substs;

use std::cmp;
use std::iter::once;
use libc::c_uint;
use syntax::abi::Abi;
use syntax::attr;
use syntax::codemap::Span;
use syntax::parse::token::{InternedString, special_idents};
use syntax::ast;
use syntax::attr::AttrMetaMethods;

use rustc_front::print::pprust;
use rustc_front::hir;

///////////////////////////////////////////////////////////////////////////
// Type definitions

struct ForeignTypes<'tcx> {
    /// Rust signature of the function
    fn_sig: ty::FnSig<'tcx>,

    /// Adapter object for handling native ABI rules (trust me, you
    /// don't want to know)
    fn_ty: cabi::FnType,

    /// LLVM types that will appear on the foreign function
    llsig: LlvmSignature,
}

struct LlvmSignature {
    // LLVM versions of the types of this function's arguments.
    llarg_tys: Vec<Type> ,

    // LLVM version of the type that this function returns.  Note that
    // this *may not be* the declared return type of the foreign
    // function, because the foreign function may opt to return via an
    // out pointer.
    llret_ty: Type,

    /// True if there is a return value (not bottom, not unit)
    ret_def: bool,
}


///////////////////////////////////////////////////////////////////////////
// Calls to external functions

pub fn llvm_calling_convention(ccx: &CrateContext,
                               abi: Abi) -> CallConv {
    use syntax::abi::Abi::*;
    match ccx.sess().target.target.adjust_abi(abi) {
        RustIntrinsic => {
            // Intrinsics are emitted at the call site
            ccx.sess().bug("asked to register intrinsic fn");
        }
        PlatformIntrinsic => {
            // Intrinsics are emitted at the call site
            ccx.sess().bug("asked to register platform intrinsic fn");
        }

        Rust => {
            // FIXME(#3678) Implement linking to foreign fns with Rust ABI
            ccx.sess().unimpl("foreign functions with Rust ABI");
        }

        RustCall => {
            // FIXME(#3678) Implement linking to foreign fns with Rust ABI
            ccx.sess().unimpl("foreign functions with RustCall ABI");
        }

        // It's the ABI's job to select this, not us.
        System => ccx.sess().bug("system abi should be selected elsewhere"),

        Stdcall => llvm::X86StdcallCallConv,
        Fastcall => llvm::X86FastcallCallConv,
        Vectorcall => llvm::X86_VectorCall,
        C => llvm::CCallConv,
        Win64 => llvm::X86_64_Win64,

        // These API constants ought to be more specific...
        Cdecl => llvm::CCallConv,
        Aapcs => llvm::CCallConv,
    }
}

pub fn register_static(ccx: &CrateContext,
                       foreign_item: &hir::ForeignItem) -> ValueRef {
    let ty = ccx.tcx().node_id_to_type(foreign_item.id);
    let llty = type_of::type_of(ccx, ty);

    let ident = link_name(foreign_item);
    let c = match attr::first_attr_value_str_by_name(&foreign_item.attrs,
                                                     "linkage") {
        // If this is a static with a linkage specified, then we need to handle
        // it a little specially. The typesystem prevents things like &T and
        // extern "C" fn() from being non-null, so we can't just declare a
        // static and call it a day. Some linkages (like weak) will make it such
        // that the static actually has a null value.
        Some(name) => {
            let linkage = match llvm_linkage_by_name(&name) {
                Some(linkage) => linkage,
                None => {
                    ccx.sess().span_fatal(foreign_item.span,
                                          "invalid linkage specified");
                }
            };
            let llty2 = match ty.sty {
                ty::TyRawPtr(ref mt) => type_of::type_of(ccx, mt.ty),
                _ => {
                    ccx.sess().span_fatal(foreign_item.span,
                                          "must have type `*T` or `*mut T`");
                }
            };
            unsafe {
                // Declare a symbol `foo` with the desired linkage.
                let g1 = declare::declare_global(ccx, &ident[..], llty2);
                llvm::SetLinkage(g1, linkage);

                // Declare an internal global `extern_with_linkage_foo` which
                // is initialized with the address of `foo`.  If `foo` is
                // discarded during linking (for example, if `foo` has weak
                // linkage and there are no definitions), then
                // `extern_with_linkage_foo` will instead be initialized to
                // zero.
                let mut real_name = "_rust_extern_with_linkage_".to_string();
                real_name.push_str(&ident);
                let g2 = declare::define_global(ccx, &real_name[..], llty).unwrap_or_else(||{
                    ccx.sess().span_fatal(foreign_item.span,
                                          &format!("symbol `{}` is already defined", ident))
                });
                llvm::SetLinkage(g2, llvm::InternalLinkage);
                llvm::LLVMSetInitializer(g2, g1);
                g2
            }
        }
        None => // Generate an external declaration.
            declare::declare_global(ccx, &ident[..], llty),
    };

    // Handle thread-local external statics.
    for attr in foreign_item.attrs.iter() {
        if attr.check_name("thread_local") {
            llvm::set_thread_local(c, true);
        }
    }

    return c;
}

// only use this for foreign function ABIs and glue, use `get_extern_rust_fn` for Rust functions
pub fn get_extern_fn(ccx: &CrateContext,
                     externs: &mut ExternMap,
                     name: &str,
                     cc: llvm::CallConv,
                     ty: Type,
                     output: Ty)
                     -> ValueRef {
    match externs.get(name) {
        Some(n) => return *n,
        None => {}
    }
    let f = declare::declare_fn(ccx, name, cc, ty, ty::FnConverging(output));
    externs.insert(name.to_string(), f);
    f
}

/// Registers a foreign function found in a library. Just adds a LLVM global.
pub fn register_foreign_item_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                          abi: Abi, fty: Ty<'tcx>,
                                          name: &str,
                                          attrs: &[ast::Attribute])-> ValueRef {
    debug!("register_foreign_item_fn(abi={:?}, \
            ty={:?}, \
            name={})",
           abi,
           fty,
           name);

    let cc = llvm_calling_convention(ccx, abi);

    // Register the function as a C extern fn
    let tys = foreign_types_for_fn_ty(ccx, fty);

    // Make sure the calling convention is right for variadic functions
    // (should've been caught if not in typeck)
    if tys.fn_sig.variadic {
        assert!(cc == llvm::CCallConv);
    }

    // Create the LLVM value for the C extern fn
    let llfn_ty = lltype_for_fn_from_foreign_types(ccx, &tys);

    let llfn = get_extern_fn(ccx, &mut *ccx.externs().borrow_mut(), name, cc, llfn_ty, fty);
    attributes::unwind(llfn, false);
    add_argument_attributes(&tys, llfn);
    attributes::from_fn_attrs(ccx, attrs, llfn);
    llfn
}

/// Prepares a call to a native function. This requires adapting
/// from the Rust argument passing rules to the native rules.
///
/// # Parameters
///
/// - `callee_ty`: Rust type for the function we are calling
/// - `llfn`: the function pointer we are calling
/// - `llretptr`: where to store the return value of the function
/// - `llargs_rust`: a list of the argument values, prepared
///   as they would be if calling a Rust function
/// - `passed_arg_tys`: Rust type for the arguments. Normally we
///   can derive these from callee_ty but in the case of variadic
///   functions passed_arg_tys will include the Rust type of all
///   the arguments including the ones not specified in the fn's signature.
pub fn trans_native_call<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                     callee_ty: Ty<'tcx>,
                                     llfn: ValueRef,
                                     llretptr: ValueRef,
                                     llargs_rust: &[ValueRef],
                                     passed_arg_tys: Vec<Ty<'tcx>>,
                                     call_debug_loc: DebugLoc)
                                     -> Block<'blk, 'tcx>
{
    let ccx = bcx.ccx();

    debug!("trans_native_call(callee_ty={:?}, \
            llfn={}, \
            llretptr={})",
           callee_ty,
           ccx.tn().val_to_string(llfn),
           ccx.tn().val_to_string(llretptr));

    let (fn_abi, fn_sig) = match callee_ty.sty {
        ty::TyFnDef(_, _, ref fn_ty) |
        ty::TyFnPtr(ref fn_ty) => (fn_ty.abi, &fn_ty.sig),
        _ => ccx.sess().bug("trans_native_call called on non-function type")
    };
    let fn_sig = ccx.tcx().erase_late_bound_regions(fn_sig);
    let fn_sig = infer::normalize_associated_type(ccx.tcx(), &fn_sig);
    let llsig = foreign_signature(ccx, &fn_sig, &passed_arg_tys[..]);
    let fn_type = cabi::compute_abi_info(ccx,
                                         &llsig.llarg_tys,
                                         llsig.llret_ty,
                                         llsig.ret_def);

    let arg_tys: &[cabi::ArgType] = &fn_type.arg_tys;

    let mut llargs_foreign = Vec::new();

    // If the foreign ABI expects return value by pointer, supply the
    // pointer that Rust gave us. Sometimes we have to bitcast
    // because foreign fns return slightly different (but equivalent)
    // views on the same type (e.g., i64 in place of {i32,i32}).
    if fn_type.ret_ty.is_indirect() {
        match fn_type.ret_ty.cast {
            Some(ty) => {
                let llcastedretptr =
                    BitCast(bcx, llretptr, ty.ptr_to());
                llargs_foreign.push(llcastedretptr);
            }
            None => {
                llargs_foreign.push(llretptr);
            }
        }
    }

    let mut offset = 0;
    for (i, arg_ty) in arg_tys.iter().enumerate() {
        let mut llarg_rust = llargs_rust[i + offset];

        if arg_ty.is_ignore() {
            continue;
        }

        // Does Rust pass this argument by pointer?
        let rust_indirect = type_of::arg_is_indirect(ccx, passed_arg_tys[i]);

        debug!("argument {}, llarg_rust={}, rust_indirect={}, arg_ty={}",
               i,
               ccx.tn().val_to_string(llarg_rust),
               rust_indirect,
               ccx.tn().type_to_string(arg_ty.ty));

        // Ensure that we always have the Rust value indirectly,
        // because it makes bitcasting easier.
        if !rust_indirect {
            let scratch = base::alloc_ty(bcx, passed_arg_tys[i], "__arg");
            if type_is_fat_ptr(ccx.tcx(), passed_arg_tys[i]) {
                Store(bcx, llargs_rust[i + offset], expr::get_dataptr(bcx, scratch));
                Store(bcx, llargs_rust[i + offset + 1], expr::get_meta(bcx, scratch));
                offset += 1;
            } else {
                base::store_ty(bcx, llarg_rust, scratch, passed_arg_tys[i]);
            }
            llarg_rust = scratch;
        }

        debug!("llarg_rust={} (after indirection)",
               ccx.tn().val_to_string(llarg_rust));

        // Check whether we need to do any casting
        match arg_ty.cast {
            Some(ty) => llarg_rust = BitCast(bcx, llarg_rust, ty.ptr_to()),
            None => ()
        }

        debug!("llarg_rust={} (after casting)",
               ccx.tn().val_to_string(llarg_rust));

        // Finally, load the value if needed for the foreign ABI
        let foreign_indirect = arg_ty.is_indirect();
        let llarg_foreign = if foreign_indirect {
            llarg_rust
        } else {
            if passed_arg_tys[i].is_bool() {
                let val = LoadRangeAssert(bcx, llarg_rust, 0, 2, llvm::False);
                Trunc(bcx, val, Type::i1(bcx.ccx()))
            } else {
                Load(bcx, llarg_rust)
            }
        };

        debug!("argument {}, llarg_foreign={}",
               i, ccx.tn().val_to_string(llarg_foreign));

        // fill padding with undef value
        match arg_ty.pad {
            Some(ty) => llargs_foreign.push(C_undef(ty)),
            None => ()
        }
        llargs_foreign.push(llarg_foreign);
    }

    let cc = llvm_calling_convention(ccx, fn_abi);

    // A function pointer is called without the declaration available, so we have to apply
    // any attributes with ABI implications directly to the call instruction.
    let mut attrs = llvm::AttrBuilder::new();

    // Add attributes that are always applicable, independent of the concrete foreign ABI
    if fn_type.ret_ty.is_indirect() {
        let llret_sz = machine::llsize_of_real(ccx, fn_type.ret_ty.ty);

        // The outptr can be noalias and nocapture because it's entirely
        // invisible to the program. We also know it's nonnull as well
        // as how many bytes we can dereference
        attrs.arg(1, llvm::Attribute::NoAlias)
             .arg(1, llvm::Attribute::NoCapture)
             .arg(1, llvm::DereferenceableAttribute(llret_sz));
    };

    // Add attributes that depend on the concrete foreign ABI
    let mut arg_idx = if fn_type.ret_ty.is_indirect() { 1 } else { 0 };
    match fn_type.ret_ty.attr {
        Some(attr) => { attrs.arg(arg_idx, attr); },
        _ => ()
    }

    arg_idx += 1;
    for arg_ty in &fn_type.arg_tys {
        if arg_ty.is_ignore() {
            continue;
        }
        // skip padding
        if arg_ty.pad.is_some() { arg_idx += 1; }

        if let Some(attr) = arg_ty.attr {
            attrs.arg(arg_idx, attr);
        }

        arg_idx += 1;
    }

    let llforeign_retval = CallWithConv(bcx,
                                        llfn,
                                        &llargs_foreign[..],
                                        cc,
                                        Some(attrs),
                                        call_debug_loc);

    // If the function we just called does not use an outpointer,
    // store the result into the rust outpointer. Cast the outpointer
    // type to match because some ABIs will use a different type than
    // the Rust type. e.g., a {u32,u32} struct could be returned as
    // u64.
    if llsig.ret_def && !fn_type.ret_ty.is_indirect() {
        let llrust_ret_ty = llsig.llret_ty;
        let llforeign_ret_ty = match fn_type.ret_ty.cast {
            Some(ty) => ty,
            None => fn_type.ret_ty.ty
        };

        debug!("llretptr={}", ccx.tn().val_to_string(llretptr));
        debug!("llforeign_retval={}", ccx.tn().val_to_string(llforeign_retval));
        debug!("llrust_ret_ty={}", ccx.tn().type_to_string(llrust_ret_ty));
        debug!("llforeign_ret_ty={}", ccx.tn().type_to_string(llforeign_ret_ty));

        if llrust_ret_ty == llforeign_ret_ty {
            match fn_sig.output {
                ty::FnConverging(result_ty) => {
                    base::store_ty(bcx, llforeign_retval, llretptr, result_ty)
                }
                ty::FnDiverging => {}
            }
        } else {
            // The actual return type is a struct, but the ABI
            // adaptation code has cast it into some scalar type.  The
            // code that follows is the only reliable way I have
            // found to do a transform like i64 -> {i32,i32}.
            // Basically we dump the data onto the stack then memcpy it.
            //
            // Other approaches I tried:
            // - Casting rust ret pointer to the foreign type and using Store
            //   is (a) unsafe if size of foreign type > size of rust type and
            //   (b) runs afoul of strict aliasing rules, yielding invalid
            //   assembly under -O (specifically, the store gets removed).
            // - Truncating foreign type to correct integral type and then
            //   bitcasting to the struct type yields invalid cast errors.
            let llscratch = base::alloca(bcx, llforeign_ret_ty, "__cast");
            base::call_lifetime_start(bcx, llscratch);
            Store(bcx, llforeign_retval, llscratch);
            let llscratch_i8 = BitCast(bcx, llscratch, Type::i8(ccx).ptr_to());
            let llretptr_i8 = BitCast(bcx, llretptr, Type::i8(ccx).ptr_to());
            let llrust_size = machine::llsize_of_store(ccx, llrust_ret_ty);
            let llforeign_align = machine::llalign_of_min(ccx, llforeign_ret_ty);
            let llrust_align = machine::llalign_of_min(ccx, llrust_ret_ty);
            let llalign = cmp::min(llforeign_align, llrust_align);
            debug!("llrust_size={}", llrust_size);
            base::call_memcpy(bcx, llretptr_i8, llscratch_i8,
                              C_uint(ccx, llrust_size), llalign as u32);
            base::call_lifetime_end(bcx, llscratch);
        }
    }

    return bcx;
}

// feature gate SIMD types in FFI, since I (huonw) am not sure the
// ABIs are handled at all correctly.
fn gate_simd_ffi(tcx: &TyCtxt, decl: &hir::FnDecl, ty: &ty::BareFnTy) {
    if !tcx.sess.features.borrow().simd_ffi {
        let check = |ast_ty: &hir::Ty, ty: ty::Ty| {
            if ty.is_simd() {
                tcx.sess.struct_span_err(ast_ty.span,
                              &format!("use of SIMD type `{}` in FFI is highly experimental and \
                                        may result in invalid code",
                                       pprust::ty_to_string(ast_ty)))
                    .fileline_help(ast_ty.span,
                                   "add #![feature(simd_ffi)] to the crate attributes to enable")
                    .emit();
            }
        };
        let sig = &ty.sig.0;
        for (input, ty) in decl.inputs.iter().zip(&sig.inputs) {
            check(&input.ty, *ty)
        }
        if let hir::Return(ref ty) = decl.output {
            check(&ty, sig.output.unwrap())
        }
    }
}

pub fn trans_foreign_mod(ccx: &CrateContext, foreign_mod: &hir::ForeignMod) {
    let _icx = push_ctxt("foreign::trans_foreign_mod");
    for foreign_item in &foreign_mod.items {
        let lname = link_name(foreign_item);

        if let hir::ForeignItemFn(ref decl, _) = foreign_item.node {
            match foreign_mod.abi {
                Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic => {}
                abi => {
                    let ty = ccx.tcx().node_id_to_type(foreign_item.id);
                    match ty.sty {
                        ty::TyFnDef(_, _, bft) |
                        ty::TyFnPtr(bft) => gate_simd_ffi(ccx.tcx(), &decl, bft),
                        _ => ccx.tcx().sess.span_bug(foreign_item.span,
                                                     "foreign fn's sty isn't a bare_fn_ty?")
                    }

                    register_foreign_item_fn(ccx, abi, ty, &lname, &foreign_item.attrs);
                    // Unlike for other items, we shouldn't call
                    // `base::update_linkage` here.  Foreign items have
                    // special linkage requirements, which are handled
                    // inside `foreign::register_*`.
                }
            }
        }

        ccx.item_symbols().borrow_mut().insert(foreign_item.id,
                                             lname.to_string());
    }
}

///////////////////////////////////////////////////////////////////////////
// Rust functions with foreign ABIs
//
// These are normal Rust functions defined with foreign ABIs.  For
// now, and perhaps forever, we translate these using a "layer of
// indirection". That is, given a Rust declaration like:
//
//     extern "C" fn foo(i: u32) -> u32 { ... }
//
// we will generate a function like:
//
//     S foo(T i) {
//         S r;
//         foo0(&r, NULL, i);
//         return r;
//     }
//
//     #[inline_always]
//     void foo0(uint32_t *r, void *env, uint32_t i) { ... }
//
// Here the (internal) `foo0` function follows the Rust ABI as normal,
// where the `foo` function follows the C ABI. We rely on LLVM to
// inline the one into the other. Of course we could just generate the
// correct code in the first place, but this is much simpler.

pub fn decl_rust_fn_with_foreign_abi<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                               t: Ty<'tcx>,
                                               name: &str)
                                               -> ValueRef {
    let tys = foreign_types_for_fn_ty(ccx, t);
    let llfn_ty = lltype_for_fn_from_foreign_types(ccx, &tys);
    let cconv = match t.sty {
        ty::TyFnDef(_, _, ref fn_ty) | ty::TyFnPtr(ref fn_ty) => {
            llvm_calling_convention(ccx, fn_ty.abi)
        }
        _ => panic!("expected bare fn in decl_rust_fn_with_foreign_abi")
    };
    let llfn = declare::declare_fn(ccx, name, cconv, llfn_ty,
                                   ty::FnConverging(ccx.tcx().mk_nil()));
    add_argument_attributes(&tys, llfn);
    debug!("decl_rust_fn_with_foreign_abi(llfn_ty={}, llfn={})",
           ccx.tn().type_to_string(llfn_ty), ccx.tn().val_to_string(llfn));
    llfn
}

pub fn register_rust_fn_with_foreign_abi(ccx: &CrateContext,
                                         sp: Span,
                                         sym: String,
                                         node_id: ast::NodeId)
                                         -> ValueRef {
    let _icx = push_ctxt("foreign::register_foreign_fn");

    let t = ccx.tcx().node_id_to_type(node_id);
    let cconv = match t.sty {
        ty::TyFnDef(_, _, ref fn_ty) | ty::TyFnPtr(ref fn_ty) => {
            llvm_calling_convention(ccx, fn_ty.abi)
        }
        _ => panic!("expected bare fn in register_rust_fn_with_foreign_abi")
    };
    let tys = foreign_types_for_fn_ty(ccx, t);
    let llfn_ty = lltype_for_fn_from_foreign_types(ccx, &tys);
    let llfn = base::register_fn_llvmty(ccx, sp, sym, node_id, cconv, llfn_ty);
    add_argument_attributes(&tys, llfn);
    debug!("register_rust_fn_with_foreign_abi(node_id={}, llfn_ty={}, llfn={})",
           node_id, ccx.tn().type_to_string(llfn_ty), ccx.tn().val_to_string(llfn));
    llfn
}

pub fn trans_rust_fn_with_foreign_abi<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                                decl: &hir::FnDecl,
                                                body: &hir::Block,
                                                attrs: &[ast::Attribute],
                                                llwrapfn: ValueRef,
                                                param_substs: &'tcx Substs<'tcx>,
                                                id: ast::NodeId,
                                                hash: Option<&str>) {
    let _icx = push_ctxt("foreign::build_foreign_fn");

    let fnty = ccx.tcx().node_id_to_type(id);
    let mty = monomorphize::apply_param_substs(ccx.tcx(), param_substs, &fnty);
    let tys = foreign_types_for_fn_ty(ccx, mty);

    unsafe { // unsafe because we call LLVM operations
        // Build up the Rust function (`foo0` above).
        let llrustfn = build_rust_fn(ccx, decl, body, param_substs, attrs, id, hash);

        // Build up the foreign wrapper (`foo` above).
        return build_wrap_fn(ccx, llrustfn, llwrapfn, &tys, mty);
    }

    fn build_rust_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                               decl: &hir::FnDecl,
                               body: &hir::Block,
                               param_substs: &'tcx Substs<'tcx>,
                               attrs: &[ast::Attribute],
                               id: ast::NodeId,
                               hash: Option<&str>)
                               -> ValueRef
    {
        let _icx = push_ctxt("foreign::foreign::build_rust_fn");
        let tcx = ccx.tcx();
        let t = tcx.node_id_to_type(id);
        let t = monomorphize::apply_param_substs(tcx, param_substs, &t);

        let path =
            tcx.map.def_path_from_id(id)
                   .into_iter()
                   .map(|e| e.data.as_interned_str())
                   .chain(once(special_idents::clownshoe_abi.name.as_str()));
        let ps = link::mangle(path, hash);

        // Compute the type that the function would have if it were just a
        // normal Rust function. This will be the type of the wrappee fn.
        match t.sty {
            ty::TyFnDef(_, _, ref f) | ty::TyFnPtr(ref f)=> {
                assert!(f.abi != Abi::Rust);
                assert!(f.abi != Abi::RustIntrinsic);
                assert!(f.abi != Abi::PlatformIntrinsic);
            }
            _ => {
                ccx.sess().bug(&format!("build_rust_fn: extern fn {} has ty {:?}, \
                                        expected a bare fn ty",
                                       ccx.tcx().map.path_to_string(id),
                                       t));
            }
        };

        debug!("build_rust_fn: path={} id={} t={:?}",
               ccx.tcx().map.path_to_string(id),
               id, t);

        let llfn = declare::define_internal_rust_fn(ccx, &ps, t);
        attributes::from_fn_attrs(ccx, attrs, llfn);
        base::trans_fn(ccx, decl, body, llfn, param_substs, id, attrs);
        llfn
    }

    unsafe fn build_wrap_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                      llrustfn: ValueRef,
                                      llwrapfn: ValueRef,
                                      tys: &ForeignTypes<'tcx>,
                                      t: Ty<'tcx>) {
        let _icx = push_ctxt(
            "foreign::trans_rust_fn_with_foreign_abi::build_wrap_fn");

        debug!("build_wrap_fn(llrustfn={}, llwrapfn={}, t={:?})",
               ccx.tn().val_to_string(llrustfn),
               ccx.tn().val_to_string(llwrapfn),
               t);

        // Avoid all the Rust generation stuff and just generate raw
        // LLVM here.
        //
        // We want to generate code like this:
        //
        //     S foo(T i) {
        //         S r;
        //         foo0(&r, NULL, i);
        //         return r;
        //     }

        if llvm::LLVMCountBasicBlocks(llwrapfn) != 0 {
            ccx.sess().bug("wrapping a function inside non-empty wrapper, most likely cause is \
                           multiple functions being wrapped");
        }

        let ptr = "the block\0".as_ptr();
        let the_block = llvm::LLVMAppendBasicBlockInContext(ccx.llcx(), llwrapfn,
                                                            ptr as *const _);

        let builder = ccx.builder();
        builder.position_at_end(the_block);

        // Array for the arguments we will pass to the rust function.
        let mut llrust_args = Vec::new();
        let mut next_foreign_arg_counter: c_uint = 0;
        let mut next_foreign_arg = |pad: bool| -> c_uint {
            next_foreign_arg_counter += if pad {
                2
            } else {
                1
            };
            next_foreign_arg_counter - 1
        };

        // If there is an out pointer on the foreign function
        let foreign_outptr = {
            if tys.fn_ty.ret_ty.is_indirect() {
                Some(get_param(llwrapfn, next_foreign_arg(false)))
            } else {
                None
            }
        };

        let rustfn_ty = Type::from_ref(llvm::LLVMTypeOf(llrustfn)).element_type();
        let mut rust_param_tys = rustfn_ty.func_params().into_iter();
        // Push Rust return pointer, using null if it will be unused.
        let rust_uses_outptr = match tys.fn_sig.output {
            ty::FnConverging(ret_ty) => type_of::return_uses_outptr(ccx, ret_ty),
            ty::FnDiverging => false
        };
        let return_alloca: Option<ValueRef>;
        let llrust_ret_ty = if rust_uses_outptr {
            rust_param_tys.next().expect("Missing return type!").element_type()
        } else {
            rustfn_ty.return_type()
        };
        if rust_uses_outptr {
            // Rust expects to use an outpointer. If the foreign fn
            // also uses an outpointer, we can reuse it, but the types
            // may vary, so cast first to the Rust type. If the
            // foreign fn does NOT use an outpointer, we will have to
            // alloca some scratch space on the stack.
            match foreign_outptr {
                Some(llforeign_outptr) => {
                    debug!("out pointer, foreign={}",
                           ccx.tn().val_to_string(llforeign_outptr));
                    let llrust_retptr =
                        builder.bitcast(llforeign_outptr, llrust_ret_ty.ptr_to());
                    debug!("out pointer, foreign={} (casted)",
                           ccx.tn().val_to_string(llrust_retptr));
                    llrust_args.push(llrust_retptr);
                    return_alloca = None;
                }

                None => {
                    let slot = builder.alloca(llrust_ret_ty, "return_alloca");
                    debug!("out pointer, \
                            allocad={}, \
                            llrust_ret_ty={}, \
                            return_ty={:?}",
                           ccx.tn().val_to_string(slot),
                           ccx.tn().type_to_string(llrust_ret_ty),
                           tys.fn_sig.output);
                    llrust_args.push(slot);
                    return_alloca = Some(slot);
                }
            }
        } else {
            // Rust does not expect an outpointer. If the foreign fn
            // does use an outpointer, then we will do a store of the
            // value that the Rust fn returns.
            return_alloca = None;
        };

        // Build up the arguments to the call to the rust function.
        // Careful to adapt for cases where the native convention uses
        // a pointer and Rust does not or vice versa.
        for i in 0..tys.fn_sig.inputs.len() {
            let rust_ty = tys.fn_sig.inputs[i];
            let rust_indirect = type_of::arg_is_indirect(ccx, rust_ty);
            let llty = rust_param_tys.next().expect("Not enough parameter types!");
            let llrust_ty = if rust_indirect {
                llty.element_type()
            } else {
                llty
            };
            let llforeign_arg_ty = tys.fn_ty.arg_tys[i];
            let foreign_indirect = llforeign_arg_ty.is_indirect();

            if llforeign_arg_ty.is_ignore() {
                debug!("skipping ignored arg #{}", i);
                llrust_args.push(C_undef(llrust_ty));
                continue;
            }

            // skip padding
            let foreign_index = next_foreign_arg(llforeign_arg_ty.pad.is_some());
            let mut llforeign_arg = get_param(llwrapfn, foreign_index);

            debug!("llforeign_arg {}{}: {}", "#",
                   i, ccx.tn().val_to_string(llforeign_arg));
            debug!("rust_indirect = {}, foreign_indirect = {}",
                   rust_indirect, foreign_indirect);

            // Ensure that the foreign argument is indirect (by
            // pointer).  It makes adapting types easier, since we can
            // always just bitcast pointers.
            if !foreign_indirect {
                llforeign_arg = if rust_ty.is_bool() {
                    let lltemp = builder.alloca(Type::bool(ccx), "");
                    builder.store(builder.zext(llforeign_arg, Type::bool(ccx)), lltemp);
                    lltemp
                } else {
                    let lltemp = builder.alloca(val_ty(llforeign_arg), "");
                    builder.store(llforeign_arg, lltemp);
                    lltemp
                }
            }

            // If the types in the ABI and the Rust types don't match,
            // bitcast the llforeign_arg pointer so it matches the types
            // Rust expects.
            if llforeign_arg_ty.cast.is_some() && !type_is_fat_ptr(ccx.tcx(), rust_ty){
                assert!(!foreign_indirect);
                llforeign_arg = builder.bitcast(llforeign_arg, llrust_ty.ptr_to());
            }

            let llrust_arg = if rust_indirect || type_is_fat_ptr(ccx.tcx(), rust_ty) {
                llforeign_arg
            } else {
                if rust_ty.is_bool() {
                    let tmp = builder.load_range_assert(llforeign_arg, 0, 2, llvm::False);
                    builder.trunc(tmp, Type::i1(ccx))
                } else if type_of::type_of(ccx, rust_ty).is_aggregate() {
                    // We want to pass small aggregates as immediate values, but using an aggregate
                    // LLVM type for this leads to bad optimizations, so its arg type is an
                    // appropriately sized integer and we have to convert it
                    let tmp = builder.bitcast(llforeign_arg,
                                              type_of::arg_type_of(ccx, rust_ty).ptr_to());
                    let load = builder.load(tmp);
                    llvm::LLVMSetAlignment(load, type_of::align_of(ccx, rust_ty));
                    load
                } else {
                    builder.load(llforeign_arg)
                }
            };

            debug!("llrust_arg {}{}: {}", "#",
                   i, ccx.tn().val_to_string(llrust_arg));
            if type_is_fat_ptr(ccx.tcx(), rust_ty) {
                let next_llrust_ty = rust_param_tys.next().expect("Not enough parameter types!");
                llrust_args.push(builder.load(builder.bitcast(builder.struct_gep(
                                llrust_arg, abi::FAT_PTR_ADDR), llrust_ty.ptr_to())));
                llrust_args.push(builder.load(builder.bitcast(builder.struct_gep(
                                llrust_arg, abi::FAT_PTR_EXTRA), next_llrust_ty.ptr_to())));
            } else {
                llrust_args.push(llrust_arg);
            }
        }

        // Perform the call itself
        debug!("calling llrustfn = {}, t = {:?}",
               ccx.tn().val_to_string(llrustfn), t);
        let attributes = attributes::from_fn_type(ccx, t);
        let llrust_ret_val = builder.call(llrustfn, &llrust_args,
                                          None, Some(attributes));

        // Get the return value where the foreign fn expects it.
        let llforeign_ret_ty = match tys.fn_ty.ret_ty.cast {
            Some(ty) => ty,
            None => tys.fn_ty.ret_ty.ty
        };
        match foreign_outptr {
            None if !tys.llsig.ret_def => {
                // Function returns `()` or `bot`, which in Rust is the LLVM
                // type "{}" but in foreign ABIs is "Void".
                builder.ret_void();
            }

            None if rust_uses_outptr => {
                // Rust uses an outpointer, but the foreign ABI does not. Load.
                let llrust_outptr = return_alloca.unwrap();
                let llforeign_outptr_casted =
                    builder.bitcast(llrust_outptr, llforeign_ret_ty.ptr_to());
                let llforeign_retval = builder.load(llforeign_outptr_casted);
                builder.ret(llforeign_retval);
            }

            None if llforeign_ret_ty != llrust_ret_ty => {
                // Neither ABI uses an outpointer, but the types don't
                // quite match. Must cast. Probably we should try and
                // examine the types and use a concrete llvm cast, but
                // right now we just use a temp memory location and
                // bitcast the pointer, which is the same thing the
                // old wrappers used to do.
                let lltemp = builder.alloca(llforeign_ret_ty, "");
                let lltemp_casted = builder.bitcast(lltemp, llrust_ret_ty.ptr_to());
                builder.store(llrust_ret_val, lltemp_casted);
                let llforeign_retval = builder.load(lltemp);
                builder.ret(llforeign_retval);
            }

            None => {
                // Neither ABI uses an outpointer, and the types
                // match. Easy peasy.
                builder.ret(llrust_ret_val);
            }

            Some(llforeign_outptr) if !rust_uses_outptr => {
                // Foreign ABI requires an out pointer, but Rust doesn't.
                // Store Rust return value.
                let llforeign_outptr_casted =
                    builder.bitcast(llforeign_outptr, llrust_ret_ty.ptr_to());
                builder.store(llrust_ret_val, llforeign_outptr_casted);
                builder.ret_void();
            }

            Some(_) => {
                // Both ABIs use outpointers. Easy peasy.
                builder.ret_void();
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// General ABI Support
//
// This code is kind of a confused mess and needs to be reworked given
// the massive simplifications that have occurred.

pub fn link_name(i: &hir::ForeignItem) -> InternedString {
    match attr::first_attr_value_str_by_name(&i.attrs, "link_name") {
        Some(ln) => ln.clone(),
        None => match weak_lang_items::link_name(&i.attrs) {
            Some(name) => name,
            None => i.name.as_str(),
        }
    }
}

/// The ForeignSignature is the LLVM types of the arguments/return type of a function. Note that
/// these LLVM types are not quite the same as the LLVM types would be for a native Rust function
/// because foreign functions just plain ignore modes. They also don't pass aggregate values by
/// pointer like we do.
fn foreign_signature<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                               fn_sig: &ty::FnSig<'tcx>,
                               arg_tys: &[Ty<'tcx>])
                               -> LlvmSignature {
    let llarg_tys = arg_tys.iter().map(|&arg| foreign_arg_type_of(ccx, arg)).collect();
    let (llret_ty, ret_def) = match fn_sig.output {
        ty::FnConverging(ret_ty) =>
            (type_of::foreign_arg_type_of(ccx, ret_ty), !return_type_is_void(ccx, ret_ty)),
        ty::FnDiverging =>
            (Type::nil(ccx), false)
    };
    LlvmSignature {
        llarg_tys: llarg_tys,
        llret_ty: llret_ty,
        ret_def: ret_def
    }
}

fn foreign_types_for_fn_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                     ty: Ty<'tcx>) -> ForeignTypes<'tcx> {
    let fn_sig = match ty.sty {
        ty::TyFnDef(_, _, ref fn_ty) | ty::TyFnPtr(ref fn_ty) => &fn_ty.sig,
        _ => ccx.sess().bug("foreign_types_for_fn_ty called on non-function type")
    };
    let fn_sig = ccx.tcx().erase_late_bound_regions(fn_sig);
    let fn_sig = infer::normalize_associated_type(ccx.tcx(), &fn_sig);
    let llsig = foreign_signature(ccx, &fn_sig, &fn_sig.inputs);
    let fn_ty = cabi::compute_abi_info(ccx,
                                       &llsig.llarg_tys,
                                       llsig.llret_ty,
                                       llsig.ret_def);
    debug!("foreign_types_for_fn_ty(\
           ty={:?}, \
           llsig={} -> {}, \
           fn_ty={} -> {}, \
           ret_def={}",
           ty,
           ccx.tn().types_to_str(&llsig.llarg_tys),
           ccx.tn().type_to_string(llsig.llret_ty),
           ccx.tn().types_to_str(&fn_ty.arg_tys.iter().map(|t| t.ty).collect::<Vec<_>>()),
           ccx.tn().type_to_string(fn_ty.ret_ty.ty),
           llsig.ret_def);

    ForeignTypes {
        fn_sig: fn_sig,
        llsig: llsig,
        fn_ty: fn_ty
    }
}

fn lltype_for_fn_from_foreign_types(ccx: &CrateContext, tys: &ForeignTypes) -> Type {
    let mut llargument_tys = Vec::new();

    let ret_ty = tys.fn_ty.ret_ty;
    let llreturn_ty = if ret_ty.is_indirect() {
        llargument_tys.push(ret_ty.ty.ptr_to());
        Type::void(ccx)
    } else {
        match ret_ty.cast {
            Some(ty) => ty,
            None => ret_ty.ty
        }
    };

    for &arg_ty in &tys.fn_ty.arg_tys {
        if arg_ty.is_ignore() {
            continue;
        }
        // add padding
        match arg_ty.pad {
            Some(ty) => llargument_tys.push(ty),
            None => ()
        }

        let llarg_ty = if arg_ty.is_indirect() {
            arg_ty.ty.ptr_to()
        } else {
            match arg_ty.cast {
                Some(ty) => ty,
                None => arg_ty.ty
            }
        };

        llargument_tys.push(llarg_ty);
    }

    if tys.fn_sig.variadic {
        Type::variadic_func(&llargument_tys, &llreturn_ty)
    } else {
        Type::func(&llargument_tys[..], &llreturn_ty)
    }
}

pub fn lltype_for_foreign_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                       ty: Ty<'tcx>) -> Type {
    lltype_for_fn_from_foreign_types(ccx, &foreign_types_for_fn_ty(ccx, ty))
}

fn add_argument_attributes(tys: &ForeignTypes,
                           llfn: ValueRef) {
    let mut i = if tys.fn_ty.ret_ty.is_indirect() {
        1
    } else {
        0
    };

    match tys.fn_ty.ret_ty.attr {
        Some(attr) => unsafe {
            llvm::LLVMAddFunctionAttribute(llfn, i as c_uint, attr.bits() as u64);
        },
        None => {}
    }

    i += 1;

    for &arg_ty in &tys.fn_ty.arg_tys {
        if arg_ty.is_ignore() {
            continue;
        }
        // skip padding
        if arg_ty.pad.is_some() { i += 1; }

        match arg_ty.attr {
            Some(attr) => unsafe {
                llvm::LLVMAddFunctionAttribute(llfn, i as c_uint, attr.bits() as u64);
            },
            None => ()
        }

        i += 1;
    }
}