summaryrefslogtreecommitdiff
path: root/src/librustc_typeck/check/method/probe.rs
blob: f4538dbd25e2fff244659433ea8ba7ac783a2f62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use super::MethodError;
use super::NoMatchData;
use super::{CandidateSource, ImplSource, TraitSource};
use super::suggest;

use check::FnCtxt;
use hir::def_id::DefId;
use hir::def::Def;
use namespace::Namespace;
use rustc::hir;
use rustc::lint;
use rustc::session::config::nightly_options;
use rustc::ty::subst::{Subst, Substs};
use rustc::traits::{self, ObligationCause};
use rustc::ty::{self, Ty, ToPolyTraitRef, ToPredicate, TraitRef, TypeFoldable};
use rustc::ty::GenericParamDefKind;
use rustc::infer::type_variable::TypeVariableOrigin;
use rustc::util::nodemap::FxHashSet;
use rustc::infer::{self, InferOk};
use rustc::middle::stability;
use syntax::ast;
use syntax::util::lev_distance::{lev_distance, find_best_match_for_name};
use syntax_pos::{Span, symbol::Symbol};
use std::mem;
use std::ops::Deref;
use std::rc::Rc;
use std::cmp::max;

use self::CandidateKind::*;
pub use self::PickKind::*;

/// Boolean flag used to indicate if this search is for a suggestion
/// or not.  If true, we can allow ambiguity and so forth.
#[derive(Clone, Copy)]
pub struct IsSuggestion(pub bool);

struct ProbeContext<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
    fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
    span: Span,
    mode: Mode,
    method_name: Option<ast::Ident>,
    return_type: Option<Ty<'tcx>>,
    steps: Rc<Vec<CandidateStep<'tcx>>>,
    inherent_candidates: Vec<Candidate<'tcx>>,
    extension_candidates: Vec<Candidate<'tcx>>,
    impl_dups: FxHashSet<DefId>,

    /// Collects near misses when the candidate functions are missing a `self` keyword and is only
    /// used for error reporting
    static_candidates: Vec<CandidateSource>,

    /// When probing for names, include names that are close to the
    /// requested name (by Levensthein distance)
    allow_similar_names: bool,

    /// Some(candidate) if there is a private candidate
    private_candidate: Option<Def>,

    /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
    /// for error reporting
    unsatisfied_predicates: Vec<TraitRef<'tcx>>,

    is_suggestion: IsSuggestion,
}

impl<'a, 'gcx, 'tcx> Deref for ProbeContext<'a, 'gcx, 'tcx> {
    type Target = FnCtxt<'a, 'gcx, 'tcx>;
    fn deref(&self) -> &Self::Target {
        &self.fcx
    }
}

#[derive(Debug)]
struct CandidateStep<'tcx> {
    self_ty: Ty<'tcx>,
    autoderefs: usize,
    // true if the type results from a dereference of a raw pointer.
    // when assembling candidates, we include these steps, but not when
    // picking methods. This so that if we have `foo: *const Foo` and `Foo` has methods
    // `fn by_raw_ptr(self: *const Self)` and `fn by_ref(&self)`, then
    // `foo.by_raw_ptr()` will work and `foo.by_ref()` won't.
    from_unsafe_deref: bool,
    unsize: bool,
}

#[derive(Debug)]
struct Candidate<'tcx> {
    xform_self_ty: Ty<'tcx>,
    xform_ret_ty: Option<Ty<'tcx>>,
    item: ty::AssociatedItem,
    kind: CandidateKind<'tcx>,
    import_id: Option<ast::NodeId>,
}

#[derive(Debug)]
enum CandidateKind<'tcx> {
    InherentImplCandidate(&'tcx Substs<'tcx>,
                          // Normalize obligations
                          Vec<traits::PredicateObligation<'tcx>>),
    ObjectCandidate,
    TraitCandidate(ty::TraitRef<'tcx>),
    WhereClauseCandidate(// Trait
                         ty::PolyTraitRef<'tcx>),
}

#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum ProbeResult {
    NoMatch,
    BadReturnType,
    Match,
}

#[derive(Debug, PartialEq, Clone)]
pub struct Pick<'tcx> {
    pub item: ty::AssociatedItem,
    pub kind: PickKind<'tcx>,
    pub import_id: Option<ast::NodeId>,

    // Indicates that the source expression should be autoderef'd N times
    //
    // A = expr | *expr | **expr | ...
    pub autoderefs: usize,

    // Indicates that an autoref is applied after the optional autoderefs
    //
    // B = A | &A | &mut A
    pub autoref: Option<hir::Mutability>,

    // Indicates that the source expression should be "unsized" to a
    // target type. This should probably eventually go away in favor
    // of just coercing method receivers.
    //
    // C = B | unsize(B)
    pub unsize: Option<Ty<'tcx>>,
}

#[derive(Clone, Debug, PartialEq, Eq)]
pub enum PickKind<'tcx> {
    InherentImplPick,
    ObjectPick,
    TraitPick,
    WhereClausePick(// Trait
                    ty::PolyTraitRef<'tcx>),
}

pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;

#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum Mode {
    // An expression of the form `receiver.method_name(...)`.
    // Autoderefs are performed on `receiver`, lookup is done based on the
    // `self` argument  of the method, and static methods aren't considered.
    MethodCall,
    // An expression of the form `Type::item` or `<T>::item`.
    // No autoderefs are performed, lookup is done based on the type each
    // implementation is for, and static methods are included.
    Path,
}

#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum ProbeScope {
    // Assemble candidates coming only from traits in scope.
    TraitsInScope,

    // Assemble candidates coming from all traits.
    AllTraits,
}

impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
    /// This is used to offer suggestions to users. It returns methods
    /// that could have been called which have the desired return
    /// type. Some effort is made to rule out methods that, if called,
    /// would result in an error (basically, the same criteria we
    /// would use to decide if a method is a plausible fit for
    /// ambiguity purposes).
    pub fn probe_for_return_type(&self,
                                 span: Span,
                                 mode: Mode,
                                 return_type: Ty<'tcx>,
                                 self_ty: Ty<'tcx>,
                                 scope_expr_id: ast::NodeId)
                                 -> Vec<ty::AssociatedItem> {
        debug!("probe(self_ty={:?}, return_type={}, scope_expr_id={})",
               self_ty,
               return_type,
               scope_expr_id);
        let method_names =
            self.probe_op(span, mode, None, Some(return_type), IsSuggestion(true),
                          self_ty, scope_expr_id, ProbeScope::AllTraits,
                          |probe_cx| Ok(probe_cx.candidate_method_names()))
                .unwrap_or(vec![]);
         method_names
             .iter()
             .flat_map(|&method_name| {
                 self.probe_op(
                     span, mode, Some(method_name), Some(return_type),
                     IsSuggestion(true), self_ty, scope_expr_id,
                     ProbeScope::AllTraits, |probe_cx| probe_cx.pick()
                 ).ok().map(|pick| pick.item)
             })
            .collect()
    }

    pub fn probe_for_name(&self,
                          span: Span,
                          mode: Mode,
                          item_name: ast::Ident,
                          is_suggestion: IsSuggestion,
                          self_ty: Ty<'tcx>,
                          scope_expr_id: ast::NodeId,
                          scope: ProbeScope)
                          -> PickResult<'tcx> {
        debug!("probe(self_ty={:?}, item_name={}, scope_expr_id={})",
               self_ty,
               item_name,
               scope_expr_id);
        self.probe_op(span,
                      mode,
                      Some(item_name),
                      None,
                      is_suggestion,
                      self_ty,
                      scope_expr_id,
                      scope,
                      |probe_cx| probe_cx.pick())
    }

    fn probe_op<OP,R>(&'a self,
                      span: Span,
                      mode: Mode,
                      method_name: Option<ast::Ident>,
                      return_type: Option<Ty<'tcx>>,
                      is_suggestion: IsSuggestion,
                      self_ty: Ty<'tcx>,
                      scope_expr_id: ast::NodeId,
                      scope: ProbeScope,
                      op: OP)
                      -> Result<R, MethodError<'tcx>>
        where OP: FnOnce(ProbeContext<'a, 'gcx, 'tcx>) -> Result<R, MethodError<'tcx>>
    {
        // FIXME(#18741) -- right now, creating the steps involves evaluating the
        // `*` operator, which registers obligations that then escape into
        // the global fulfillment context and thus has global
        // side-effects. This is a bit of a pain to refactor. So just let
        // it ride, although it's really not great, and in fact could I
        // think cause spurious errors. Really though this part should
        // take place in the `self.probe` below.
        let steps = if mode == Mode::MethodCall {
            match self.create_steps(span, scope_expr_id, self_ty, is_suggestion) {
                Some(steps) => steps,
                None => {
                    return Err(MethodError::NoMatch(NoMatchData::new(Vec::new(),
                                                                     Vec::new(),
                                                                     Vec::new(),
                                                                     None,
                                                                     mode)))
                }
            }
        } else {
            vec![CandidateStep {
                     self_ty,
                     autoderefs: 0,
                     from_unsafe_deref: false,
                     unsize: false,
                 }]
        };

        debug!("ProbeContext: steps for self_ty={:?} are {:?}",
               self_ty,
               steps);

        // this creates one big transaction so that all type variables etc
        // that we create during the probe process are removed later
        self.probe(|_| {
            let mut probe_cx = ProbeContext::new(
                self, span, mode, method_name, return_type, Rc::new(steps), is_suggestion,
            );

            probe_cx.assemble_inherent_candidates();
            match scope {
                ProbeScope::TraitsInScope =>
                    probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)?,
                ProbeScope::AllTraits =>
                    probe_cx.assemble_extension_candidates_for_all_traits()?,
            };
            op(probe_cx)
        })
    }

    fn create_steps(&self,
                    span: Span,
                    scope_expr_id: ast::NodeId,
                    self_ty: Ty<'tcx>,
                    is_suggestion: IsSuggestion)
                    -> Option<Vec<CandidateStep<'tcx>>> {
        // FIXME: we don't need to create the entire steps in one pass

        let mut autoderef = self.autoderef(span, self_ty).include_raw_pointers();
        let mut reached_raw_pointer = false;
        let mut steps: Vec<_> = autoderef.by_ref()
            .map(|(ty, d)| {
                let step = CandidateStep {
                    self_ty: ty,
                    autoderefs: d,
                    from_unsafe_deref: reached_raw_pointer,
                    unsize: false,
                };
                if let ty::RawPtr(_) = ty.sty {
                    // all the subsequent steps will be from_unsafe_deref
                    reached_raw_pointer = true;
                }
                step
            })
            .collect();

        let final_ty = autoderef.maybe_ambiguous_final_ty();
        match final_ty.sty {
            ty::Infer(ty::TyVar(_)) => {
                // Ended in an inference variable. If we are doing
                // a real method lookup, this is a hard error because it's
                // possible that there will be multiple applicable methods.
                if !is_suggestion.0 {
                    if reached_raw_pointer
                    && !self.tcx.features().arbitrary_self_types {
                        // this case used to be allowed by the compiler,
                        // so we do a future-compat lint here for the 2015 edition
                        // (see https://github.com/rust-lang/rust/issues/46906)
                        if self.tcx.sess.rust_2018() {
                          span_err!(self.tcx.sess, span, E0699,
                                    "the type of this value must be known \
                                     to call a method on a raw pointer on it");
                        } else {
                            self.tcx.lint_node(
                                lint::builtin::TYVAR_BEHIND_RAW_POINTER,
                                scope_expr_id,
                                span,
                                "type annotations needed");
                        }
                    } else {
                        let t = self.structurally_resolved_type(span, final_ty);
                        assert_eq!(t, self.tcx.types.err);
                        return None
                    }
                } else {
                    // If we're just looking for suggestions,
                    // though, ambiguity is no big thing, we can
                    // just ignore it.
                }
            }
            ty::Array(elem_ty, _) => {
                let dereferences = steps.len() - 1;

                steps.push(CandidateStep {
                    self_ty: self.tcx.mk_slice(elem_ty),
                    autoderefs: dereferences,
                    // this could be from an unsafe deref if we had
                    // a *mut/const [T; N]
                    from_unsafe_deref: reached_raw_pointer,
                    unsize: true,
                });
            }
            ty::Error => return None,
            _ => (),
        }

        debug!("create_steps: steps={:?}", steps);

        Some(steps)
    }
}

impl<'a, 'gcx, 'tcx> ProbeContext<'a, 'gcx, 'tcx> {
    fn new(fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
           span: Span,
           mode: Mode,
           method_name: Option<ast::Ident>,
           return_type: Option<Ty<'tcx>>,
           steps: Rc<Vec<CandidateStep<'tcx>>>,
           is_suggestion: IsSuggestion)
           -> ProbeContext<'a, 'gcx, 'tcx> {
        ProbeContext {
            fcx,
            span,
            mode,
            method_name,
            return_type,
            inherent_candidates: Vec::new(),
            extension_candidates: Vec::new(),
            impl_dups: FxHashSet::default(),
            steps: steps,
            static_candidates: Vec::new(),
            allow_similar_names: false,
            private_candidate: None,
            unsatisfied_predicates: Vec::new(),
            is_suggestion,
        }
    }

    fn reset(&mut self) {
        self.inherent_candidates.clear();
        self.extension_candidates.clear();
        self.impl_dups.clear();
        self.static_candidates.clear();
        self.private_candidate = None;
    }

    ///////////////////////////////////////////////////////////////////////////
    // CANDIDATE ASSEMBLY

    fn push_candidate(&mut self,
                      candidate: Candidate<'tcx>,
                      is_inherent: bool)
    {
        let is_accessible = if let Some(name) = self.method_name {
            let item = candidate.item;
            let def_scope = self.tcx.adjust_ident(name, item.container.id(), self.body_id).1;
            item.vis.is_accessible_from(def_scope, self.tcx)
        } else {
            true
        };
        if is_accessible {
            if is_inherent {
                self.inherent_candidates.push(candidate);
            } else {
                self.extension_candidates.push(candidate);
            }
        } else if self.private_candidate.is_none() {
            self.private_candidate = Some(candidate.item.def());
        }
    }

    fn assemble_inherent_candidates(&mut self) {
        let steps = self.steps.clone();
        for step in steps.iter() {
            self.assemble_probe(step.self_ty);
        }
    }

    fn assemble_probe(&mut self, self_ty: Ty<'tcx>) {
        debug!("assemble_probe: self_ty={:?}", self_ty);
        let lang_items = self.tcx.lang_items();

        match self_ty.sty {
            ty::Dynamic(ref data, ..) => {
                let p = data.principal();
                self.assemble_inherent_candidates_from_object(self_ty, p);
                self.assemble_inherent_impl_candidates_for_type(p.def_id());
            }
            ty::Adt(def, _) => {
                self.assemble_inherent_impl_candidates_for_type(def.did);
            }
            ty::Foreign(did) => {
                self.assemble_inherent_impl_candidates_for_type(did);
            }
            ty::Param(p) => {
                self.assemble_inherent_candidates_from_param(self_ty, p);
            }
            ty::Char => {
                let lang_def_id = lang_items.char_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Str => {
                let lang_def_id = lang_items.str_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);

                let lang_def_id = lang_items.str_alloc_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Slice(_) => {
                let lang_def_id = lang_items.slice_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);

                let lang_def_id = lang_items.slice_u8_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);

                let lang_def_id = lang_items.slice_alloc_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);

                let lang_def_id = lang_items.slice_u8_alloc_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
                let lang_def_id = lang_items.const_ptr_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::RawPtr(ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
                let lang_def_id = lang_items.mut_ptr_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Int(ast::IntTy::I8) => {
                let lang_def_id = lang_items.i8_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Int(ast::IntTy::I16) => {
                let lang_def_id = lang_items.i16_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Int(ast::IntTy::I32) => {
                let lang_def_id = lang_items.i32_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Int(ast::IntTy::I64) => {
                let lang_def_id = lang_items.i64_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Int(ast::IntTy::I128) => {
                let lang_def_id = lang_items.i128_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Int(ast::IntTy::Isize) => {
                let lang_def_id = lang_items.isize_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Uint(ast::UintTy::U8) => {
                let lang_def_id = lang_items.u8_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Uint(ast::UintTy::U16) => {
                let lang_def_id = lang_items.u16_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Uint(ast::UintTy::U32) => {
                let lang_def_id = lang_items.u32_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Uint(ast::UintTy::U64) => {
                let lang_def_id = lang_items.u64_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Uint(ast::UintTy::U128) => {
                let lang_def_id = lang_items.u128_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Uint(ast::UintTy::Usize) => {
                let lang_def_id = lang_items.usize_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Float(ast::FloatTy::F32) => {
                let lang_def_id = lang_items.f32_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);

                let lang_def_id = lang_items.f32_runtime_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            ty::Float(ast::FloatTy::F64) => {
                let lang_def_id = lang_items.f64_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);

                let lang_def_id = lang_items.f64_runtime_impl();
                self.assemble_inherent_impl_for_primitive(lang_def_id);
            }
            _ => {}
        }
    }

    fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
        if let Some(impl_def_id) = lang_def_id {
            self.assemble_inherent_impl_probe(impl_def_id);
        }
    }

    fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
        let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
        for &impl_def_id in impl_def_ids.iter() {
            self.assemble_inherent_impl_probe(impl_def_id);
        }
    }

    fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
        if !self.impl_dups.insert(impl_def_id) {
            return; // already visited
        }

        debug!("assemble_inherent_impl_probe {:?}", impl_def_id);

        for item in self.impl_or_trait_item(impl_def_id) {
            if !self.has_applicable_self(&item) {
                // No receiver declared. Not a candidate.
                self.record_static_candidate(ImplSource(impl_def_id));
                continue
            }

            let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
            let impl_ty = impl_ty.subst(self.tcx, impl_substs);

            // Determine the receiver type that the method itself expects.
            let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);

            // We can't use normalize_associated_types_in as it will pollute the
            // fcx's fulfillment context after this probe is over.
            let cause = traits::ObligationCause::misc(self.span, self.body_id);
            let selcx = &mut traits::SelectionContext::new(self.fcx);
            let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
                traits::normalize(selcx, self.param_env, cause, &xform_tys);
            debug!("assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
                   xform_self_ty, xform_ret_ty);

            self.push_candidate(Candidate {
                xform_self_ty, xform_ret_ty, item,
                kind: InherentImplCandidate(impl_substs, obligations),
                import_id: None
            }, true);
        }
    }

    fn assemble_inherent_candidates_from_object(&mut self,
                                                self_ty: Ty<'tcx>,
                                                principal: ty::PolyExistentialTraitRef<'tcx>) {
        debug!("assemble_inherent_candidates_from_object(self_ty={:?})",
               self_ty);

        // It is illegal to invoke a method on a trait instance that
        // refers to the `Self` type. An error will be reported by
        // `enforce_object_limitations()` if the method refers to the
        // `Self` type anywhere other than the receiver. Here, we use
        // a substitution that replaces `Self` with the object type
        // itself. Hence, a `&self` method will wind up with an
        // argument type like `&Trait`.
        let trait_ref = principal.with_self_ty(self.tcx, self_ty);
        self.elaborate_bounds(&[trait_ref], |this, new_trait_ref, item| {
            let new_trait_ref = this.erase_late_bound_regions(&new_trait_ref);

            let (xform_self_ty, xform_ret_ty) =
                this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
            this.push_candidate(Candidate {
                xform_self_ty, xform_ret_ty, item,
                kind: ObjectCandidate,
                import_id: None
            }, true);
        });
    }

    fn assemble_inherent_candidates_from_param(&mut self,
                                               _rcvr_ty: Ty<'tcx>,
                                               param_ty: ty::ParamTy) {
        // FIXME -- Do we want to commit to this behavior for param bounds?

        let bounds: Vec<_> = self.param_env
            .caller_bounds
            .iter()
            .filter_map(|predicate| {
                match *predicate {
                    ty::Predicate::Trait(ref trait_predicate) => {
                        match trait_predicate.skip_binder().trait_ref.self_ty().sty {
                            ty::Param(ref p) if *p == param_ty => {
                                Some(trait_predicate.to_poly_trait_ref())
                            }
                            _ => None,
                        }
                    }
                    ty::Predicate::Subtype(..) |
                    ty::Predicate::Projection(..) |
                    ty::Predicate::RegionOutlives(..) |
                    ty::Predicate::WellFormed(..) |
                    ty::Predicate::ObjectSafe(..) |
                    ty::Predicate::ClosureKind(..) |
                    ty::Predicate::TypeOutlives(..) |
                    ty::Predicate::ConstEvaluatable(..) => None,
                }
            })
            .collect();

        self.elaborate_bounds(&bounds, |this, poly_trait_ref, item| {
            let trait_ref = this.erase_late_bound_regions(&poly_trait_ref);

            let (xform_self_ty, xform_ret_ty) =
                this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);

            // Because this trait derives from a where-clause, it
            // should not contain any inference variables or other
            // artifacts. This means it is safe to put into the
            // `WhereClauseCandidate` and (eventually) into the
            // `WhereClausePick`.
            assert!(!trait_ref.substs.needs_infer());

            this.push_candidate(Candidate {
                xform_self_ty, xform_ret_ty, item,
                kind: WhereClauseCandidate(poly_trait_ref),
                import_id: None
            }, true);
        });
    }

    // Do a search through a list of bounds, using a callback to actually
    // create the candidates.
    fn elaborate_bounds<F>(&mut self, bounds: &[ty::PolyTraitRef<'tcx>], mut mk_cand: F)
        where F: for<'b> FnMut(&mut ProbeContext<'b, 'gcx, 'tcx>,
                               ty::PolyTraitRef<'tcx>,
                               ty::AssociatedItem)
    {
        debug!("elaborate_bounds(bounds={:?})", bounds);

        let tcx = self.tcx;
        for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
            for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
                if !self.has_applicable_self(&item) {
                    self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
                } else {
                    mk_cand(self, bound_trait_ref, item);
                }
            }
        }
    }

    fn assemble_extension_candidates_for_traits_in_scope(&mut self,
                                                         expr_id: ast::NodeId)
                                                         -> Result<(), MethodError<'tcx>> {
        if expr_id == ast::DUMMY_NODE_ID {
            return Ok(())
        }
        let mut duplicates = FxHashSet::default();
        let expr_hir_id = self.tcx.hir.node_to_hir_id(expr_id);
        let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
        if let Some(applicable_traits) = opt_applicable_traits {
            for trait_candidate in applicable_traits.iter() {
                let trait_did = trait_candidate.def_id;
                if duplicates.insert(trait_did) {
                    let import_id = trait_candidate.import_id;
                    let result = self.assemble_extension_candidates_for_trait(import_id, trait_did);
                    result?;
                }
            }
        }
        Ok(())
    }

    fn assemble_extension_candidates_for_all_traits(&mut self) -> Result<(), MethodError<'tcx>> {
        let mut duplicates = FxHashSet::default();
        for trait_info in suggest::all_traits(self.tcx) {
            if duplicates.insert(trait_info.def_id) {
                self.assemble_extension_candidates_for_trait(None, trait_info.def_id)?;
            }
        }
        Ok(())
    }

    pub fn matches_return_type(&self,
                               method: &ty::AssociatedItem,
                               self_ty: Option<Ty<'tcx>>,
                               expected: Ty<'tcx>) -> bool {
        match method.def() {
            Def::Method(def_id) => {
                let fty = self.tcx.fn_sig(def_id);
                self.probe(|_| {
                    let substs = self.fresh_substs_for_item(self.span, method.def_id);
                    let fty = fty.subst(self.tcx, substs);
                    let (fty, _) = self.replace_late_bound_regions_with_fresh_var(
                        self.span, infer::FnCall, &fty);

                    if let Some(self_ty) = self_ty {
                        if self.at(&ObligationCause::dummy(), self.param_env)
                               .sup(fty.inputs()[0], self_ty)
                               .is_err()
                        {
                            return false
                        }
                    }
                    self.can_sub(self.param_env, fty.output(), expected).is_ok()
                })
            }
            _ => false,
        }
    }

    fn assemble_extension_candidates_for_trait(&mut self,
                                               import_id: Option<ast::NodeId>,
                                               trait_def_id: DefId)
                                               -> Result<(), MethodError<'tcx>> {
        debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})",
               trait_def_id);
        let trait_substs = self.fresh_item_substs(trait_def_id);
        let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);

        for item in self.impl_or_trait_item(trait_def_id) {
            // Check whether `trait_def_id` defines a method with suitable name:
            if !self.has_applicable_self(&item) {
                debug!("method has inapplicable self");
                self.record_static_candidate(TraitSource(trait_def_id));
                continue;
            }

            let (xform_self_ty, xform_ret_ty) =
                self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
            self.push_candidate(Candidate {
                xform_self_ty, xform_ret_ty, item, import_id,
                kind: TraitCandidate(trait_ref),
            }, false);
        }
        Ok(())
    }

    fn candidate_method_names(&self) -> Vec<ast::Ident> {
        let mut set = FxHashSet::default();
        let mut names: Vec<_> = self.inherent_candidates
            .iter()
            .chain(&self.extension_candidates)
            .filter(|candidate| {
                if let Some(return_ty) = self.return_type {
                    self.matches_return_type(&candidate.item, None, return_ty)
                } else {
                    true
                }
            })
            .map(|candidate| candidate.item.ident)
            .filter(|&name| set.insert(name))
            .collect();

        // sort them by the name so we have a stable result
        names.sort_by_cached_key(|n| n.as_str());
        names
    }

    ///////////////////////////////////////////////////////////////////////////
    // THE ACTUAL SEARCH

    fn pick(mut self) -> PickResult<'tcx> {
        assert!(self.method_name.is_some());

        if let Some(r) = self.pick_core() {
            return r;
        }

        let static_candidates = mem::replace(&mut self.static_candidates, vec![]);
        let private_candidate = mem::replace(&mut self.private_candidate, None);
        let unsatisfied_predicates = mem::replace(&mut self.unsatisfied_predicates, vec![]);

        // things failed, so lets look at all traits, for diagnostic purposes now:
        self.reset();

        let span = self.span;
        let tcx = self.tcx;

        self.assemble_extension_candidates_for_all_traits()?;

        let out_of_scope_traits = match self.pick_core() {
            Some(Ok(p)) => vec![p.item.container.id()],
            //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
            Some(Err(MethodError::Ambiguity(v))) => {
                v.into_iter()
                    .map(|source| {
                        match source {
                            TraitSource(id) => id,
                            ImplSource(impl_id) => {
                                match tcx.trait_id_of_impl(impl_id) {
                                    Some(id) => id,
                                    None => {
                                        span_bug!(span,
                                                  "found inherent method when looking at traits")
                                    }
                                }
                            }
                        }
                    })
                    .collect()
            }
            Some(Err(MethodError::NoMatch(NoMatchData { out_of_scope_traits: others, .. }))) => {
                assert!(others.is_empty());
                vec![]
            }
            _ => vec![],
        };

        if let Some(def) = private_candidate {
            return Err(MethodError::PrivateMatch(def, out_of_scope_traits));
        }
        let lev_candidate = self.probe_for_lev_candidate()?;

        Err(MethodError::NoMatch(NoMatchData::new(static_candidates,
                                                  unsatisfied_predicates,
                                                  out_of_scope_traits,
                                                  lev_candidate,
                                                  self.mode)))
    }

    fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
        let steps = self.steps.clone();

        // find the first step that works
        steps
            .iter()
            .filter(|step| {
                debug!("pick_core: step={:?}", step);
                // skip types that are from a type error or that would require dereferencing
                // a raw pointer
                !step.self_ty.references_error() && !step.from_unsafe_deref
            }).flat_map(|step| {
                self.pick_by_value_method(step).or_else(|| {
                self.pick_autorefd_method(step, hir::MutImmutable).or_else(|| {
                self.pick_autorefd_method(step, hir::MutMutable)
            })})})
            .next()
    }

    fn pick_by_value_method(&mut self, step: &CandidateStep<'tcx>) -> Option<PickResult<'tcx>> {
        //! For each type `T` in the step list, this attempts to find a
        //! method where the (transformed) self type is exactly `T`. We
        //! do however do one transformation on the adjustment: if we
        //! are passing a region pointer in, we will potentially
        //! *reborrow* it to a shorter lifetime. This allows us to
        //! transparently pass `&mut` pointers, in particular, without
        //! consuming them for their entire lifetime.

        if step.unsize {
            return None;
        }

        self.pick_method(step.self_ty).map(|r| {
            r.map(|mut pick| {
                pick.autoderefs = step.autoderefs;

                // Insert a `&*` or `&mut *` if this is a reference type:
                if let ty::Ref(_, _, mutbl) = step.self_ty.sty {
                    pick.autoderefs += 1;
                    pick.autoref = Some(mutbl);
                }

                pick
            })
        })
    }

    fn pick_autorefd_method(&mut self, step: &CandidateStep<'tcx>, mutbl: hir::Mutability)
                            -> Option<PickResult<'tcx>> {
        let tcx = self.tcx;

        // In general, during probing we erase regions. See
        // `impl_self_ty()` for an explanation.
        let region = tcx.types.re_erased;

        let autoref_ty = tcx.mk_ref(region,
                                    ty::TypeAndMut {
                                        ty: step.self_ty, mutbl
                                    });
        self.pick_method(autoref_ty).map(|r| {
            r.map(|mut pick| {
                pick.autoderefs = step.autoderefs;
                pick.autoref = Some(mutbl);
                pick.unsize = if step.unsize {
                    Some(step.self_ty)
                } else {
                    None
                };
                pick
            })
        })
    }

    fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
        debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));

        let mut possibly_unsatisfied_predicates = Vec::new();
        let mut unstable_candidates = Vec::new();

        for (kind, candidates) in &[
            ("inherent", &self.inherent_candidates),
            ("extension", &self.extension_candidates),
        ] {
            debug!("searching {} candidates", kind);
            let res = self.consider_candidates(
                self_ty,
                candidates.iter(),
                &mut possibly_unsatisfied_predicates,
                Some(&mut unstable_candidates),
            );
            if let Some(pick) = res {
                if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
                    if let Ok(p) = &pick {
                        // Emit a lint if there are unstable candidates alongside the stable ones.
                        //
                        // We suppress warning if we're picking the method only because it is a
                        // suggestion.
                        self.emit_unstable_name_collision_hint(p, &unstable_candidates);
                    }
                }
                return Some(pick);
            }
        }

        debug!("searching unstable candidates");
        let res = self.consider_candidates(
            self_ty,
            unstable_candidates.into_iter().map(|(c, _)| c),
            &mut possibly_unsatisfied_predicates,
            None,
        );
        if res.is_none() {
            self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
        }
        res
    }

    fn consider_candidates<'b, ProbesIter>(
        &self,
        self_ty: Ty<'tcx>,
        probes: ProbesIter,
        possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>,
        unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
    ) -> Option<PickResult<'tcx>>
    where
        ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
    {
        let mut applicable_candidates: Vec<_> = probes.clone()
            .map(|probe| {
                (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
            })
            .filter(|&(_, status)| status != ProbeResult::NoMatch)
            .collect();

        debug!("applicable_candidates: {:?}", applicable_candidates);

        if applicable_candidates.len() > 1 {
            if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
                return Some(Ok(pick));
            }
        }

        if let Some(uc) = unstable_candidates {
            applicable_candidates.retain(|&(p, _)| {
                if let stability::EvalResult::Deny { feature, .. } =
                    self.tcx.eval_stability(p.item.def_id, None, self.span)
                {
                    uc.push((p, feature));
                    return false;
                }
                true
            });
        }

        if applicable_candidates.len() > 1 {
            let sources = probes
                .map(|p| self.candidate_source(p, self_ty))
                .collect();
            return Some(Err(MethodError::Ambiguity(sources)));
        }

        applicable_candidates.pop().map(|(probe, status)| {
            if status == ProbeResult::Match {
                Ok(probe.to_unadjusted_pick())
            } else {
                Err(MethodError::BadReturnType)
            }
        })
    }

    fn emit_unstable_name_collision_hint(
        &self,
        stable_pick: &Pick,
        unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
    ) {
        let mut diag = self.tcx.struct_span_lint_node(
            lint::builtin::UNSTABLE_NAME_COLLISIONS,
            self.fcx.body_id,
            self.span,
            "a method with this name may be added to the standard library in the future",
        );

        // FIXME: This should be a `span_suggestion_with_applicability` instead of `help`
        // However `self.span` only
        // highlights the method name, so we can't use it. Also consider reusing the code from
        // `report_method_error()`.
        diag.help(&format!(
            "call with fully qualified syntax `{}(...)` to keep using the current method",
            self.tcx.item_path_str(stable_pick.item.def_id),
        ));

        if nightly_options::is_nightly_build() {
            for (candidate, feature) in unstable_candidates {
                diag.help(&format!(
                    "add #![feature({})] to the crate attributes to enable `{}`",
                    feature,
                    self.tcx.item_path_str(candidate.item.def_id),
                ));
            }
        }

        diag.emit();
    }

    fn select_trait_candidate(&self, trait_ref: ty::TraitRef<'tcx>)
                              -> traits::SelectionResult<'tcx, traits::Selection<'tcx>>
    {
        let cause = traits::ObligationCause::misc(self.span, self.body_id);
        let predicate =
            trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
        let obligation = traits::Obligation::new(cause, self.param_env, predicate);
        traits::SelectionContext::new(self).select(&obligation)
    }

    fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>)
                        -> CandidateSource
    {
        match candidate.kind {
            InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
            ObjectCandidate |
            WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
            TraitCandidate(trait_ref) => self.probe(|_| {
                let _ = self.at(&ObligationCause::dummy(), self.param_env)
                    .sup(candidate.xform_self_ty, self_ty);
                match self.select_trait_candidate(trait_ref) {
                    Ok(Some(traits::Vtable::VtableImpl(ref impl_data))) => {
                        // If only a single impl matches, make the error message point
                        // to that impl.
                        ImplSource(impl_data.impl_def_id)
                    }
                    _ => {
                        TraitSource(candidate.item.container.id())
                    }
                }
            })
        }
    }

    fn consider_probe(&self,
                      self_ty: Ty<'tcx>,
                      probe: &Candidate<'tcx>,
                      possibly_unsatisfied_predicates: &mut Vec<TraitRef<'tcx>>)
                      -> ProbeResult {
        debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);

        self.probe(|_| {
            // First check that the self type can be related.
            let sub_obligations = match self.at(&ObligationCause::dummy(), self.param_env)
                                            .sup(probe.xform_self_ty, self_ty) {
                Ok(InferOk { obligations, value: () }) => obligations,
                Err(_) => {
                    debug!("--> cannot relate self-types");
                    return ProbeResult::NoMatch;
                }
            };

            let mut result = ProbeResult::Match;
            let selcx = &mut traits::SelectionContext::new(self);
            let cause = traits::ObligationCause::misc(self.span, self.body_id);

            // If so, impls may carry other conditions (e.g., where
            // clauses) that must be considered. Make sure that those
            // match as well (or at least may match, sometimes we
            // don't have enough information to fully evaluate).
            let candidate_obligations : Vec<_> = match probe.kind {
                InherentImplCandidate(ref substs, ref ref_obligations) => {
                    // Check whether the impl imposes obligations we have to worry about.
                    let impl_def_id = probe.item.container.id();
                    let impl_bounds = self.tcx.predicates_of(impl_def_id);
                    let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
                    let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
                        traits::normalize(selcx, self.param_env, cause.clone(), &impl_bounds);

                    // Convert the bounds into obligations.
                    let impl_obligations = traits::predicates_for_generics(
                        cause.clone(), self.param_env, &impl_bounds);

                    debug!("impl_obligations={:?}", impl_obligations);
                    impl_obligations.into_iter()
                        .chain(norm_obligations.into_iter())
                        .chain(ref_obligations.iter().cloned())
                        .collect()
                }

                ObjectCandidate |
                WhereClauseCandidate(..) => {
                    // These have no additional conditions to check.
                    vec![]
                }

                TraitCandidate(trait_ref) => {
                    let predicate = trait_ref.to_predicate();
                    let obligation =
                        traits::Obligation::new(cause.clone(), self.param_env, predicate);
                    if !self.predicate_may_hold(&obligation) {
                        if self.probe(|_| self.select_trait_candidate(trait_ref).is_err()) {
                            // This candidate's primary obligation doesn't even
                            // select - don't bother registering anything in
                            // `potentially_unsatisfied_predicates`.
                            return ProbeResult::NoMatch;
                        } else {
                            // Some nested subobligation of this predicate
                            // failed.
                            //
                            // FIXME: try to find the exact nested subobligation
                            // and point at it rather than reporting the entire
                            // trait-ref?
                            result = ProbeResult::NoMatch;
                            let trait_ref = self.resolve_type_vars_if_possible(&trait_ref);
                            possibly_unsatisfied_predicates.push(trait_ref);
                        }
                    }
                    vec![]
                }
            };

            debug!("consider_probe - candidate_obligations={:?} sub_obligations={:?}",
                   candidate_obligations, sub_obligations);

            // Evaluate those obligations to see if they might possibly hold.
            for o in candidate_obligations.into_iter().chain(sub_obligations) {
                let o = self.resolve_type_vars_if_possible(&o);
                if !self.predicate_may_hold(&o) {
                    result = ProbeResult::NoMatch;
                    if let &ty::Predicate::Trait(ref pred) = &o.predicate {
                        possibly_unsatisfied_predicates.push(pred.skip_binder().trait_ref);
                    }
                }
            }

            if let ProbeResult::Match = result {
                if let (Some(return_ty), Some(xform_ret_ty)) =
                    (self.return_type, probe.xform_ret_ty)
                {
                    let xform_ret_ty = self.resolve_type_vars_if_possible(&xform_ret_ty);
                    debug!("comparing return_ty {:?} with xform ret ty {:?}",
                           return_ty,
                           probe.xform_ret_ty);
                    if self.at(&ObligationCause::dummy(), self.param_env)
                        .sup(return_ty, xform_ret_ty)
                        .is_err()
                    {
                        return ProbeResult::BadReturnType;
                    }
                }
            }

            result
        })
    }

    /// Sometimes we get in a situation where we have multiple probes that are all impls of the
    /// same trait, but we don't know which impl to use. In this case, since in all cases the
    /// external interface of the method can be determined from the trait, it's ok not to decide.
    /// We can basically just collapse all of the probes for various impls into one where-clause
    /// probe. This will result in a pending obligation so when more type-info is available we can
    /// make the final decision.
    ///
    /// Example (`src/test/run-pass/method-two-trait-defer-resolution-1.rs`):
    ///
    /// ```
    /// trait Foo { ... }
    /// impl Foo for Vec<int> { ... }
    /// impl Foo for Vec<usize> { ... }
    /// ```
    ///
    /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
    /// use, so it's ok to just commit to "using the method from the trait Foo".
    fn collapse_candidates_to_trait_pick(&self, probes: &[(&Candidate<'tcx>, ProbeResult)])
                                         -> Option<Pick<'tcx>>
    {
        // Do all probes correspond to the same trait?
        let container = probes[0].0.item.container;
        if let ty::ImplContainer(_) = container {
            return None
        }
        if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
            return None;
        }

        // FIXME: check the return type here somehow.
        // If so, just use this trait and call it a day.
        Some(Pick {
            item: probes[0].0.item.clone(),
            kind: TraitPick,
            import_id: probes[0].0.import_id,
            autoderefs: 0,
            autoref: None,
            unsize: None,
        })
    }

    /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
    /// candidate method where the method name may have been misspelt. Similarly to other
    /// Levenshtein based suggestions, we provide at most one such suggestion.
    fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssociatedItem>, MethodError<'tcx>> {
        debug!("Probing for method names similar to {:?}",
               self.method_name);

        let steps = self.steps.clone();
        self.probe(|_| {
            let mut pcx = ProbeContext::new(self.fcx, self.span, self.mode, self.method_name,
                                            self.return_type, steps, IsSuggestion(true));
            pcx.allow_similar_names = true;
            pcx.assemble_inherent_candidates();
            pcx.assemble_extension_candidates_for_traits_in_scope(ast::DUMMY_NODE_ID)?;

            let method_names = pcx.candidate_method_names();
            pcx.allow_similar_names = false;
            let applicable_close_candidates: Vec<ty::AssociatedItem> = method_names
                .iter()
                .filter_map(|&method_name| {
                    pcx.reset();
                    pcx.method_name = Some(method_name);
                    pcx.assemble_inherent_candidates();
                    pcx.assemble_extension_candidates_for_traits_in_scope(ast::DUMMY_NODE_ID)
                        .ok().map_or(None, |_| {
                            pcx.pick_core()
                                .and_then(|pick| pick.ok())
                                .and_then(|pick| Some(pick.item))
                        })
                })
               .collect();

            if applicable_close_candidates.is_empty() {
                Ok(None)
            } else {
                let best_name = {
                    let names = applicable_close_candidates.iter().map(|cand| &cand.ident.name);
                    find_best_match_for_name(names,
                                             &self.method_name.unwrap().as_str(),
                                             None)
                }.unwrap();
                Ok(applicable_close_candidates
                   .into_iter()
                   .find(|method| method.ident.name == best_name))
            }
        })
    }

    ///////////////////////////////////////////////////////////////////////////
    // MISCELLANY
    fn has_applicable_self(&self, item: &ty::AssociatedItem) -> bool {
        // "Fast track" -- check for usage of sugar when in method call
        // mode.
        //
        // In Path mode (i.e., resolving a value like `T::next`), consider any
        // associated value (i.e., methods, constants) but not types.
        match self.mode {
            Mode::MethodCall => item.method_has_self_argument,
            Mode::Path => match item.kind {
                ty::AssociatedKind::Existential |
                ty::AssociatedKind::Type => false,
                ty::AssociatedKind::Method | ty::AssociatedKind::Const => true
            },
        }
        // FIXME -- check for types that deref to `Self`,
        // like `Rc<Self>` and so on.
        //
        // Note also that the current code will break if this type
        // includes any of the type parameters defined on the method
        // -- but this could be overcome.
    }

    fn record_static_candidate(&mut self, source: CandidateSource) {
        self.static_candidates.push(source);
    }

    fn xform_self_ty(&self,
                     item: &ty::AssociatedItem,
                     impl_ty: Ty<'tcx>,
                     substs: &Substs<'tcx>)
                     -> (Ty<'tcx>, Option<Ty<'tcx>>) {
        if item.kind == ty::AssociatedKind::Method && self.mode == Mode::MethodCall {
            let sig = self.xform_method_sig(item.def_id, substs);
            (sig.inputs()[0], Some(sig.output()))
        } else {
            (impl_ty, None)
        }
    }

    fn xform_method_sig(&self,
                        method: DefId,
                        substs: &Substs<'tcx>)
                        -> ty::FnSig<'tcx>
    {
        let fn_sig = self.tcx.fn_sig(method);
        debug!("xform_self_ty(fn_sig={:?}, substs={:?})",
               fn_sig,
               substs);

        assert!(!substs.has_escaping_regions());

        // It is possible for type parameters or early-bound lifetimes
        // to appear in the signature of `self`. The substitutions we
        // are given do not include type/lifetime parameters for the
        // method yet. So create fresh variables here for those too,
        // if there are any.
        let generics = self.tcx.generics_of(method);
        assert_eq!(substs.len(), generics.parent_count as usize);

        // Erase any late-bound regions from the method and substitute
        // in the values from the substitution.
        let xform_fn_sig = self.erase_late_bound_regions(&fn_sig);

        if generics.params.is_empty() {
            xform_fn_sig.subst(self.tcx, substs)
        } else {
            let substs = Substs::for_item(self.tcx, method, |param, _| {
                let i = param.index as usize;
                if i < substs.len() {
                    substs[i]
                } else {
                    match param.kind {
                        GenericParamDefKind::Lifetime => {
                            // In general, during probe we erase regions. See
                            // `impl_self_ty()` for an explanation.
                            self.tcx.types.re_erased.into()
                        }
                        GenericParamDefKind::Type {..} => self.var_for_def(self.span, param),
                    }
                }
            });
            xform_fn_sig.subst(self.tcx, substs)
        }
    }

    /// Get the type of an impl and generate substitutions with placeholders.
    fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, &'tcx Substs<'tcx>) {
        (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
    }

    fn fresh_item_substs(&self, def_id: DefId) -> &'tcx Substs<'tcx> {
        Substs::for_item(self.tcx, def_id, |param, _| {
            match param.kind {
                GenericParamDefKind::Lifetime => self.tcx.types.re_erased.into(),
                GenericParamDefKind::Type {..} => {
                    self.next_ty_var(TypeVariableOrigin::SubstitutionPlaceholder(
                        self.tcx.def_span(def_id))).into()
                }
            }
        })
    }

    /// Replace late-bound-regions bound by `value` with `'static` using
    /// `ty::erase_late_bound_regions`.
    ///
    /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
    /// method matching. It is reasonable during the probe phase because we don't consider region
    /// relationships at all. Therefore, we can just replace all the region variables with 'static
    /// rather than creating fresh region variables. This is nice for two reasons:
    ///
    /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
    ///    particular method call, it winds up creating fewer types overall, which helps for memory
    ///    usage. (Admittedly, this is a rather small effect, though measureable.)
    ///
    /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
    ///    late-bound regions with 'static. Otherwise, if we were going to replace late-bound
    ///    regions with actual region variables as is proper, we'd have to ensure that the same
    ///    region got replaced with the same variable, which requires a bit more coordination
    ///    and/or tracking the substitution and
    ///    so forth.
    fn erase_late_bound_regions<T>(&self, value: &ty::Binder<T>) -> T
        where T: TypeFoldable<'tcx>
    {
        self.tcx.erase_late_bound_regions(value)
    }

    /// Find the method with the appropriate name (or return type, as the case may be). If
    /// `allow_similar_names` is set, find methods with close-matching names.
    fn impl_or_trait_item(&self, def_id: DefId) -> Vec<ty::AssociatedItem> {
        if let Some(name) = self.method_name {
            if self.allow_similar_names {
                let max_dist = max(name.as_str().len(), 3) / 3;
                self.tcx.associated_items(def_id)
                    .filter(|x| {
                        let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
                        Namespace::from(x.kind) == Namespace::Value && dist > 0
                            && dist <= max_dist
                    })
                    .collect()
            } else {
                self.fcx
                    .associated_item(def_id, name, Namespace::Value)
                    .map_or(Vec::new(), |x| vec![x])
            }
        } else {
            self.tcx.associated_items(def_id).collect()
        }
    }
}

impl<'tcx> Candidate<'tcx> {
    fn to_unadjusted_pick(&self) -> Pick<'tcx> {
        Pick {
            item: self.item.clone(),
            kind: match self.kind {
                InherentImplCandidate(..) => InherentImplPick,
                ObjectCandidate => ObjectPick,
                TraitCandidate(_) => TraitPick,
                WhereClauseCandidate(ref trait_ref) => {
                    // Only trait derived from where-clauses should
                    // appear here, so they should not contain any
                    // inference variables or other artifacts. This
                    // means they are safe to put into the
                    // `WhereClausePick`.
                    assert!(
                        !trait_ref.skip_binder().substs.needs_infer()
                            && !trait_ref.skip_binder().substs.has_skol()
                    );

                    WhereClausePick(trait_ref.clone())
                }
            },
            import_id: self.import_id,
            autoderefs: 0,
            autoref: None,
            unsize: None,
        }
    }
}