2/4/2016

rvi_protocol.md

Copyright (C) 2015-16 Jaguar Land Rover

This document is licensed under Creative Commons Attribution-ShareAlike 4.0 International.

RVI CORE PROTOCOL

This document describes the core protocol between two RVI nodes.

STANDARDS USED

[1] Transport Layer Security - TLS (link)[https://tools.ietf.org/html/rfc5246]

[2] JSSON Web Token RFC7519- JWT (link)[https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-32]
[3] MessagePack - (link)[http://msgpack.org/index.html]

[4] base64url - (link)[https://en.wikipedia.org/wiki/Base64)

[5] Transport Layer Security (TLS) - (link)[https://en.wikipedia.org/wiki/Transport Layer Security]

[6] X.509 Certificates - (link)[https://en.wikipedia.org/wiki/X.509]

FEATURES COVERED BY PROTOCOL

1.

Authorization

Prove to the remote RVI node that the local RVI node has the right to invoke a set of services, and the right to register another set

of services.

. Service Discovery

Announce to the remote RVI node local RVI services which the remote node is authorized to invoke.

Service Invocation
Invoke services on remote RVI nodes.

FEATURES NOT COVERED BY PROTOCOL

For all but the last item, TLS 1.2 [5] an be used as an underlying protocol to provide the features lacking in RVI Core protocol.

1.

Authentication
Prove the identity oof a local RVI node to the remote RVI node.

. Encryption

Encrypt data between two RVI nodes to avoid eavesdropping.

. Replay attack protection

Replay an earlier RVI Core protocol session to engage with an RVI node again.

Man in the middle attack protection
Terminate an RVI Core protocol connection, modify incoming data and forward it to its original destination.

Key Management
Public Key Infrastructure and certificate distribution.

RVI Node Discovery
Allowing two unconnected RVI nodes to discover each other so that they can initiate connection.

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md

1/9

2/4/2016

OVERVIEW

The RVI core protocol is the default protocol used between two RVI nodes once they have become aware of each other's presence.

The stack schematics is shown below.

-

[Service

\

A

RVI Core Protocol

MessagePack

TLS 2.0

\

\ RVI Protocol Stack /

RVI Core protocol codec

The RVI core protocol uses MessagePack [3] as its encoder/decoder to transmit JSON structures. All JSON structures described in this
protocol are encoded as MessagePack prior to transmission to the remote peer.

Certificates and credentials

Three types of certificates and credentials are used by the RVI Core protocol in conjunciton with TLS. See [6] for details on X.509.

1. Root certificate [X.509]

Generated by a trusted provisioning server and pre-provisioned on all RVl nodes. Self signed. Used to sign all RVI certificates.

Used to sign all device certs.

2. Device certificate (X.509)

Per-device certificate. Signed by root cert. Used by TLS for initial authentication.

3. RVI credentials (JWT)

Describes the services that the device has the right to invoke and the services that the device has right to register. Embeds the

rvi_protocol.md

device X.509 certificate as a PEM-encoded string. Signed by root cert.

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md

2/9

2/4/2016

rvi_protocol.md

Integration between TLS and RVI Core RVI

Client and server X.509 certificates are exchanged when the original TCP connection is upgraded to TLS. Once a X.509 certificate has
been validated by the receiving party party, it will be matched against the PEM-encoded X.509 certificate embedded in received RVI

credentials.

The figure below shows how this is done.

PEM
encoded

!
!
o d

\ RVI Protocol Stack /

JSON Web token usage

JSON Web Tokens (JWT) [2] are used to encode RVI credentials, which are signed by the root x.509 certificate.

PROTOCOL FLOW

Sequence Diagram

The diagram below outlines the sequence between the client and the server. Please note that the protocol is fully symmetrical and that
the client-server terminology only denotes who initiates the connection (client), and who receives that connection (server).

Client

connect

Server

TLS Upgrade using X.508 certificates

authorize([JWT [credential, root sign), ...])

(Validate each credential using root public key

authorize([JWT (credential, root sign), ...]))

Validate each crential using root public key >

e

Create list of services matching server credentials >

service announcel [service name, ...])

(Create list of services matching client credentials

sarvice announcel([service name, ...]}

message(service name, arguments)

message(service name, arguments)

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md

3/9

2/4/2016 rvi_protocol.md

Authorize command

The authorize command contains a list of RVI credentials, each specifying a set of services that the sender has the right to invoke on
the receiving node, and a set of services that the sender has the right to register.

Please see the "RVI Credentials" chapter for detailss on RVI credentials.

Service Announce command

The service_authorize command contains a list of services available on the sender that match services listed in RVI credentials
received from the remote party.

Message command

The message command contains a service name and a number of arguments to be presented to the corresponding service at the
receiving end. This is an asynchronous command that does not expect an answer. Replies, publish/subscribe, and other higher-level
functions are (for now) outside the scope of the RVI Core protocol.

Double connect resolution

There is a risk that two parties try to initiate a connection to each other in a race condition, creating two connections between them, as
shown below.

Connection 1 Connection 2
Client Server Client Server
Connect Connect
TLS Upgrade TLE Upgrade
authorizel...) authorizel...)
authorizel...) authorize(...)
< Race Condition) (Race Condition)

T T T T
A double connect can be detected by either side by checking if the remote peer address already has a connection established.

In the diagram above, both the client and the server will initite a connection to the other node at the same time.
Shortly afterwards, both will receive an incoming connection from the other node.

By comparing the incoming connection's peer address against all other connections' peer addresses, a match will be found in the
outbound connection just initiated.

Once a double connect has been detected, an implicit agreement is reached to abort the connection initiated by the RVI node with the
highest address. If both RVI nodes share the same address (i.e. they run on the same host), the connection with the highest source port
is aborted.

Below is a table with a number of double connect scenarios, showing which connection would be termianted.

Node1 Address Node2 Address Connecting side to be terminated
23.200.227.113:12831 144.63.252.10:33829 Node2
192.26.92.30:11102 192.52.92.31:9884 Node2
192.26.92.30:11102 192.52.92.30:11101 Node1

The connection is terminated regardless of its current protocol session state.

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md 4/9

2/4/2016 rvi_protocol.md

Chunking of large messages

RVI Core is able to split large messages into fragments and deliver them reliably to the receiver; if the receiving end is an RVI node, re-
assembly is performed automatically. The fragmentation logic is called at the data link level, so all messages, including RVI Core
handshake messages, can be fragmented.

The protocol is as follows:

Client Server
fra. [ID, Size, Offs1, Bin1]}

fra-get, [1D, Offs2, BytesZ2])

fra. [ID, Size, Offs2, Bin2]}

fra-get, [1D, Offs3, Bytes3])

fra. [ID, Size, Offs3, Bin3]}

frg-end, [1D, ResultCode]}

Message complete

Enabling fragmentation

Fragmentation can be turned on either per data link type, or per message.

The two options that affect fragmentation are

« "reliable" (true | false): One fragment containing the whole message is sent, and acknowledged with a "frg-end" message. This
effectively enables reliable message delivery.
* "max_msg_size" (Bytes): this specifies a maximum window size. RVI Core will try to stay within the window size including the
framing overhead, but this will currently be unreliable when using JSON encoding, due to escaping of binary data.
When including these options in the "parameters" list of a message invocation, the names can be prefixed with "rvi.", e.g.

"rvi.max_msg_size".

TODO: Introduce timers. Currently there are none.

Re-assembly

The receiving side is responsible for re-assembling the message and detect holes (missing fragments). The sending side will only the first
fragment (with a starting offset of 1), and then wait for the receiving side to request more fragments using "frg-get" messages. When the
sending side receives a "frg-end" message, it will forget about the message.

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md 5/9

2/4/2016 rvi_protocol.md

Encoding

By default, the fragmentation logic will use the same encoding as the data link layer, but this is configurable. RVI Core currently supports
JSON and msgpack encoding. Of these two, msgpack is more efficient and predictable for encoding binary data.

The RVI Core data link layers detect the encoding on a per-message basis. This is possible, as all RVI Core messages are either structs
(JSON) or maps (msgpack), and these encodings are distinguishable on the first non-whitespace byte.

Configuring fragmentation encoding in RVI Core is done for the specific data link module, e.g.

{ data_link,
[{ dlink_tcp_rpc, gen_server,
L
{ frag_opts, {rvi_data_msgpack, []} },

{ json_rpc_address, { 192.168.1.32, 8806 } },

{ server_opts, [{ port, 8807 }]1%,

{ persistent_connections, ["192.168.1.10:8807"]}
1

}

PROTOCOL DEFINITION

This chapter describes the protocol message formats and how the various fields are used.

For all examples below the following certifcates are used:

Sample root certificate

The self signed root certificate used in the examples throughout this document was generated using the following commands:

Create root key and cert signing request
openssl genrsa -out insecure_root_key.pem 1024

Create a self-signed root CA certificate, signed by the root key created above
openssl req -x509 -new -nodes -key insecure_root_key.pem -days 365 -out insecure_root_cert.crt

The content of the sample insecure_root_key.pem private key file, which has no password protection, is:

MIICXAIBAAKBgQDg5A1uZ5F36vQEYbMWCV4wY40VmicYWE]jj1/8YPAQ1tsz4x681
/Nn1IMNalgqpGCIZ@AwqGISDZAWWOR4@QL3SAmYD6sWj2L9ViIAPk3ceDU8oLlYrf/N
w3j78wVoG7qgNLgMoBNM584n1Y4jy8zJOKa9WFBS2aDtB3Aulc1Q8ZfhuewIDAQAB
AoGATD+C7CxsQkSc7I7NAq76SuGwIUc5skmUebn0OViVXZwWXH20r55+qqt+Vzsb07
EJphk7n@ZROwm/zKjXd3acaRq5j3f0yXip9fDoNj+oUKAowDI9vub@NOPpU2bgb@
xDnDeROBRVBOTWqrkDeDPBSxw5R1JunesDkamAmj4VXHHgECQQDzgDtaEuEZ7x7d
kJKCmfGyP@1s+YP1quDgogzAeMAsz17TFt8]S4R00rX71+1mx7qqpRqIXVXIsSR58
NI2Th7tRAKEA7Eh1CIWahLCx0jQ0am/17GyE+21ignZYExqon00vsk6TGALcFm7W9
x390uT1fChM26f8VYAsPxIrvsD1I1DDCCwIBAITMA8LzdrgQhwNOsbruglgbct63
kcuZUqLzgIUS168ZRI1aYjjNgdLcd@pwT+wxkI@3FKv5Bns6sGgKuhX3+KECQFm/
Z93HRSrTZpViynr5R88WpShNZHyWS5/eB1+YSDs1B1FagvhuX257@0MRXxybys8bXN
sxPI/9M6prI8AALBBmMCQD+2amH2Y9ukJy10WuYei943mrCsploosWjcoMADRCpj
ZA2UwSzj67PBc5umDIAThVRMX@zH/ gL j54rfIkH5zLk=

The root key above is checked in as priv/sample_keys/insecure_root_key.pem.

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md

6/9

2/4/2016 rvi_protocol.md
The content of the sample insecure_root_cert.crt fileis:

MIICUjCCAbugAwIBAgIJAMIQ8OXZPsPUMAOGCSqGSIb3DQEBCWUAMEIXCZzAIBgNV
BAYTA1VTMQ8wDQYDVQQIDAZPcmVnb24xETAPBgNVBACMCFBvcnRsYW5kMQ8wDQYD
VQQKDAZHRU5JIVkkwHhcNMTUXMTI3MjMXMTQOWhCNMTYXMTI2MjMxMTQOWjBCMQsw
CQYDVQQGEwWIVUzEPMA@GATUECAWGT3J1Z29uMREWDWYDVQQHDANhQb3J@bGFuUZDEP
MA@GALUECgwGROVOSVZIMIGFMAQGCSqGSIb3DQEBAQUAA4GNADCB1QKBgQDg5A1u
Z5F36VQEYbMWCVAWY40VmicYWEjj1/8YPAQL1tsz4x681/Nn1IMNalgqpGCIZOAwqGI
5DZAWWoR4Q0L3SAmYD6sWj2L9ViIAPk3ceDU8olYrf/Nwj78wVoG7qqNLgMoBNMS
84n1Y4;jy8zJ0Ka9WFBS2aDtB3Aulc1Q8ZfhuewIDAQABo1AWT jAdBgNVHQ4EFgQU
4Sz8rAMA+dHymIT1ZSkap65gnfswHwYDVROjBBgwFoAU4Sz8rAMA+dHymJIT1ZSka
p65gnfswDAYDVROTBAUWAWEB/zANBgkghkiGOw@BAQs FAAOBgQDFOapf3DNEcXgp
1u/g8YtBW24QsyB+RRavA9oKcFiIaHMkbJyUsOergwOXxBYhduuwVzQQo9P5nROW
RAUfwtEQGuaiC8WUmIR//vKwak j9Bjuu731dYj9719+eXsL/gtpGWTIIHeGugpFs
mVrUm@1lY/n2i13Q1hzBZ91FLg@Owf jw==

The root certificate above is checked in as priv/sample_certificates/insecure_root_key.pem.

DO NOT USE THE KEYS AND CERTIFICATES ABOVE IN PRODUCTION!
ANY PRODUCTION KEYS SHOULD BE GENERATED BY THE ORGANIZATION AND BE 4096 BITS LONG.

Sample device certificate

The sample device x.509 certificate, signed by the root certificate above, was generated with the following command:

Create the device key. In production, increase the bit size to 4096+
openssl genrsa -out insecure_device_key.pem 1024

Create a certificate signing requestsigning request
openssl req -new -key insecure_device_key.pem -out insecure_device_cert.csr

Sign the signing request and creaqte the root_cert.crt file

openssl x509 -req -days 365 -in insecure_device_cert.csr \
-CA insecure_root_cert.crt -CAkey insecure_root_key.pem \
-set_serial 01 -out insecure_device_cert.crt

The insecure_device_cert.csr intermediate certificate signing request can be deleted once the three steps above have been
executed.

The content of the sample insecure_device_key.pem private key file, which has no password protection, is:

MIICXAIBAAKBgQCbb4jPAESKxarj3NIsgfQbhfTHZAPOkmram2TFnkz1CRxq4wQx
BDC@O85PAMgZou@armGGbOu@si4cpVRioerCQIXnMAXIMI+3GUktWS1jI3ui+tYC
sMQZtjSBVNXFZdoyZU21PVWITOMZ0e809v]5DcUmF j9b2xV93jQ190h+2+QIDAQAB
AoGAVCYVOrs6YEaTNbke@k+ocB4dXrTulCCoaKEN9TS2PGiqUdOFOWQjWe/myS6L
JhXmd@Ng2P2uvayY+jknbh5qkNeEgTDhXJ1AjiX1CADYArhgib+evRHgKz7RLTjX
tGk1lbmc70ECTEpjkchIC5XcIhXzHCIjroy0JvBuAVa+SeAECQQDNC+KW7fTKQpiG
YNGIt5MxCMjRparLz@fWod939U56wrWzU9Rnb7h9iwzTEJUECV19z8rnUdWtYQ8X
31sz5cDhAKEAwWg+kDWbLtXW1IvXhhla7q@+RfKb8vu/gXnkXJabrcldIztKRbP3b
9fehVeu9m+1+abahjC1lzmQimwd2QVc8BGQIADbtfCGaVPzpoho9TWQmaRO1mrYuf
vZh7IiejEYvpHpWNn53cmrTDsTyvti71G/APYzqYRxeW7M6UOS/+AaLAYQJAJbEW
AwhZPphoB59M02RzNPXSYyyn4IoEwTSxuz7uy4KG8mXRmyK/a@m61i06rWDLLN8q6
G9jkH/Af035GP3RiWQIBAILWB1KpHf8TxT65jAwxBhd9Z0kC2waWidbSY jX9wkkD
38K7ZDm1LSIR69Ut6tdwotkytXvDniOMPYGENar5IUs=

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md

7/9

2/4/2016

rvi_protocol.md

The content of the sample insecure_device_cert.crt fileis:

MIIB8zCCAVWCAQEWDQYJKoZIhvcNAQELBQAWQjELMAKGATUEBhMCVVMXDZzANBgNV
BAgMBk9yZWdvb jERMA8GALUEBWWIUG9ydGxhbmQxDzANBgNVBAoMBkdFTKk1WSTAe
FWOXNTEXMjcyMzEONTJaFwOxNJExM]jYyMzEONTIaMEIxCzAIBgNVBAYTATVTMQ8w
DQYDVQQIDAZPcmVnb24xETAPBgNVBACMCFBvcnRsYWSkMQ8wDQYDVQQKDAZHRUS]
VkkwgZ8wDQYJKoZIhvcNAQEBBQADgYOAMIGIA0GBAItviM8ARIrFquPcOmyBOBuUF
9MdkA/2SatgbZMNeTOUIHGr jBDEEMLQ7zk8AyBmi 7RquYYZs67SyLhy1VGKh6sIA
lecxbHUWj7cZSS1bmKMjebL61gKwxBm2NIFU1cV12jI1TaU9VYhMaxk57yj28nkN
XSYWP1vbFX2NDX21iH7b5AgMBAAEWDQYJKoZIhvcNAQELBQADGYEAhbqVIrOE/OM72
9nc6DI+qgqsRSMfoyvA3Cmn/ECx11ybGkuz07sB8fGjgMQ9zzcb6gqluP3wGjPiog
MymiYYjUmCTvzdvRBZ+6SDjrZfwluYexiKqI9AP6XKaH1AL14+rK+6HN4uIkZcIz
PwSMHih1bsTRpyY5Z3CUDcDIkYtVbYs=

These files are checked into priv/sample_certifcates and priv/sample_keys.

DO NOT USE THE KEYS AND CERTIFICATES ABOVE IN PRODUCTION!
ANY PRODUCTION KEYS SHOULD BE GENERATED BY THE ORGANIZATION AND BE 4096 BITS LONG.

RVI credentials format

A credential is a JWT-encoded JSON structure, signed by the root X.509 certificate's private key, describing the rights that the sender
has. A received RVI credential is validated as follows.

. Receive remote party's X.509 device certificate

The TLS handshake process will exchange the X.509 certificates setup in the previous chapter.

. Validate remote party's X.509 device certificate

The received device X.509 certificate has its signature validated by the root X.509 certificate that is pre-provisioned in all RVI
nodes.

The receiver now knows that the remote RVI node has an identiy generated by a trusted provsioning server using the private root
key.

. Receive one or more RVI credentials

Each credential is encoded as JWT, signed by the root X.509 certificate.

. Validate each RVI credential signature

The root X.509 certificate is used to validate the signature of each received RVI credential.
A successful validation proves that the certificate was generated by a trusted provisioning server using the private root key.

. Validate the credential-embedded X.509 device certificate

Each received RVI credential will have its embedded device X.509 certificate compared with the device X.509 certificate received
in step 1 above.
A match proves that the certificate was generated by a trusted provisioning server explictly for the RVI node at the remote end.

An RVI credential has the following format in its native JSON state:

"create_timestamp": 1439925416,

"right_to_invoke": [
"jlr.com/vin/"

]7

"right_to_register": [
"jlr.com/backend/sota"

],

"id": "insecure_cert",

"iss": "jaguarlandrover.com",

"device_cert": ""

"validity": {
"start": 1420099200,
"stop": 1925020799

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md

8/9

2/4/2016 rvi_protocol.md

The members are as follows:

Member Description
create_timestamp Unix timestamp of when the credential was created

A list of service prefixes that the sender has the right to invoke on any node that has
registered matching services that start with the given string(s).

right_to_register A list of services that the sender has the right to to register for other nodes to invoke.

id A system-wide unique identifier for the credential.

iss The issuing organization.

device_certificate The PEM-encoded device X.509 certificate to match against the sender's TLS certificate.
validity.start The Unix timestamps when the credential becomes active.

validity.stop The Unix timestamps when the credential becomes inactive.

Generating RVI credentials

To create a credential, tie it to a device X.509 certificate, and sign it with a root X.509 certificate private key, the following command is
used:

right_to_invoke

rvi_create_credential.py --cred_out="insecure_credential.json" \
--jwt_out="insecure_credential.jwt' \
--1d="xxx" \
--issuer="genivi.org" \
--root_key=insecure_root_key.pem \
--device_cert=insecure_device_cert.crt \
--invoke="genivi.org/" \
--register="genivi.org/"’

The following command line parameters are accepted:

Parameter Required Description

--cred_out No
--jwt_out Yes
--issuer Yes

--root_key Yes

device_cert Yes

--invoke Yes

--register Yes

--start No
--stop No

Output file containing the JSON-formatted un-encoded credential.
JWT-encoded, JSON-formatted, root keyp-signed credential.
Organization that issued the credential.

Private, PEM-encoded root key to sign the credential. Must be the same key used to
sign the root X.509 certificate.

The PEM-encoded device X.509 certificate to embed into the credential as the
device_cert member.

Space separated list (within quotes) of RVI service prefixes that the owner of the
credential has the right to invoke.

Space separated list (within quotes) of RVI service prefixes that the owner of the
credential has the right to register for others to call (with the right credential).

The Unix timestamps when the credential becomes active.
The Unix timestamps when the credential becomes inactive.

The generated insecure_credential.json and insecure_credential.jwt are checked into priv/sample_credentials.

file:///Users/uwiger/jlr/rvi_core/doc/rvi_protocol.md

9/9

