
2/24/2016 rvi_protocol.md

file:///Users/uwiger/jlr4/rvi_core/doc/rvi_protocol.md 1/7

Copyright (C) 2015-16 Jaguar Land Rover

This document is licensed under Creative Commons Attribution-ShareAlike 4.0 International.

RVI CORE PROTOCOL

This document describes the core protocol between two RVI nodes.

For all examples below the certificates and credentials used are the samples created as described in rvi_certificates.md.

STANDARDS USED

[1] Transport Layer Security - TLS

[2] JSON Web Token RFC7519 - JWT

[3] MessagePack

[4] base64url

[5] X.509 Certificates

FEATURES COVERED BY PROTOCOL

1. Authorization
Prove to the remote RVI node that the local RVI node has the right to invoke a set of services, and the right to register another set

of services.

2. Service Discovery
Announce to the remote RVI node local RVI services which the remote node is authorized to invoke.

3. Service Invocation
Invoke services on remote RVI nodes.

FEATURES NOT COVERED BY PROTOCOL

For all but the last item, TLS 1.2 [1] an be used as an underlying protocol to provide the features lacking in RVI Core protocol.

1. Authentication
Prove the identity oof a local RVI node to the remote RVI node.

2. Encryption
Encrypt data between two RVI nodes to avoid eavesdropping.

3. Replay attack protection
Replay an earlier RVI Core protocol session to engage with an RVI node again.

4. Man in the middle attack protection
Terminate an RVI Core protocol connection, modify incoming data and forward it to its original destination.

5. Key Management
Public Key Infrastructure and certificate distribution.

6. RVI Node Discovery
Allowing two unconnected RVI nodes to discover each other so that they can initiate connection.

2/24/2016 rvi_protocol.md

file:///Users/uwiger/jlr4/rvi_core/doc/rvi_protocol.md 2/7

OVERVIEW

The RVI core protocol is the default protocol used between two RVI nodes once they have become aware of each other's presence.

The stack schematics is shown below.

RVI Core protocol codec
The RVI core protocol uses MessagePack [3] as its encoder/decoder to transmit JSON structures. All JSON structures described in this

protocol are encoded as MessagePack prior to transmission to the remote peer.

Certificates and credentials
Three types of certificates and credentials are used by the RVI Core protocol in conjunciton with TLS. See [5] for details on X.509.

1. Root certificate [X.509]
Generated by a trusted provisioning server and pre-provisioned on all RVI nodes. Self signed. Used to sign all RVI certificates.

Used to sign all device certs.

2. Device certificate (X.509)
Per-device certificate. Signed by root cert. Used by TLS for initial authentication.

3. RVI credentials (JWT)
Describes the services that the device has the right to invoke and the services that the device has right to register. Embeds the

device X.509 certificate as a PEM-encoded string. Signed by root cert.

2/24/2016 rvi_protocol.md

file:///Users/uwiger/jlr4/rvi_core/doc/rvi_protocol.md 3/7

Integration between TLS and RVI Core RVI
Client and server X.509 certificates are exchanged when the original TCP connection is upgraded to TLS. Once a X.509 certificate has

been validated by the receiving party party, it will be matched against the PEM-encoded X.509 certificate embedded in received RVI

credentials.

The figure below shows how this is done.

JSON Web token usage
JSON Web Tokens (JWT) [2] are used to encode RVI credentials, which are signed by the root x.509 certificate.

PROTOCOL FLOW

The messages used for illustration below are all presented in JSON format. Other encodings (currently only msgpack) are supported, but

all RVI messages can be encoded as JSON. Each message is identified by a "cmd": Cmd attribute, where Cmd can be "au" , "sa" ,

"rcv" , "frg" , "ping" .

The receiver of a message should be able to handle the presence of attributes other than the ones described here.

Sequence Diagram
The diagram below outlines the sequence between the client and the server. Please note that the protocol is fully symmetrical and that

the client-server terminology only denotes who initiates the connection (client), and who receives that connection (server).

2/24/2016 rvi_protocol.md

file:///Users/uwiger/jlr4/rvi_core/doc/rvi_protocol.md 4/7

Authorize command
The authorize command contains a list of RVI credentials, each specifying a set of services that the sender has the right to invoke on
the receiving node, and a set of services that the sender has the right to register.

{"cmd" : "au",
 "ver" : "1.1",
 "creds": ["eyJhbGci..."]
}

Attributes that may be present, but not currently used: "addr" , "port" .

Please see the rvi_certificates.md document for details on RVI credentials.

Service Announce command
The service_authorize command contains a list of services available on the sender that match services listed in RVI credentials
received from the remote party.

{"cmd" : "sa",
 "stat" : "av" | "un",
 "svcs" : ["genivi.com/vin/d32cef88-.../hvac/seat_heat_left", ...]
}

The "stat" attribute can have the value "av" (available) or "un" (unavailable) and indicates the status of all services listed in
"svcs" .

Message command
The message command contains a service name and a number of arguments to be presented to the corresponding service at the
receiving end. This is an asynchronous command that does not expect an answer. Replies, publish/subscribe, and other higher-level
functions are (for now) outside the scope of the RVI Core protocol.

{"cmd" : "rcv",
 "tid" : Tid,
 "mod" : Mod,
 "data" : Data
}

Note: The "tid" attribute is currently not checked by RVI.

The content of Data is parsed and then encoded according to the protocol used to forward the message. The modules
proto_json_rpc and proto_msgpack expect it to be a 'struct' (or corresponding), as follows:

{"service" : ServiceName,
 "timeout" : Timeout,
 "parameters: Parameters
}

Timeout is either a relative time in milliseconds, or an absolut time (unix time) in seconds.

Parameters is a 'struct' containing named arguments to be passed to the service. It can also contain RVI-specific arguments, named as
"rvi.Opt" . Currently supported RVI options are

"rvi.max_msg_size" (integer > 0)
"rvi.reliable" (true | false)

2/24/2016 rvi_protocol.md

file:///Users/uwiger/jlr4/rvi_core/doc/rvi_protocol.md 5/7

Double connect resolution
There is a risk that two parties try to initiate a connection to each other in a race condition, creating two connections between them, as

shown below.

Connection 1 Connection 2

A double connect can be detected by either side by checking if the remote peer address already has a connection established.

In the diagram above, both the client and the server will initite a connection to the other node at the same time.

Shortly afterwards, both will receive an incoming connection from the other node.

By comparing the incoming connection's peer address against all other connections' peer addresses, a match will be found in the

outbound connection just initiated.

Once a double connect has been detected, an implicit agreement is reached to abort the connection initiated by the RVI node with the

highest address. If both RVI nodes share the same address (i.e. they run on the same host), the connection with the highest source port

is aborted.

Below is a table with a number of double connect scenarios, showing which connection would be termianted.

Node1 Address Node2 Address Connecting side to be terminated
23.200.227.113:12831 144.63.252.10:33829 Node2
192.26.92.30:11102 192.52.92.31:9884 Node2
192.26.92.30:11102 192.52.92.30:11101 Node1
The connection is terminated regardless of its current protocol session state.

2/24/2016 rvi_protocol.md

file:///Users/uwiger/jlr4/rvi_core/doc/rvi_protocol.md 6/7

Chunking of large messages
RVI Core is able to split large messages into fragments and deliver them reliably to the receiver; if the receiving end is an RVI node, re-

assembly is performed automatically. The fragmentation logic is called at the data link level, so all messages, including RVI Core

handshake messages, can be fragmented.

The protocol is as follows:

Enabling fragmentation
Fragmentation can be turned on either per data link type, or per message.

The two options that affect fragmentation are

"reliable" (true | false): One fragment containing the whole message is sent, and acknowledged with a "frg-end" message. This

effectively enables reliable message delivery.

"max_msg_size" (Bytes): this specifies a maximum window size. RVI Core will try to stay within the window size including the

framing overhead, but this will currently be unreliable when using JSON encoding, due to escaping of binary data.

When including these options in the "parameters" list of a message invocation, the names can be prefixed with "rvi.", e.g.

"rvi.max_msg_size", or "rvi.reliable".

TODO: Introduce timers. Currently there are none.

Re-assembly
The receiving side is responsible for re-assembling the message and detect holes (missing fragments). The sending side will only the first

fragment (with a starting offset of 1), and then wait for the receiving side to request more fragments using "frg-get" messages. When the

sending side receives a "frg-end" message, it will forget about the message.

2/24/2016 rvi_protocol.md

file:///Users/uwiger/jlr4/rvi_core/doc/rvi_protocol.md 7/7

Encoding
By default, the fragmentation logic will use the same encoding as the data link layer, but this is configurable. RVI Core currently supports

JSON and msgpack encoding. Of these two, msgpack is more efficient and predictable for encoding binary data.

The RVI Core data link layers detect the encoding on a per-message basis. This is possible, as all RVI Core messages are either structs

(JSON) or maps (msgpack), and these encodings are distinguishable on the first non-whitespace byte.

Configuring fragmentation encoding in RVI Core is done for the specific data link module, e.g.

 { data_link,
 [{ dlink_tcp_rpc, gen_server,
 [
 { frag_opts, {rvi_data_msgpack, []} },
 { json_rpc_address, { 192.168.1.32, 8806 } },
 { server_opts, [{ port, 8807 }]},
 { persistent_connections, ["192.168.1.10:8807"]}
]
 }
]
 }

