/* bsd.cc -- Functions for loading and manipulating legacy BSD disklabel data. */ /* By Rod Smith, initial coding August, 2009 */ /* This program is copyright (c) 2009 by Roderick W. Smith. It is distributed under the terms of the GNU GPL version 2, as detailed in the COPYING file. */ #define __STDC_LIMIT_MACROS #define __STDC_CONSTANT_MACROS #include //#include #include #include #include #include #include #include #include #include "support.h" #include "bsd.h" using namespace std; BSDData::BSDData(void) { state = unknown; signature = UINT32_C(0); signature2 = UINT32_C(0); sectorSize = 512; numParts = 0; labelFirstLBA = 0; labelLastLBA = 0; labelStart = LABEL_OFFSET1; // assume raw disk format partitions = NULL; } // default constructor BSDData::~BSDData(void) { delete[] partitions; } // destructor // Read BSD disklabel data from the specified device filename. This function // just opens the device file and then calls an overloaded function to do // the bulk of the work. Returns 1 on success, 0 on failure. int BSDData::ReadBSDData(const string & device, uint64_t startSector, uint64_t endSector) { int allOK; DiskIO myDisk; if (device != "") { if (myDisk.OpenForRead(device)) { allOK = ReadBSDData(&myDisk, startSector, endSector); } else { allOK = 0; } // if/else myDisk.Close(); } else { allOK = 0; } // if/else return allOK; } // BSDData::ReadBSDData() (device filename version) // Load the BSD disklabel data from an already-opened disk // file, starting with the specified sector number. int BSDData::ReadBSDData(DiskIO *theDisk, uint64_t startSector, uint64_t endSector) { int allOK; int i, foundSig = 0, bigEnd = 0; int relative = 0; // assume absolute partition sector numbering uint8_t buffer[4096]; // I/O buffer uint32_t realSig; uint32_t* temp32; uint16_t* temp16; BSDRecord* tempRecords; int offset[NUM_OFFSETS] = { LABEL_OFFSET1, LABEL_OFFSET2 }; labelFirstLBA = startSector; labelLastLBA = endSector; offset[1] = theDisk->GetBlockSize(); // Read 4096 bytes (eight 512-byte sectors or equivalent) // into memory; we'll extract data from this buffer. // (Done to work around FreeBSD limitation on size of reads // from block devices.) allOK = theDisk->Seek(startSector); if (allOK) allOK = theDisk->Read(buffer, 4096); // Do some strangeness to support big-endian architectures... bigEnd = (IsLittleEndian() == 0); realSig = BSD_SIGNATURE; if (bigEnd && allOK) ReverseBytes(&realSig, 4); // Look for the signature at any of two locations. // Note that the signature is repeated at both the original // offset and 132 bytes later, so we need two checks.... if (allOK) { i = 0; do { temp32 = (uint32_t*) &buffer[offset[i]]; signature = *temp32; if (signature == realSig) { // found first, look for second temp32 = (uint32_t*) &buffer[offset[i] + 132]; signature2 = *temp32; if (signature2 == realSig) { foundSig = 1; labelStart = offset[i]; } // if found signature } // if/else i++; } while ((!foundSig) && (i < NUM_OFFSETS)); allOK = foundSig; } // if // Load partition metadata from the buffer.... if (allOK) { temp32 = (uint32_t*) &buffer[labelStart + 40]; sectorSize = *temp32; temp16 = (uint16_t*) &buffer[labelStart + 138]; numParts = *temp16; } // if // Make it big-endian-aware.... if ((IsLittleEndian() == 0) && allOK) ReverseMetaBytes(); // Check validity of the data and flag it appropriately.... if (foundSig && (numParts <= MAX_BSD_PARTS) && allOK) { state = bsd; } else { state = bsd_invalid; } // if/else // If the state is good, go ahead and load the main partition data.... if (state == bsd) { partitions = new struct BSDRecord[numParts * sizeof(struct BSDRecord)]; if (partitions == NULL) { cerr << "Unable to allocate memory in BSDData::ReadBSDData()! Terminating!\n"; exit(1); } // if for (i = 0; i < numParts; i++) { // Once again, we use the buffer, but index it using a BSDRecord // pointer (dangerous, but effective).... tempRecords = (BSDRecord*) &buffer[labelStart + 148]; partitions[i].lengthLBA = tempRecords[i].lengthLBA; partitions[i].firstLBA = tempRecords[i].firstLBA; partitions[i].fsType = tempRecords[i].fsType; if (bigEnd) { // reverse data (fsType is a single byte) ReverseBytes(&partitions[i].lengthLBA, 4); ReverseBytes(&partitions[i].firstLBA, 4); } // if big-endian // Check for signs of relative sector numbering: A "0" first sector // number on a partition with a non-zero length -- but ONLY if the // length is less than the disk size, since NetBSD has a habit of // creating a disk-sized partition within a carrier MBR partition // that's too small to house it, and this throws off everything.... if ((partitions[i].firstLBA == 0) && (partitions[i].lengthLBA > 0) && (partitions[i].lengthLBA < labelLastLBA)) relative = 1; } // for // Some disklabels use sector numbers relative to the enclosing partition's // start, others use absolute sector numbers. If relative numbering was // detected above, apply a correction to all partition start sectors.... if (relative) { for (i = 0; i < numParts; i++) { partitions[i].firstLBA += (uint32_t) startSector; } // for } // if } // if signatures OK // DisplayBSDData(); return allOK; } // BSDData::ReadBSDData(DiskIO* theDisk, uint64_t startSector) // Reverse metadata's byte order; called only on big-endian systems void BSDData::ReverseMetaBytes(void) { ReverseBytes(&signature, 4); ReverseBytes(§orSize, 4); ReverseBytes(&signature2, 4); ReverseBytes(&numParts, 2); } // BSDData::ReverseMetaByteOrder() // Display basic BSD partition data. Used for debugging. void BSDData::DisplayBSDData(void) { int i; if (state == bsd) { cout << "BSD partitions:\n"; for (i = 0; i < numParts; i++) { cout.width(4); cout << i + 1 << "\t"; cout.width(13); cout << partitions[i].firstLBA << "\t"; cout.width(15); cout << partitions[i].lengthLBA << " \t0x"; cout.width(2); cout.fill('0'); cout.setf(ios::uppercase); cout << hex << (int) partitions[i].fsType << "\n" << dec; cout.fill(' '); } // for } // if } // BSDData::DisplayBSDData() // Displays the BSD disklabel state. Called during program launch to inform // the user about the partition table(s) status int BSDData::ShowState(void) { int retval = 0; switch (state) { case bsd_invalid: cout << " BSD: not present\n"; break; case bsd: cout << " BSD: present\n"; retval = 1; break; default: cout << "\a BSD: unknown -- bug!\n"; break; } // switch return retval; } // BSDData::ShowState() // Weirdly, this function has stopped working when defined inline, // but it's OK here.... int BSDData::IsDisklabel(void) { return (state == bsd); } // BSDData::IsDiskLabel() // Returns the BSD table's partition type code uint8_t BSDData::GetType(int i) { uint8_t retval = 0; // 0 = "unused" if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0)) retval = partitions[i].fsType; return(retval); } // BSDData::GetType() // Returns the number of the first sector of the specified partition uint64_t BSDData::GetFirstSector(int i) { uint64_t retval = UINT64_C(0); if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0)) retval = (uint64_t) partitions[i].firstLBA; return retval; } // BSDData::GetFirstSector // Returns the length (in sectors) of the specified partition uint64_t BSDData::GetLength(int i) { uint64_t retval = UINT64_C(0); if ((i < numParts) && (i >= 0) && (state == bsd) && (partitions != 0)) retval = (uint64_t) partitions[i].lengthLBA; return retval; } // BSDData::GetLength() // Returns the number of partitions defined in the current table int BSDData::GetNumParts(void) { return numParts; } // BSDData::GetNumParts() // Returns the specified partition as a GPT partition. Used in BSD-to-GPT // conversion process GPTPart BSDData::AsGPT(int i) { GPTPart guid; // dump data in here, then return it uint64_t sectorOne, sectorEnd; // first & last sectors of partition int passItOn = 1; // Set to 0 if partition is empty or invalid guid.BlankPartition(); sectorOne = (uint64_t) partitions[i].firstLBA; sectorEnd = sectorOne + (uint64_t) partitions[i].lengthLBA; if (sectorEnd > 0) sectorEnd--; // Note on above: BSD partitions sometimes have a length of 0 and a start // sector of 0. With unsigned ints, the usual way (start + length - 1) to // find the end will result in a huge number, which will be confusing. // Thus, apply the "-1" part only if it's reasonable to do so. // Do a few sanity checks on the partition before we pass it on.... // First, check that it falls within the bounds of its container // and that it starts before it ends.... if ((sectorOne < labelFirstLBA) || (sectorEnd > labelLastLBA) || (sectorOne > sectorEnd)) passItOn = 0; // Some disklabels include a pseudo-partition that's the size of the entire // disk or containing partition. Don't return it. if ((sectorOne <= labelFirstLBA) && (sectorEnd >= labelLastLBA) && (GetType(i) == 0)) passItOn = 0; // If the end point is 0, it's not a valid partition. if ((sectorEnd == 0) || (sectorEnd == labelFirstLBA)) passItOn = 0; if (passItOn) { guid.SetFirstLBA(sectorOne); guid.SetLastLBA(sectorEnd); // Now set a random unique GUID for the partition.... guid.RandomizeUniqueGUID(); // ... zero out the attributes and name fields.... guid.SetAttributes(UINT64_C(0)); // Most BSD disklabel type codes seem to be archaic or rare. // They're also ambiguous; a FreeBSD filesystem is impossible // to distinguish from a NetBSD one. Thus, these code assignment // are going to be rough to begin with. For a list of meanings, // see http://fxr.watson.org/fxr/source/sys/dtype.h?v=DFBSD, // or Google it. switch (GetType(i)) { case 1: // BSD swap guid.SetType(0xa502); break; case 7: // BSD FFS guid.SetType(0xa503); break; case 8: case 11: // MS-DOS or HPFS guid.SetType(0x0700); break; case 9: // log-structured fs guid.SetType(0xa903); break; case 13: // bootstrap guid.SetType(0xa501); break; case 14: // vinum guid.SetType(0xa505); break; case 15: // RAID guid.SetType(0xa903); break; case 27: // FreeBSD ZFS guid.SetType(0xa504); break; default: guid.SetType(0xa503); break; } // switch // Set the partition name to the name of the type code.... guid.SetName(guid.GetTypeName()); } // if return guid; } // BSDData::AsGPT()