1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
|
/*
* cache-membuffer.c: in-memory caching for Subversion
*
* ====================================================================
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
* ====================================================================
*/
#include <assert.h>
#include <apr_md5.h>
#include <apr_thread_rwlock.h>
#include "svn_pools.h"
#include "svn_checksum.h"
#include "svn_private_config.h"
#include "svn_string.h"
#include "svn_sorts.h" /* get the MIN macro */
#include "private/svn_atomic.h"
#include "private/svn_dep_compat.h"
#include "private/svn_mutex.h"
#include "private/svn_string_private.h"
#include "cache.h"
#include "fnv1a.h"
/*
* This svn_cache__t implementation actually consists of two parts:
* a shared (per-process) singleton membuffer cache instance and shallow
* svn_cache__t front-end instances that each use different key spaces.
* For data management, they all forward to the singleton membuffer cache.
*
* A membuffer cache consists of two parts:
*
* 1. A linear data buffer containing cached items in a serialized
* representation, prefixed by their full cache keys. There may be
* arbitrary gaps between entries. This buffer is sub-devided into
* (currently two) cache levels.
*
* 2. A directory of cache entries. This is organized similar to CPU
* data caches: for every possible key, there is exactly one group
* of entries that may contain the header info for an item with
* that given key. The result is a GROUP_SIZE+-way associative cache
* whose associativity can be dynamically increased.
*
* Only the start address of these two data parts are given as a native
* pointer. All other references are expressed as offsets to these pointers.
* With that design, it is relatively easy to share the same data structure
* between different processes and / or to persist them on disk. These
* out-of-process features have not been implemented, yet.
*
* Superficially, cache levels are being used as usual: insertion happens
* into L1 and evictions will promote items to L2. But their whole point
* is a different one. L1 uses a circular buffer, i.e. we have perfect
* caching for the last N bytes where N is the size of L1. L2 uses a more
* elaborate scheme based on priorities and hit counts as described below.
*
* The data buffer usage information is implicitly given by the directory
* entries. Every USED entry has a reference to the previous and the next
* used dictionary entry and this double-linked list is ordered by the
* offsets of their item data within the data buffer. So removing data,
* for instance, is done simply by unlinking it from the chain, implicitly
* marking the entry as well as the data buffer section previously
* associated to it as unused. First and last element of that chain are
* being referenced from the respective cache level.
*
* Insertion can occur at only one, sliding position per cache level. It is
* marked by its offset in the data buffer and the index of the first used
* entry at or behind that position. If this gap is too small to accommodate
* the new item (plus its full key), the insertion window is extended as
* described below. The new entry will always be inserted at the bottom end
* of the window and since the next used entry is known, properly sorted
* insertion is possible.
*
* To make the cache perform robustly in a wide range of usage scenarios,
* L2 uses a randomized variant of LFU (see ensure_data_insertable_l2 for
* details). Every item holds a read hit counter and there is a global read
* hit counter. The more hits an entry has in relation to the average, the
* more it is likely to be kept using a rand()-based condition. The test is
* applied only to the entry following the insertion window. If it doesn't
* get evicted, it is moved to the begin of that window and the window is
* moved.
*
* Moreover, the entry's hits get halved to make that entry more likely to
* be removed the next time the sliding insertion / removal window comes by.
* As a result, frequently used entries are likely not to be dropped until
* they get not used for a while. Also, even a cache thrashing situation
* about 50% of the content survives every 50% of the cache being re-written
* with new entries. For details on the fine-tuning involved, see the
* comments in ensure_data_insertable_l2().
*
* Due to the randomized mapping of keys to entry groups, some groups may
* overflow. In that case, there are spare groups that can be chained to
* an already used group to extend it.
*
* To limit the entry size and management overhead, not the actual item keys
* but only their hashed "fingerprint" will be stored. These are reasonably
* unique to prevent collisions, so we only need to support up to one entry
* per entry key. To guarantee that there are no conflicts, however, we
* store the actual full key immediately in front of the serialized item
* data. That is, the entry offset actually points to the full key and the
* key length stored in the entry acts as an additional offset to find the
* actual item.
*
* All access to the cached data needs to be serialized. Because we want
* to scale well despite that bottleneck, we simply segment the cache into
* a number of independent caches (segments). Items will be multiplexed based
* on their hash key.
*/
/* APR's read-write lock implementation on Windows is horribly inefficient.
* Even with very low contention a runtime overhead of 35% percent has been
* measured for 'svn-bench null-export' over ra_serf.
*
* Use a simple mutex on Windows. Because there is one mutex per segment,
* large machines should (and usually can) be configured with large caches
* such that read contention is kept low. This is basically the situation
* we had before 1.8.
*/
#ifdef WIN32
# define USE_SIMPLE_MUTEX 1
#else
# define USE_SIMPLE_MUTEX 0
#endif
/* For more efficient copy operations, let's align all data items properly.
* Since we can't portably align pointers, this is rather the item size
* granularity which ensures *relative* alignment within the cache - still
* giving us decent copy speeds on most machines.
*
* Must be a power of 2.
*/
#define ITEM_ALIGNMENT 16
/* By default, don't create cache segments smaller than this value unless
* the total cache size itself is smaller.
*/
#define DEFAULT_MIN_SEGMENT_SIZE APR_UINT64_C(0x2000000)
/* The minimum segment size we will allow for multi-segmented caches
*/
#define MIN_SEGMENT_SIZE APR_UINT64_C(0x10000)
/* The maximum number of segments allowed. Larger numbers reduce the size
* of each segment, in turn reducing the max size of a cachable item.
* Also, each segment gets its own lock object. The actual number supported
* by the OS may therefore be lower and svn_cache__membuffer_cache_create
* may return an error.
*/
#define MAX_SEGMENT_COUNT 0x10000
/* As of today, APR won't allocate chunks of 4GB or more. So, limit the
* segment size to slightly below that.
*/
#define MAX_SEGMENT_SIZE APR_UINT64_C(0xffff0000)
/* We don't mark the initialization status for every group but initialize
* a number of groups at once. That will allow for a very small init flags
* vector that is likely to fit into the CPU caches even for fairly large
* membuffer caches. For instance, the default of 32 means 8x32 groups per
* byte, i.e. 8 flags/byte x 32 groups/flag x 8 entries/group x 40 index
* bytes/entry x 8 cache bytes/index byte = 1kB init vector / 640MB cache.
*/
#define GROUP_INIT_GRANULARITY 32
/* Invalid index reference value. Equivalent to APR_UINT32_T(-1)
*/
#define NO_INDEX APR_UINT32_MAX
/* To save space in our group structure, we only use 32 bit size values
* and, therefore, limit the size of each entry to just below 4GB.
* Supporting larger items is not a good idea as the data transfer
* to and from the cache would block other threads for a very long time.
*/
#define MAX_ITEM_SIZE ((apr_uint32_t)(0 - ITEM_ALIGNMENT))
/* We use this structure to identify cache entries. There cannot be two
* entries with the same entry key. However unlikely, though, two different
* full keys (see full_key_t) may have the same entry key. That is a
* collision and at most one of them can be stored in the cache at any time.
*/
typedef struct entry_key_t
{
/* 16 byte finger print of the full key. */
apr_uint64_t fingerprint[2];
/* Length of the full key. This value is aligned to ITEM_ALIGNMENT to
* make sure the subsequent item content is properly aligned. */
apr_size_t key_len;
} entry_key_t;
/* A full key, i.e. the combination of the cache's key prefix with some
* dynamic part appended to it. It also contains its ENTRY_KEY.
*/
typedef struct full_key_t
{
/* Reduced form identifying the cache entry (if such an entry exists). */
entry_key_t entry_key;
/* This contains the full combination. Note that the SIZE element may
* be larger than ENTRY_KEY.KEY_LEN, but only the latter determines the
* valid key size. */
svn_membuf_t full_key;
} full_key_t;
/* Debugging / corruption detection support.
* If you define this macro, the getter functions will performed expensive
* checks on the item data, requested keys and entry types. If there is
* a mismatch found in any of them when being compared with the values
* remembered in the setter function, an error will be returned.
*/
#ifdef SVN_DEBUG_CACHE_MEMBUFFER
/* The prefix passed to svn_cache__create_membuffer_cache() effectively
* defines the type of all items stored by that cache instance. We'll take
* the last 15 bytes + \0 as plaintext for easy identification by the dev.
*/
#define PREFIX_TAIL_LEN 16
/* This record will be attached to any cache entry. It tracks item data
* (content), key and type as hash values and is the baseline against which
* the getters will compare their results to detect inconsistencies.
*/
typedef struct entry_tag_t
{
/* MD5 checksum over the serialized item data.
*/
unsigned char content_hash[APR_MD5_DIGESTSIZE];
/* Hash value of the svn_cache_t instance that wrote the item
* (i.e. a combination of type and repository)
*/
unsigned char prefix_hash[APR_MD5_DIGESTSIZE];
/* Note that this only covers the variable part of the key,
* i.e. it will be different from the full key hash used for
* cache indexing.
*/
unsigned char key_hash[APR_MD5_DIGESTSIZE];
/* Last letters from of the key in human readable format
* (ends with the type identifier, e.g. "DAG")
*/
char prefix_tail[PREFIX_TAIL_LEN];
/* Length of the variable key part.
*/
apr_size_t key_len;
} entry_tag_t;
/* Initialize all members of TAG except for the content hash.
*/
static svn_error_t *store_key_part(entry_tag_t *tag,
const full_key_t *prefix_key,
const void *key,
apr_size_t key_len,
apr_pool_t *pool)
{
svn_checksum_t *checksum;
const char *prefix = prefix_key->full_key.data;
apr_size_t prefix_len = strlen(prefix);
if (prefix_len > sizeof(tag->prefix_tail))
{
prefix += prefix_len - (sizeof(tag->prefix_tail) - 1);
prefix_len = sizeof(tag->prefix_tail) - 1;
}
SVN_ERR(svn_checksum(&checksum,
svn_checksum_md5,
key,
key_len,
pool));
memcpy(tag->prefix_hash, prefix_key->entry_key.fingerprint,
sizeof(tag->prefix_hash));
memcpy(tag->key_hash, checksum->digest, sizeof(tag->key_hash));
memset(tag->prefix_tail, 0, sizeof(tag->key_hash));
memcpy(tag->prefix_tail, prefix, prefix_len + 1);
tag->key_len = key_len;
return SVN_NO_ERROR;
}
/* Initialize the content hash member of TAG.
*/
static svn_error_t* store_content_part(entry_tag_t *tag,
const void *data,
apr_size_t size,
apr_pool_t *pool)
{
svn_checksum_t *checksum;
SVN_ERR(svn_checksum(&checksum,
svn_checksum_md5,
data,
size,
pool));
memcpy(tag->content_hash, checksum->digest, sizeof(tag->content_hash));
return SVN_NO_ERROR;
}
/* Compare two tags and fail with an assertion upon differences.
*/
static svn_error_t* assert_equal_tags(const entry_tag_t *lhs,
const entry_tag_t *rhs)
{
SVN_ERR_ASSERT(memcmp(lhs->content_hash, rhs->content_hash,
sizeof(lhs->content_hash)) == 0);
SVN_ERR_ASSERT(memcmp(lhs->prefix_hash, rhs->prefix_hash,
sizeof(lhs->prefix_hash)) == 0);
SVN_ERR_ASSERT(memcmp(lhs->key_hash, rhs->key_hash,
sizeof(lhs->key_hash)) == 0);
SVN_ERR_ASSERT(memcmp(lhs->prefix_tail, rhs->prefix_tail,
sizeof(lhs->prefix_tail)) == 0);
SVN_ERR_ASSERT(lhs->key_len == rhs->key_len);
return SVN_NO_ERROR;
}
/* Reoccurring code snippets.
*/
#define DEBUG_CACHE_MEMBUFFER_TAG_ARG entry_tag_t *tag,
#define DEBUG_CACHE_MEMBUFFER_TAG tag,
#define DEBUG_CACHE_MEMBUFFER_INIT_TAG(pool) \
entry_tag_t _tag; \
entry_tag_t *tag = &_tag; \
if (key) \
SVN_ERR(store_key_part(tag, \
&cache->prefix, \
key, \
cache->key_len == APR_HASH_KEY_STRING \
? strlen((const char *) key) \
: cache->key_len, \
pool));
#else
/* Don't generate any checks if consistency checks have not been enabled.
*/
#define DEBUG_CACHE_MEMBUFFER_TAG_ARG
#define DEBUG_CACHE_MEMBUFFER_TAG
#define DEBUG_CACHE_MEMBUFFER_INIT_TAG(pool)
#endif /* SVN_DEBUG_CACHE_MEMBUFFER */
/* A single dictionary entry. Since all entries will be allocated once
* during cache creation, those entries might be either used or unused.
* An entry is used if and only if it is contained in the doubly-linked
* list of used entries per cache level.
*/
typedef struct entry_t
{
/* Identifying the data item. Only valid for used entries.
*/
entry_key_t key;
/* The offset of the cached item's serialized data within the caches
* DATA buffer.
*/
apr_uint64_t offset;
/* Size of the serialized item data. May be 0. The MAX_ITEM_SIZE macro
* above ensures that there will be no overflows.
* Only valid for used entries.
*/
apr_size_t size;
/* Number of (read) hits for this entry. Will be reset upon write.
* Only valid for used entries.
*/
svn_atomic_t hit_count;
/* Reference to the next used entry in the order defined by offset.
* NO_INDEX indicates the end of the list; this entry must be referenced
* by the caches cache_level_t.last member. NO_INDEX also implies that
* the data buffer is not used beyond offset+size.
* Only valid for used entries.
*/
apr_uint32_t next;
/* Reference to the previous used entry in the order defined by offset.
* NO_INDEX indicates the end of the list; this entry must be referenced
* by the caches cache_level_t.first member.
* Only valid for used entries.
*/
apr_uint32_t previous;
/* Priority of this entry. This entry will not be replaced by lower-
* priority items.
*/
apr_uint32_t priority;
#ifdef SVN_DEBUG_CACHE_MEMBUFFER
/* Remember type, content and key hashes.
*/
entry_tag_t tag;
#endif
} entry_t;
/* Group header struct.
*/
typedef struct group_header_t
{
/* number of entries used [0 .. USED-1] */
apr_uint32_t used;
/* next group in the chain or NO_INDEX for the last.
* For recycleable unused spare groups, this points to the next
* unused spare group */
apr_uint32_t next;
/* previously group in the chain or NO_INDEX for the first */
apr_uint32_t previous;
/* number of elements in the chain from start to here.
* >= 1 for used groups, 0 for unused spare groups */
apr_uint32_t chain_length;
} group_header_t;
/* The size of the group struct should be a power of two make sure it does
* not cross memory page boundaries. Since we already access the cache
* randomly, having two page table lookups instead of one is bad.
*/
#define GROUP_BLOCK_SIZE 512
/* A ~10-way associative cache seems to be a good compromise between
* performance (worst-case lookups) and efficiency-loss due to collisions.
*
* This value may be changed to any positive integer.
*/
#define GROUP_SIZE \
((GROUP_BLOCK_SIZE - sizeof(group_header_t)) / sizeof(entry_t))
/* Maximum number of groups in a chain, i.e. a cache index group can hold
* up to GROUP_SIZE * MAX_GROUP_CHAIN_LENGTH entries.
*/
#define MAX_GROUP_CHAIN_LENGTH 8
/* We group dictionary entries to make this GROUP-SIZE-way associative.
*/
typedef struct entry_group_t
{
/* group globals */
group_header_t header;
/* padding and also room for future extensions */
char padding[GROUP_BLOCK_SIZE - sizeof(group_header_t)
- sizeof(entry_t) * GROUP_SIZE];
/* the actual entries */
entry_t entries[GROUP_SIZE];
} entry_group_t;
/* Per-cache level header structure. Instances of this are members of
* svn_membuffer_t and will use non-overlapping sections of its DATA buffer.
* All offset values are global / absolute to that whole buffer.
*/
typedef struct cache_level_t
{
/* Reference to the first (defined by the order content in the data
* buffer) dictionary entry used by any data item.
* NO_INDEX for an empty cache.
*/
apr_uint32_t first;
/* Reference to the last (defined by the order content in the data
* buffer) dictionary entry used by any data item.
* NO_INDEX for an empty cache.
*/
apr_uint32_t last;
/* Reference to the first (defined by the order content in the data
* buffer) used dictionary entry behind the insertion position
* (current_data). If NO_INDEX, the data buffer is free starting at the
* current_data offset.
*/
apr_uint32_t next;
/* First offset in the caches DATA buffer that belongs to this level.
*/
apr_uint64_t start_offset;
/* Size of data buffer allocated to this level in bytes. Must be > 0.
*/
apr_uint64_t size;
/* Offset in the data buffer where the next insertion shall occur.
*/
apr_uint64_t current_data;
} cache_level_t;
/* The cache header structure.
*/
struct svn_membuffer_t
{
/* Number of cache segments. Must be a power of 2.
Please note that this structure represents only one such segment
and that all segments must / will report the same values here. */
apr_uint32_t segment_count;
/* The dictionary, GROUP_SIZE * (group_count + spare_group_count)
* entries long. Never NULL.
*/
entry_group_t *directory;
/* Flag array with group_count / GROUP_INIT_GRANULARITY _bit_ elements.
* Allows for efficiently marking groups as "not initialized".
*/
unsigned char *group_initialized;
/* Size of dictionary in groups. Must be > 0.
*/
apr_uint32_t group_count;
/* Total number of spare groups.
*/
apr_uint32_t spare_group_count;
/* First recycleable spare group.
*/
apr_uint32_t first_spare_group;
/* Maximum number of spare groups ever used. I.e. group index
* group_count + max_spare_used is the first unused spare group
* if first_spare_group is NO_INDEX.
*/
apr_uint32_t max_spare_used;
/* Pointer to the data buffer, data_size bytes long. Never NULL.
*/
unsigned char *data;
/* Total number of data buffer bytes in use.
*/
apr_uint64_t data_used;
/* Largest entry size that we would accept. For total cache sizes
* less than 4TB (sic!), this is determined by the total cache size.
*/
apr_uint64_t max_entry_size;
/* The cache levels, organized as sub-buffers. Since entries in the
* DIRECTORY use offsets in DATA for addressing, a cache lookup does
* not need to know the cache level of a specific item. Cache levels
* are only used to implement a hybrid insertion / eviction strategy.
*/
/* First cache level, i.e. most insertions happen here. Very large
* items might get inserted directly into L2. L1 is a strict FIFO
* ring buffer that does not care about item priorities. All evicted
* items get a chance to be promoted to L2.
*/
cache_level_t l1;
/* Second cache level, i.e. data evicted from L1 will be added here
* if the item is "important" enough or the L2 insertion window is large
* enough.
*/
cache_level_t l2;
/* Number of used dictionary entries, i.e. number of cached items.
* Purely statistical information that may be used for profiling only.
* Updates are not synchronized and values may be nonsensicle on some
* platforms.
*/
apr_uint32_t used_entries;
/* Total number of calls to membuffer_cache_get.
* Purely statistical information that may be used for profiling only.
* Updates are not synchronized and values may be nonsensicle on some
* platforms.
*/
apr_uint64_t total_reads;
/* Total number of calls to membuffer_cache_set.
* Purely statistical information that may be used for profiling only.
* Updates are not synchronized and values may be nonsensicle on some
* platforms.
*/
apr_uint64_t total_writes;
/* Total number of hits since the cache's creation.
* Purely statistical information that may be used for profiling only.
* Updates are not synchronized and values may be nonsensicle on some
* platforms.
*/
apr_uint64_t total_hits;
#if (APR_HAS_THREADS && USE_SIMPLE_MUTEX)
/* A lock for intra-process synchronization to the cache, or NULL if
* the cache's creator doesn't feel the cache needs to be
* thread-safe.
*/
svn_mutex__t *lock;
#elif (APR_HAS_THREADS && !USE_SIMPLE_MUTEX)
/* Same for read-write lock. */
apr_thread_rwlock_t *lock;
/* If set, write access will wait until they get exclusive access.
* Otherwise, they will become no-ops if the segment is currently
* read-locked. Only used when LOCK is an r/w lock.
*/
svn_boolean_t allow_blocking_writes;
#endif
};
/* Align integer VALUE to the next ITEM_ALIGNMENT boundary.
*/
#define ALIGN_VALUE(value) (((value) + ITEM_ALIGNMENT-1) & -ITEM_ALIGNMENT)
/* If locking is supported for CACHE, acquire a read lock for it.
*/
static svn_error_t *
read_lock_cache(svn_membuffer_t *cache)
{
#if (APR_HAS_THREADS && USE_SIMPLE_MUTEX)
return svn_mutex__lock(cache->lock);
#elif (APR_HAS_THREADS && !USE_SIMPLE_MUTEX)
if (cache->lock)
{
apr_status_t status = apr_thread_rwlock_rdlock(cache->lock);
if (status)
return svn_error_wrap_apr(status, _("Can't lock cache mutex"));
}
return SVN_NO_ERROR;
#else
return SVN_NO_ERROR;
#endif
}
/* If locking is supported for CACHE, acquire a write lock for it.
* Set *SUCCESS to FALSE, if we couldn't acquire the write lock;
* leave it untouched otherwise.
*/
static svn_error_t *
write_lock_cache(svn_membuffer_t *cache, svn_boolean_t *success)
{
#if (APR_HAS_THREADS && USE_SIMPLE_MUTEX)
return svn_mutex__lock(cache->lock);
#elif (APR_HAS_THREADS && !USE_SIMPLE_MUTEX)
if (cache->lock)
{
apr_status_t status;
if (cache->allow_blocking_writes)
{
status = apr_thread_rwlock_wrlock(cache->lock);
}
else
{
status = apr_thread_rwlock_trywrlock(cache->lock);
if (SVN_LOCK_IS_BUSY(status))
{
*success = FALSE;
status = APR_SUCCESS;
}
}
if (status)
return svn_error_wrap_apr(status,
_("Can't write-lock cache mutex"));
}
return SVN_NO_ERROR;
#else
return SVN_NO_ERROR;
#endif
}
/* If locking is supported for CACHE, acquire an unconditional write lock
* for it.
*/
static svn_error_t *
force_write_lock_cache(svn_membuffer_t *cache)
{
#if (APR_HAS_THREADS && USE_SIMPLE_MUTEX)
return svn_mutex__lock(cache->lock);
#elif (APR_HAS_THREADS && !USE_SIMPLE_MUTEX)
apr_status_t status = apr_thread_rwlock_wrlock(cache->lock);
if (status)
return svn_error_wrap_apr(status,
_("Can't write-lock cache mutex"));
return SVN_NO_ERROR;
#else
return SVN_NO_ERROR;
#endif
}
/* If locking is supported for CACHE, release the current lock
* (read or write). Return ERR upon success.
*/
static svn_error_t *
unlock_cache(svn_membuffer_t *cache, svn_error_t *err)
{
#if (APR_HAS_THREADS && USE_SIMPLE_MUTEX)
return svn_mutex__unlock(cache->lock, err);
#elif (APR_HAS_THREADS && !USE_SIMPLE_MUTEX)
if (cache->lock)
{
apr_status_t status = apr_thread_rwlock_unlock(cache->lock);
if (err)
return err;
if (status)
return svn_error_wrap_apr(status, _("Can't unlock cache mutex"));
}
return err;
#else
return err;
#endif
}
/* If supported, guard the execution of EXPR with a read lock to CACHE.
* The macro has been modeled after SVN_MUTEX__WITH_LOCK.
*/
#define WITH_READ_LOCK(cache, expr) \
do { \
SVN_ERR(read_lock_cache(cache)); \
SVN_ERR(unlock_cache(cache, (expr))); \
} while (0)
/* If supported, guard the execution of EXPR with a write lock to CACHE.
* The macro has been modeled after SVN_MUTEX__WITH_LOCK.
*
* The write lock process is complicated if we don't allow to wait for
* the lock: If we didn't get the lock, we may still need to remove an
* existing entry for the given key because that content is now stale.
* Once we discovered such an entry, we unconditionally do a blocking
* wait for the write lock. In case no old content could be found, a
* failing lock attempt is simply a no-op and we exit the macro.
*/
#define WITH_WRITE_LOCK(cache, expr) \
do { \
svn_boolean_t got_lock = TRUE; \
SVN_ERR(write_lock_cache(cache, &got_lock)); \
if (!got_lock) \
{ \
svn_boolean_t exists; \
SVN_ERR(entry_exists(cache, group_index, key, &exists)); \
if (exists) \
SVN_ERR(force_write_lock_cache(cache)); \
else \
break; \
} \
SVN_ERR(unlock_cache(cache, (expr))); \
} while (0)
/* Returns 0 if the entry group identified by GROUP_INDEX in CACHE has not
* been initialized, yet. In that case, this group can not data. Otherwise,
* a non-zero value is returned.
*/
static APR_INLINE unsigned char
is_group_initialized(svn_membuffer_t *cache, apr_uint32_t group_index)
{
unsigned char flags
= cache->group_initialized[group_index / (8 * GROUP_INIT_GRANULARITY)];
unsigned char bit_mask
= (unsigned char)(1 << ((group_index / GROUP_INIT_GRANULARITY) % 8));
return flags & bit_mask;
}
/* Initializes the section of the directory in CACHE that contains
* the entry group identified by GROUP_INDEX. */
static void
initialize_group(svn_membuffer_t *cache, apr_uint32_t group_index)
{
unsigned char bit_mask;
apr_uint32_t i;
/* range of groups to initialize due to GROUP_INIT_GRANULARITY */
apr_uint32_t first_index =
(group_index / GROUP_INIT_GRANULARITY) * GROUP_INIT_GRANULARITY;
apr_uint32_t last_index = first_index + GROUP_INIT_GRANULARITY;
if (last_index > cache->group_count + cache->spare_group_count)
last_index = cache->group_count + cache->spare_group_count;
for (i = first_index; i < last_index; ++i)
{
group_header_t *header = &cache->directory[i].header;
header->used = 0;
header->chain_length = 1;
header->next = NO_INDEX;
header->previous = NO_INDEX;
}
/* set the "initialized" bit for these groups */
bit_mask
= (unsigned char)(1 << ((group_index / GROUP_INIT_GRANULARITY) % 8));
cache->group_initialized[group_index / (8 * GROUP_INIT_GRANULARITY)]
|= bit_mask;
}
/* Return the next available spare group from CACHE and mark it as used.
* May return NULL.
*/
static entry_group_t *
allocate_spare_group(svn_membuffer_t *cache)
{
entry_group_t *group = NULL;
/* is there some ready-to-use group? */
if (cache->first_spare_group != NO_INDEX)
{
group = &cache->directory[cache->first_spare_group];
cache->first_spare_group = group->header.next;
}
/* any so far untouched spares available? */
else if (cache->max_spare_used < cache->spare_group_count)
{
apr_uint32_t group_index = cache->group_count + cache->max_spare_used;
++cache->max_spare_used;
if (!is_group_initialized(cache, group_index))
initialize_group(cache, group_index);
group = &cache->directory[group_index];
}
/* spare groups must be empty */
assert(!group || !group->header.used);
return group;
}
/* Mark previously allocated spare group GROUP in CACHE as "unused".
*/
static void
free_spare_group(svn_membuffer_t *cache,
entry_group_t *group)
{
assert(group->header.used == 0);
assert(group->header.previous != NO_INDEX);
assert(group - cache->directory >= (apr_ssize_t)cache->group_count);
/* unchain */
cache->directory[group->header.previous].header.next = NO_INDEX;
group->header.chain_length = 0;
group->header.previous = NO_INDEX;
/* add to chain of spares */
group->header.next = cache->first_spare_group;
cache->first_spare_group = (apr_uint32_t) (group - cache->directory);
}
/* Follow the group chain from GROUP in CACHE to its end and return the last
* group. May return GROUP.
*/
static entry_group_t *
last_group_in_chain(svn_membuffer_t *cache,
entry_group_t *group)
{
while (group->header.next != NO_INDEX)
group = &cache->directory[group->header.next];
return group;
}
/* Return the CHAIN_INDEX-th element in the group chain starting from group
* START_GROUP_INDEX in CACHE.
*/
static entry_group_t *
get_group(svn_membuffer_t *cache,
apr_uint32_t start_group_index,
apr_uint32_t chain_index)
{
entry_group_t *group = &cache->directory[start_group_index];
for (; chain_index; --chain_index)
group = &cache->directory[group->header.next];
return group;
}
/* Resolve a dictionary entry reference, i.e. return the entry
* for the given IDX.
*/
static APR_INLINE entry_t *
get_entry(svn_membuffer_t *cache, apr_uint32_t idx)
{
return &cache->directory[idx / GROUP_SIZE].entries[idx % GROUP_SIZE];
}
/* Get the entry references for the given ENTRY.
*/
static APR_INLINE apr_uint32_t
get_index(svn_membuffer_t *cache, entry_t *entry)
{
apr_size_t group_index
= ((char *)entry - (char *)cache->directory) / sizeof(entry_group_t);
return (apr_uint32_t)group_index * GROUP_SIZE
+ (apr_uint32_t)(entry - cache->directory[group_index].entries);
}
/* Return the cache level of ENTRY in CACHE.
*/
static cache_level_t *
get_cache_level(svn_membuffer_t *cache, entry_t *entry)
{
return entry->offset < cache->l1.size ? &cache->l1
: &cache->l2;
}
/* Insert ENTRY to the chain of items that belong to LEVEL in CACHE. IDX
* is ENTRY's item index and is only given for efficiency. The insertion
* takes place just before LEVEL->NEXT. *CACHE will not be modified.
*/
static void
chain_entry(svn_membuffer_t *cache,
cache_level_t *level,
entry_t *entry,
apr_uint32_t idx)
{
/* insert ENTRY before this item */
entry_t *next = level->next == NO_INDEX
? NULL
: get_entry(cache, level->next);
assert(idx == get_index(cache, entry));
/* update entry chain
*/
entry->next = level->next;
if (level->first == NO_INDEX)
{
/* insert as the first entry and only in the chain
*/
entry->previous = NO_INDEX;
level->last = idx;
level->first = idx;
}
else if (next == NULL)
{
/* insert as the last entry in the chain.
* Note that it cannot also be at the beginning of the chain.
*/
entry->previous = level->last;
get_entry(cache, level->last)->next = idx;
level->last = idx;
}
else
{
/* insert either at the start of a non-empty list or
* somewhere in the middle
*/
entry->previous = next->previous;
next->previous = idx;
if (entry->previous != NO_INDEX)
get_entry(cache, entry->previous)->next = idx;
else
level->first = idx;
}
}
/* Remove ENTRY from the chain of items that belong to LEVEL in CACHE. IDX
* is ENTRY's item index and is only given for efficiency. Please note
* that neither *CACHE nor *ENTRY will not be modified.
*/
static void
unchain_entry(svn_membuffer_t *cache,
cache_level_t *level,
entry_t *entry,
apr_uint32_t idx)
{
assert(idx == get_index(cache, entry));
/* update
*/
if (level->next == idx)
level->next = entry->next;
/* unlink it from the chain of used entries
*/
if (entry->previous == NO_INDEX)
level->first = entry->next;
else
get_entry(cache, entry->previous)->next = entry->next;
if (entry->next == NO_INDEX)
level->last = entry->previous;
else
get_entry(cache, entry->next)->previous = entry->previous;
}
/* Remove the used ENTRY from the CACHE, i.e. make it "unused".
* In contrast to insertion, removal is possible for any entry.
*/
static void
drop_entry(svn_membuffer_t *cache, entry_t *entry)
{
/* the group that ENTRY belongs to plus a number of useful index values
*/
apr_uint32_t idx = get_index(cache, entry);
apr_uint32_t group_index = idx / GROUP_SIZE;
entry_group_t *last_group
= last_group_in_chain(cache, &cache->directory[group_index]);
apr_uint32_t last_in_group
= (apr_uint32_t) ((last_group - cache->directory) * GROUP_SIZE
+ last_group->header.used - 1);
cache_level_t *level = get_cache_level(cache, entry);
/* update global cache usage counters
*/
cache->used_entries--;
cache->data_used -= entry->size;
/* extend the insertion window, if the entry happens to border it
*/
if (idx == level->next)
level->next = entry->next;
else
if (entry->next == level->next)
{
/* insertion window starts right behind the entry to remove
*/
if (entry->previous == NO_INDEX)
{
/* remove the first entry -> insertion may start at pos 0, now */
level->current_data = level->start_offset;
}
else
{
/* insertion may start right behind the previous entry */
entry_t *previous = get_entry(cache, entry->previous);
level->current_data = ALIGN_VALUE( previous->offset
+ previous->size);
}
}
/* unlink it from the chain of used entries
*/
unchain_entry(cache, level, entry, idx);
/* Move last entry into hole (if the removed one is not the last used).
* We need to do this since all used entries are at the beginning of
* the group's entries array.
*/
if (idx != last_in_group)
{
/* copy the last used entry to the removed entry's index
*/
*entry = last_group->entries[last_group->header.used-1];
/* this ENTRY may belong to a different cache level than the entry
* we have just removed */
level = get_cache_level(cache, entry);
/* update foreign links to new index
*/
if (last_in_group == level->next)
level->next = idx;
if (entry->previous == NO_INDEX)
level->first = idx;
else
get_entry(cache, entry->previous)->next = idx;
if (entry->next == NO_INDEX)
level->last = idx;
else
get_entry(cache, entry->next)->previous = idx;
}
/* Update the number of used entries.
*/
last_group->header.used--;
/* Release the last group in the chain if it is a spare group
*/
if (!last_group->header.used && last_group->header.previous != NO_INDEX)
free_spare_group(cache, last_group);
}
/* Insert ENTRY into the chain of used dictionary entries. The entry's
* offset and size members must already have been initialized. Also,
* the offset must match the beginning of the insertion window.
*/
static void
insert_entry(svn_membuffer_t *cache, entry_t *entry)
{
/* the group that ENTRY belongs to plus a number of useful index values
*/
apr_uint32_t idx = get_index(cache, entry);
apr_uint32_t group_index = idx / GROUP_SIZE;
entry_group_t *group = &cache->directory[group_index];
cache_level_t *level = get_cache_level(cache, entry);
/* The entry must start at the beginning of the insertion window.
* It must also be the first unused entry in the group.
*/
assert(entry->offset == level->current_data);
assert(idx == group_index * GROUP_SIZE + group->header.used);
level->current_data = ALIGN_VALUE(entry->offset + entry->size);
/* update usage counters
*/
cache->used_entries++;
cache->data_used += entry->size;
entry->hit_count = 0;
group->header.used++;
/* update entry chain
*/
chain_entry(cache, level, entry, idx);
/* The current insertion position must never point outside our
* data buffer.
*/
assert(level->current_data <= level->start_offset + level->size);
}
/* Map a KEY of 16 bytes to the CACHE and group that shall contain the
* respective item.
*/
static apr_uint32_t
get_group_index(svn_membuffer_t **cache,
const entry_key_t *key)
{
svn_membuffer_t *segment0 = *cache;
apr_uint64_t key0 = key->fingerprint[0];
apr_uint64_t key1 = key->fingerprint[1];
/* select the cache segment to use. they have all the same group_count.
* Since key may not be well-distributed, pre-fold it to a smaller but
* "denser" ranger. The modulus is a prime larger than the largest
* counts. */
*cache = &segment0[(key1 % APR_UINT64_C(2809637) + (key0 / 37))
& (segment0->segment_count - 1)];
return (key0 % APR_UINT64_C(5030895599)) % segment0->group_count;
}
/* Reduce the hit count of ENTRY and update the accumulated hit info
* in CACHE accordingly.
*/
static APR_INLINE void
let_entry_age(svn_membuffer_t *cache, entry_t *entry)
{
apr_uint32_t hits_removed = (entry->hit_count + 1) >> 1;
if (hits_removed)
{
entry->hit_count -= hits_removed;
}
else
{
entry->priority /= 2;
}
}
/* Return whether the keys in LHS and RHS match.
*/
static svn_boolean_t
entry_keys_match(const entry_key_t *lhs,
const entry_key_t *rhs)
{
return (lhs->fingerprint[0] == rhs->fingerprint[0])
&& (lhs->fingerprint[1] == rhs->fingerprint[1])
&& (lhs->key_len == rhs->key_len);
}
/* Given the GROUP_INDEX that shall contain an entry with the hash key
* TO_FIND, find that entry in the specified group.
*
* If FIND_EMPTY is not set, this function will return the one used entry
* that actually matches the hash or NULL, if no such entry exists.
*
* If FIND_EMPTY has been set, this function will drop the one used entry
* that actually matches the hash (i.e. make it fit to be replaced with
* new content), an unused entry or a forcibly removed entry (if all
* group entries are currently in use). The entries' hash value will be
* initialized with TO_FIND.
*
* Note: This function requires the caller to appropriately lock the CACHE.
* For FIND_EMPTY==FALSE, a read lock is required, for FIND_EMPTY==TRUE,
* the write lock must have been acquired.
*/
static entry_t *
find_entry(svn_membuffer_t *cache,
apr_uint32_t group_index,
const full_key_t *to_find,
svn_boolean_t find_empty)
{
entry_group_t *group;
entry_t *entry = NULL;
apr_size_t i;
/* get the group that *must* contain the entry
*/
group = &cache->directory[group_index];
/* If the entry group has not been initialized, yet, there is no data.
*/
if (! is_group_initialized(cache, group_index))
{
if (find_empty)
{
initialize_group(cache, group_index);
entry = &group->entries[0];
/* initialize entry for the new key */
entry->key = to_find->entry_key;
}
return entry;
}
/* try to find the matching entry
*/
while (1)
{
for (i = 0; i < group->header.used; ++i)
if (entry_keys_match(&group->entries[i].key, &to_find->entry_key))
{
/* This is the only entry that _may_ contain the correct data. */
entry = &group->entries[i];
/* If we want to preserve it, check that it is actual a match. */
if (!find_empty)
{
/* If there is no full key to compare, we are done. */
if (!entry->key.key_len)
return entry;
/* Compare the full key. */
if (memcmp(to_find->full_key.data,
cache->data + entry->offset,
entry->key.key_len) == 0)
return entry;
/* Key conflict. The entry to find cannot be anywhere else.
* Therefore, it is not cached. */
return NULL;
}
/* need to empty that entry */
drop_entry(cache, entry);
if (group->header.used == GROUP_SIZE)
group = last_group_in_chain(cache, group);
else if (group->header.chain_length == 0)
group = last_group_in_chain(cache,
&cache->directory[group_index]);
/* No entry found (actually, none left to find). */
entry = NULL;
break;
}
/* end of chain? */
if (group->header.next == NO_INDEX)
break;
/* only full groups may chain */
assert(group->header.used == GROUP_SIZE);
group = &cache->directory[group->header.next];
}
/* None found. Are we looking for a free entry?
*/
if (find_empty)
{
/* There is no empty entry in the chain, try chaining a spare group.
*/
if ( group->header.used == GROUP_SIZE
&& group->header.chain_length < MAX_GROUP_CHAIN_LENGTH)
{
entry_group_t *new_group = allocate_spare_group(cache);
if (new_group)
{
/* chain groups
*/
new_group->header.chain_length = group->header.chain_length + 1;
new_group->header.previous = (apr_uint32_t) (group -
cache->directory);
new_group->header.next = NO_INDEX;
group->header.next = (apr_uint32_t) (new_group -
cache->directory);
group = new_group;
}
}
/* if GROUP is still filled, we need to remove a random entry */
if (group->header.used == GROUP_SIZE)
{
/* every entry gets the same chance of being removed.
* Otherwise, we free the first entry, fill it and
* remove it again on the next occasion without considering
* the other entries in this group.
*
* We hit only one random group instead of processing all
* groups in the chain.
*/
cache_level_t *entry_level;
int to_remove = rand() % (GROUP_SIZE * group->header.chain_length);
entry_group_t *to_shrink
= get_group(cache, group_index, to_remove / GROUP_SIZE);
entry = &to_shrink->entries[to_remove % GROUP_SIZE];
entry_level = get_cache_level(cache, entry);
for (i = 0; i < GROUP_SIZE; ++i)
{
/* keep L1 entries whenever possible */
cache_level_t *level
= get_cache_level(cache, &to_shrink->entries[i]);
if ( (level != entry_level && entry_level == &cache->l1)
|| (entry->hit_count > to_shrink->entries[i].hit_count))
{
entry_level = level;
entry = &to_shrink->entries[i];
}
}
/* for the entries that don't have been removed,
* reduce their hit counts to put them at a relative
* disadvantage the next time.
*/
for (i = 0; i < GROUP_SIZE; ++i)
if (entry != &to_shrink->entries[i])
let_entry_age(cache, entry);
drop_entry(cache, entry);
}
/* initialize entry for the new key
*/
entry = &group->entries[group->header.used];
entry->key = to_find->entry_key;
}
return entry;
}
/* Move a surviving ENTRY from just behind the insertion window to
* its beginning and move the insertion window up accordingly.
*/
static void
move_entry(svn_membuffer_t *cache, entry_t *entry)
{
apr_size_t size = ALIGN_VALUE(entry->size);
cache_level_t *level = get_cache_level(cache, entry);
/* This entry survived this cleansing run. Reset half of its
* hit count so that its removal gets more likely in the next
* run unless someone read / hit this entry in the meantime.
*/
let_entry_age(cache, entry);
/* Move the entry to the start of the empty / insertion section
* (if it isn't there already). Size-aligned moves are legal
* since all offsets and block sizes share this same alignment.
* Size-aligned moves tend to be faster than non-aligned ones
* because no "odd" bytes at the end need to special treatment.
*/
if (entry->offset != level->current_data)
{
memmove(cache->data + level->current_data,
cache->data + entry->offset,
size);
entry->offset = level->current_data;
}
/* The insertion position is now directly behind this entry.
*/
level->current_data = entry->offset + size;
level->next = entry->next;
/* The current insertion position must never point outside our
* data buffer.
*/
assert(level->current_data <= level->start_offset + level->size);
}
/* Move ENTRY in CACHE from L1 to L2.
*/
static void
promote_entry(svn_membuffer_t *cache, entry_t *entry)
{
apr_uint32_t idx = get_index(cache, entry);
apr_size_t size = ALIGN_VALUE(entry->size);
assert(get_cache_level(cache, entry) == &cache->l1);
assert(idx == cache->l1.next);
/* copy item from the current location in L1 to the start of L2's
* insertion window */
memmove(cache->data + cache->l2.current_data,
cache->data + entry->offset,
size);
entry->offset = cache->l2.current_data;
/* The insertion position is now directly behind this entry.
*/
cache->l2.current_data += size;
/* remove ENTRY from chain of L1 entries and put it into L2
*/
unchain_entry(cache, &cache->l1, entry, idx);
chain_entry(cache, &cache->l2, entry, idx);
}
/* This function implements the cache insertion / eviction strategy for L2.
*
* If necessary, enlarge the insertion window of CACHE->L2 until it is at
* least TO_FIT_IN->SIZE bytes long. TO_FIT_IN->SIZE must not exceed the
* data buffer size allocated to CACHE->L2. IDX is the item index of
* TO_FIT_IN and is given for performance reasons.
*
* Return TRUE if enough room could be found or made. A FALSE result
* indicates that the respective item shall not be added.
*/
static svn_boolean_t
ensure_data_insertable_l2(svn_membuffer_t *cache,
entry_t *to_fit_in)
{
entry_t *entry;
/* accumulated size of the entries that have been removed to make
* room for the new one.
*/
apr_size_t moved_size = 0;
/* count the number of entries that got moved. A single large entry
* being moved is not enough to reject an insertion.
*/
apr_size_t moved_count = 0;
/* accumulated "worth" of items dropped so far */
apr_uint64_t drop_hits = 0;
/* estimated "worth" of the new entry */
apr_uint64_t drop_hits_limit = (to_fit_in->hit_count + 1)
* (apr_uint64_t)to_fit_in->priority;
/* This loop will eventually terminate because every cache entry
* would get dropped eventually:
*
* - the incoming entry is small enough to fit into L2
* - every iteration either frees parts of L2 or counts the moved size
* - eventually, we either moved too many items with too much total size
* to accept the new entry, or made enough room in L2 for the new entry
*
* Low-prio items get rejected even sooner.
*/
while (1)
{
/* first offset behind the insertion window
*/
apr_uint64_t end = cache->l2.next == NO_INDEX
? cache->l2.start_offset + cache->l2.size
: get_entry(cache, cache->l2.next)->offset;
/* leave function as soon as the insertion window is large enough
*/
if (end >= to_fit_in->size + cache->l2.current_data)
return TRUE;
/* Don't be too eager to cache data. If a lot of data has been moved
* around, the current item has probably a relatively low priority.
* We must also limit the effort spent here (if even in case of faulty
* heuristics). Therefore, give up after some time.
*/
if (moved_size > 4 * to_fit_in->size && moved_count > 7)
return FALSE;
/* if the net worth (in weighted hits) of items removed is already
* larger than what we want to insert, reject TO_FIT_IN because it
* still does not fit in. */
if (drop_hits > drop_hits_limit)
return FALSE;
/* try to enlarge the insertion window
*/
if (cache->l2.next == NO_INDEX)
{
/* We reached the end of the data buffer; restart at the beginning.
* Due to the randomized nature of our LFU implementation, very
* large data items may require multiple passes. Therefore, SIZE
* should be restricted to significantly less than data_size.
*/
cache->l2.current_data = cache->l2.start_offset;
cache->l2.next = cache->l2.first;
}
else
{
svn_boolean_t keep;
entry = get_entry(cache, cache->l2.next);
if (to_fit_in->priority < SVN_CACHE__MEMBUFFER_DEFAULT_PRIORITY)
{
/* Low prio items can only be accepted only if the current
* entry is of even lower prio and has fewer hits.
*/
if ( entry->priority > to_fit_in->priority
|| entry->hit_count > to_fit_in->hit_count)
return FALSE;
}
if (entry->priority <= SVN_CACHE__MEMBUFFER_LOW_PRIORITY)
{
/* Be quick to remove low-prio entries - even if the incoming
* one is low-prio as well. This makes room for more important
* data and replaces existing data with newly read information.
*/
keep = FALSE;
}
else
{
/* If the existing data is the same prio as the incoming data,
* drop the existing entry if it had seen fewer (probably 0)
* hits than the entry coming in from L1. In case of different
* priorities, keep the current entry of it has higher prio.
* The new entry may still find room by ousting other entries.
*/
keep = to_fit_in->priority == entry->priority
? entry->hit_count >= to_fit_in->hit_count
: entry->priority > to_fit_in->priority;
}
/* keepers or destroyers? */
if (keep)
{
/* Moving entries around is not for free -> track costs. */
moved_size += entry->size;
moved_count++;
move_entry(cache, entry);
}
else
{
/* Drop the entry from the end of the insertion window.
* Count the "hit importance" such that we are not sacrificing
* too much of the high-hit contents. However, don't count
* low-priority hits because higher prio entries will often
* provide the same data but in a further stage of processing.
*/
if (entry->priority > SVN_CACHE__MEMBUFFER_LOW_PRIORITY)
drop_hits += entry->hit_count * (apr_uint64_t)entry->priority;
drop_entry(cache, entry);
}
}
}
/* This will never be reached. But if it was, "can't insert" was the
* right answer. */
}
/* This function implements the cache insertion / eviction strategy for L1.
*
* If necessary, enlarge the insertion window of CACHE->L1 by promoting
* entries to L2 until it is at least SIZE bytes long.
*
* Return TRUE if enough room could be found or made. A FALSE result
* indicates that the respective item shall not be added because it is
* too large.
*/
static svn_boolean_t
ensure_data_insertable_l1(svn_membuffer_t *cache, apr_size_t size)
{
/* Guarantees that the while loop will terminate. */
if (size > cache->l1.size)
return FALSE;
/* This loop will eventually terminate because every cache entry
* would get dropped eventually.
*/
while (1)
{
/* first offset behind the insertion window
*/
apr_uint32_t entry_index = cache->l1.next;
entry_t *entry = get_entry(cache, entry_index);
apr_uint64_t end = cache->l1.next == NO_INDEX
? cache->l1.start_offset + cache->l1.size
: entry->offset;
/* leave function as soon as the insertion window is large enough
*/
if (end >= size + cache->l1.current_data)
return TRUE;
/* Enlarge the insertion window
*/
if (cache->l1.next == NO_INDEX)
{
/* We reached the end of the data buffer; restart at the beginning.
* Due to the randomized nature of our LFU implementation, very
* large data items may require multiple passes. Therefore, SIZE
* should be restricted to significantly less than data_size.
*/
cache->l1.current_data = cache->l1.start_offset;
cache->l1.next = cache->l1.first;
}
else
{
/* Remove the entry from the end of insertion window and promote
* it to L2, if it is important enough.
*/
svn_boolean_t keep = ensure_data_insertable_l2(cache, entry);
/* We might have touched the group that contains ENTRY. Recheck. */
if (entry_index == cache->l1.next)
{
if (keep)
promote_entry(cache, entry);
else
drop_entry(cache, entry);
}
}
}
/* This will never be reached. But if it was, "can't insert" was the
* right answer. */
}
svn_error_t *
svn_cache__membuffer_cache_create(svn_membuffer_t **cache,
apr_size_t total_size,
apr_size_t directory_size,
apr_size_t segment_count,
svn_boolean_t thread_safe,
svn_boolean_t allow_blocking_writes,
apr_pool_t *pool)
{
svn_membuffer_t *c;
apr_uint32_t seg;
apr_uint32_t group_count;
apr_uint32_t main_group_count;
apr_uint32_t spare_group_count;
apr_uint32_t group_init_size;
apr_uint64_t data_size;
apr_uint64_t max_entry_size;
/* Limit the total size (only relevant if we can address > 4GB)
*/
#if APR_SIZEOF_VOIDP > 4
if (total_size > MAX_SEGMENT_SIZE * MAX_SEGMENT_COUNT)
total_size = MAX_SEGMENT_SIZE * MAX_SEGMENT_COUNT;
#endif
/* Limit the segment count
*/
if (segment_count > MAX_SEGMENT_COUNT)
segment_count = MAX_SEGMENT_COUNT;
if (segment_count * MIN_SEGMENT_SIZE > total_size)
segment_count = total_size / MIN_SEGMENT_SIZE;
/* The segment count must be a power of two. Round it down as necessary.
*/
while ((segment_count & (segment_count-1)) != 0)
segment_count &= segment_count-1;
/* if the caller hasn't provided a reasonable segment count or the above
* limitations set it to 0, derive one from the absolute cache size
*/
if (segment_count < 1)
{
/* Determine a reasonable number of cache segments. Segmentation is
* only useful for multi-threaded / multi-core servers as it reduces
* lock contention on these systems.
*
* But on these systems, we can assume that ample memory has been
* allocated to this cache. Smaller caches should not be segmented
* as this severely limits the maximum size of cachable items.
*
* Segments should not be smaller than 32MB and max. cachable item
* size should grow as fast as segmentation.
*/
apr_uint32_t segment_count_shift = 0;
while (((2 * DEFAULT_MIN_SEGMENT_SIZE) << (2 * segment_count_shift))
< total_size)
++segment_count_shift;
segment_count = (apr_size_t)1 << segment_count_shift;
}
/* If we have an extremely large cache (>512 GB), the default segment
* size may exceed the amount allocatable as one chunk. In that case,
* increase segmentation until we are under the threshold.
*/
while ( total_size / segment_count > MAX_SEGMENT_SIZE
&& segment_count < MAX_SEGMENT_COUNT)
segment_count *= 2;
/* allocate cache as an array of segments / cache objects */
c = apr_palloc(pool, segment_count * sizeof(*c));
/* Split total cache size into segments of equal size
*/
total_size /= segment_count;
directory_size /= segment_count;
/* prevent pathological conditions: ensure a certain minimum cache size
*/
if (total_size < 2 * sizeof(entry_group_t))
total_size = 2 * sizeof(entry_group_t);
/* adapt the dictionary size accordingly, if necessary:
* It must hold at least one group and must not exceed the cache size.
*/
if (directory_size > total_size - sizeof(entry_group_t))
directory_size = total_size - sizeof(entry_group_t);
if (directory_size < 2 * sizeof(entry_group_t))
directory_size = 2 * sizeof(entry_group_t);
/* limit the data size to what we can address.
* Note that this cannot overflow since all values are of size_t.
* Also, make it a multiple of the item placement granularity to
* prevent subtle overflows.
*/
data_size = ALIGN_VALUE(total_size - directory_size + 1) - ITEM_ALIGNMENT;
/* For cache sizes > 16TB, individual cache segments will be larger
* than 32GB allowing for >4GB entries. But caching chunks larger
* than 4GB are simply not supported.
*/
max_entry_size = data_size / 8 > MAX_ITEM_SIZE
? MAX_ITEM_SIZE
: data_size / 8;
/* to keep the entries small, we use 32 bit indexes only
* -> we need to ensure that no more then 4G entries exist.
*
* Note, that this limit could only be exceeded in a very
* theoretical setup with about 1EB of cache.
*/
group_count = directory_size / sizeof(entry_group_t)
>= (APR_UINT32_MAX / GROUP_SIZE)
? (APR_UINT32_MAX / GROUP_SIZE) - 1
: (apr_uint32_t)(directory_size / sizeof(entry_group_t));
/* set some of the index directory aside as over-flow (spare) buffers */
spare_group_count = MAX(group_count / 4, 1);
main_group_count = group_count - spare_group_count;
assert(spare_group_count > 0 && main_group_count > 0);
group_init_size = 1 + group_count / (8 * GROUP_INIT_GRANULARITY);
for (seg = 0; seg < segment_count; ++seg)
{
/* allocate buffers and initialize cache members
*/
c[seg].segment_count = (apr_uint32_t)segment_count;
c[seg].group_count = main_group_count;
c[seg].spare_group_count = spare_group_count;
c[seg].first_spare_group = NO_INDEX;
c[seg].max_spare_used = 0;
c[seg].directory = apr_pcalloc(pool,
group_count * sizeof(entry_group_t));
/* Allocate and initialize directory entries as "not initialized",
hence "unused" */
c[seg].group_initialized = apr_pcalloc(pool, group_init_size);
/* Allocate 1/4th of the data buffer to L1
*/
c[seg].l1.first = NO_INDEX;
c[seg].l1.last = NO_INDEX;
c[seg].l1.next = NO_INDEX;
c[seg].l1.start_offset = 0;
c[seg].l1.size = ALIGN_VALUE(data_size / 4);
c[seg].l1.current_data = 0;
/* The remaining 3/4th will be used as L2
*/
c[seg].l2.first = NO_INDEX;
c[seg].l2.last = NO_INDEX;
c[seg].l2.next = NO_INDEX;
c[seg].l2.start_offset = c[seg].l1.size;
c[seg].l2.size = ALIGN_VALUE(data_size) - c[seg].l1.size;
c[seg].l2.current_data = c[seg].l2.start_offset;
/* This cast is safe because DATA_SIZE <= MAX_SEGMENT_SIZE. */
c[seg].data = apr_palloc(pool, (apr_size_t)ALIGN_VALUE(data_size));
c[seg].data_used = 0;
c[seg].max_entry_size = max_entry_size;
c[seg].used_entries = 0;
c[seg].total_reads = 0;
c[seg].total_writes = 0;
c[seg].total_hits = 0;
/* were allocations successful?
* If not, initialize a minimal cache structure.
*/
if (c[seg].data == NULL || c[seg].directory == NULL)
{
/* We are OOM. There is no need to proceed with "half a cache".
*/
return svn_error_wrap_apr(APR_ENOMEM, "OOM");
}
#if (APR_HAS_THREADS && USE_SIMPLE_MUTEX)
/* A lock for intra-process synchronization to the cache, or NULL if
* the cache's creator doesn't feel the cache needs to be
* thread-safe.
*/
SVN_ERR(svn_mutex__init(&c[seg].lock, thread_safe, pool));
#elif (APR_HAS_THREADS && !USE_SIMPLE_MUTEX)
/* Same for read-write lock. */
c[seg].lock = NULL;
if (thread_safe)
{
apr_status_t status =
apr_thread_rwlock_create(&(c[seg].lock), pool);
if (status)
return svn_error_wrap_apr(status, _("Can't create cache mutex"));
}
/* Select the behavior of write operations.
*/
c[seg].allow_blocking_writes = allow_blocking_writes;
#endif
}
/* done here
*/
*cache = c;
return SVN_NO_ERROR;
}
svn_error_t *
svn_cache__membuffer_clear(svn_membuffer_t *cache)
{
apr_size_t seg;
apr_size_t segment_count = cache->segment_count;
/* Length of the group_initialized array in bytes.
See also svn_cache__membuffer_cache_create(). */
apr_size_t group_init_size
= 1 + (cache->group_count + cache->spare_group_count)
/ (8 * GROUP_INIT_GRANULARITY);
/* Clear segment by segment. This implies that other thread may read
and write to other segments after we cleared them and before the
last segment is done.
However, that is no different from a write request coming through
right after we cleared all segments because dependencies between
cache entries (recursive lookup / access locks) are not allowed.
*/
for (seg = 0; seg < segment_count; ++seg)
{
/* Unconditionally acquire the write lock. */
SVN_ERR(force_write_lock_cache(&cache[seg]));
/* Mark all groups as "not initialized", which implies "empty". */
cache[seg].first_spare_group = NO_INDEX;
cache[seg].max_spare_used = 0;
memset(cache[seg].group_initialized, 0, group_init_size);
/* Unlink L1 contents. */
cache[seg].l1.first = NO_INDEX;
cache[seg].l1.last = NO_INDEX;
cache[seg].l1.next = NO_INDEX;
cache[seg].l1.current_data = cache[seg].l1.start_offset;
/* Unlink L2 contents. */
cache[seg].l2.first = NO_INDEX;
cache[seg].l2.last = NO_INDEX;
cache[seg].l2.next = NO_INDEX;
cache[seg].l2.current_data = cache[seg].l2.start_offset;
/* Reset content counters. */
cache[seg].data_used = 0;
cache[seg].used_entries = 0;
/* Segment may be used again. */
SVN_ERR(unlock_cache(&cache[seg], SVN_NO_ERROR));
}
/* done here */
return SVN_NO_ERROR;
}
/* Look for the cache entry in group GROUP_INDEX of CACHE, identified
* by the hash value TO_FIND and set *FOUND accordingly.
*
* Note: This function requires the caller to serialize access.
* Don't call it directly, call entry_exists instead.
*/
static svn_error_t *
entry_exists_internal(svn_membuffer_t *cache,
apr_uint32_t group_index,
const full_key_t *to_find,
svn_boolean_t *found)
{
*found = find_entry(cache, group_index, to_find, FALSE) != NULL;
return SVN_NO_ERROR;
}
/* Look for the cache entry in group GROUP_INDEX of CACHE, identified
* by the hash value TO_FIND and set *FOUND accordingly.
*/
static svn_error_t *
entry_exists(svn_membuffer_t *cache,
apr_uint32_t group_index,
const full_key_t *to_find,
svn_boolean_t *found)
{
WITH_READ_LOCK(cache,
entry_exists_internal(cache,
group_index,
to_find,
found));
return SVN_NO_ERROR;
}
/* Given the SIZE and PRIORITY of a new item, return the cache level
(L1 or L2) in fragment CACHE that this item shall be inserted into.
If we can't find nor make enough room for the item, return NULL.
*/
static cache_level_t *
select_level(svn_membuffer_t *cache,
apr_size_t size,
apr_uint32_t priority)
{
if (cache->max_entry_size >= size)
{
/* Small items go into L1. */
return ensure_data_insertable_l1(cache, size)
? &cache->l1
: NULL;
}
else if ( cache->l2.size >= size
&& MAX_ITEM_SIZE >= size
&& priority > SVN_CACHE__MEMBUFFER_DEFAULT_PRIORITY)
{
/* Large but important items go into L2. */
entry_t dummy_entry = { { { 0 } } };
dummy_entry.priority = priority;
dummy_entry.size = size;
return ensure_data_insertable_l2(cache, &dummy_entry)
? &cache->l2
: NULL;
}
/* Don't cache large, unimportant items. */
return NULL;
}
/* Try to insert the serialized item given in BUFFER with ITEM_SIZE
* into the group GROUP_INDEX of CACHE and uniquely identify it by
* hash value TO_FIND.
*
* However, there is no guarantee that it will actually be put into
* the cache. If there is already some data associated with TO_FIND,
* it will be removed from the cache even if the new data cannot
* be inserted.
*
* Note: This function requires the caller to serialization access.
* Don't call it directly, call membuffer_cache_set instead.
*/
static svn_error_t *
membuffer_cache_set_internal(svn_membuffer_t *cache,
const full_key_t *to_find,
apr_uint32_t group_index,
char *buffer,
apr_size_t item_size,
apr_uint32_t priority,
DEBUG_CACHE_MEMBUFFER_TAG_ARG
apr_pool_t *scratch_pool)
{
cache_level_t *level;
apr_size_t size = item_size + to_find->entry_key.key_len;
/* first, look for a previous entry for the given key */
entry_t *entry = find_entry(cache, group_index, to_find, FALSE);
/* if there is an old version of that entry and the new data fits into
* the old spot, just re-use that space. */
if (entry && ALIGN_VALUE(entry->size) >= size && buffer)
{
/* Careful! We need to cast SIZE to the full width of CACHE->DATA_USED
* lest we run into trouble with 32 bit underflow *not* treated as a
* negative value.
*/
cache->data_used += (apr_uint64_t)size - entry->size;
entry->size = size;
entry->priority = priority;
#ifdef SVN_DEBUG_CACHE_MEMBUFFER
/* Remember original content, type and key (hashes)
*/
SVN_ERR(store_content_part(tag, buffer, item_size, scratch_pool));
memcpy(&entry->tag, tag, sizeof(*tag));
#endif
if (entry->key.key_len)
memcpy(cache->data + entry->offset, to_find->full_key.data,
entry->key.key_len);
if (item_size)
memcpy(cache->data + entry->offset + entry->key.key_len, buffer,
item_size);
cache->total_writes++;
return SVN_NO_ERROR;
}
/* if necessary, enlarge the insertion window.
*/
level = buffer ? select_level(cache, size, priority) : NULL;
if (level)
{
/* Remove old data for this key, if that exists.
* Get an unused entry for the key and and initialize it with
* the serialized item's (future) position within data buffer.
*/
entry = find_entry(cache, group_index, to_find, TRUE);
entry->size = size;
entry->offset = level->current_data;
entry->priority = priority;
#ifdef SVN_DEBUG_CACHE_MEMBUFFER
/* Remember original content, type and key (hashes)
*/
SVN_ERR(store_content_part(tag, buffer, item_size, scratch_pool));
memcpy(&entry->tag, tag, sizeof(*tag));
#endif
/* Link the entry properly.
*/
insert_entry(cache, entry);
/* Copy the serialized item data into the cache.
*/
if (entry->key.key_len)
memcpy(cache->data + entry->offset, to_find->full_key.data,
entry->key.key_len);
if (item_size)
memcpy(cache->data + entry->offset + entry->key.key_len, buffer,
item_size);
cache->total_writes++;
}
else
{
/* if there is already an entry for this key, drop it.
* Since ensure_data_insertable may have removed entries from
* ENTRY's group, re-do the lookup.
*/
entry = find_entry(cache, group_index, to_find, FALSE);
if (entry)
drop_entry(cache, entry);
}
return SVN_NO_ERROR;
}
/* Try to insert the ITEM and use the KEY to uniquely identify it.
* However, there is no guarantee that it will actually be put into
* the cache. If there is already some data associated to the KEY,
* it will be removed from the cache even if the new data cannot
* be inserted.
*
* The SERIALIZER is called to transform the ITEM into a single,
* flat data buffer. Temporary allocations may be done in POOL.
*/
static svn_error_t *
membuffer_cache_set(svn_membuffer_t *cache,
const full_key_t *key,
void *item,
svn_cache__serialize_func_t serializer,
apr_uint32_t priority,
DEBUG_CACHE_MEMBUFFER_TAG_ARG
apr_pool_t *scratch_pool)
{
apr_uint32_t group_index;
void *buffer = NULL;
apr_size_t size = 0;
/* find the entry group that will hold the key.
*/
group_index = get_group_index(&cache, &key->entry_key);
/* Serialize data data.
*/
if (item)
SVN_ERR(serializer(&buffer, &size, item, scratch_pool));
/* The actual cache data access needs to sync'ed
*/
WITH_WRITE_LOCK(cache,
membuffer_cache_set_internal(cache,
key,
group_index,
buffer,
size,
priority,
DEBUG_CACHE_MEMBUFFER_TAG
scratch_pool));
return SVN_NO_ERROR;
}
/* Count a hit in ENTRY within CACHE.
*/
static void
increment_hit_counters(svn_membuffer_t *cache, entry_t *entry)
{
/* To minimize the memory footprint of the cache index, we limit local
* hit counters to 32 bits. These may overflow but we don't really
* care because at worst, ENTRY will be dropped from cache once every
* few billion hits. */
svn_atomic_inc(&entry->hit_count);
/* That one is for stats only. */
cache->total_hits++;
}
/* Look for the cache entry in group GROUP_INDEX of CACHE, identified
* by the hash value TO_FIND. If no item has been stored for KEY,
* *BUFFER will be NULL. Otherwise, return a copy of the serialized
* data in *BUFFER and return its size in *ITEM_SIZE. Allocations will
* be done in POOL.
*
* Note: This function requires the caller to serialization access.
* Don't call it directly, call membuffer_cache_get instead.
*/
static svn_error_t *
membuffer_cache_get_internal(svn_membuffer_t *cache,
apr_uint32_t group_index,
const full_key_t *to_find,
char **buffer,
apr_size_t *item_size,
DEBUG_CACHE_MEMBUFFER_TAG_ARG
apr_pool_t *result_pool)
{
entry_t *entry;
apr_size_t size;
/* The actual cache data access needs to sync'ed
*/
entry = find_entry(cache, group_index, to_find, FALSE);
cache->total_reads++;
if (entry == NULL)
{
/* no such entry found.
*/
*buffer = NULL;
*item_size = 0;
return SVN_NO_ERROR;
}
size = ALIGN_VALUE(entry->size) - entry->key.key_len;
*buffer = apr_palloc(result_pool, size);
memcpy(*buffer, cache->data + entry->offset + entry->key.key_len, size);
#ifdef SVN_DEBUG_CACHE_MEMBUFFER
/* Check for overlapping entries.
*/
SVN_ERR_ASSERT(entry->next == NO_INDEX ||
entry->offset + size
<= get_entry(cache, entry->next)->offset);
/* Compare original content, type and key (hashes)
*/
SVN_ERR(store_content_part(tag, *buffer, entry->size - entry->key.key_len,
result_pool));
SVN_ERR(assert_equal_tags(&entry->tag, tag));
#endif
/* update hit statistics
*/
increment_hit_counters(cache, entry);
*item_size = entry->size - entry->key.key_len;
return SVN_NO_ERROR;
}
/* Look for the *ITEM identified by KEY. If no item has been stored
* for KEY, *ITEM will be NULL. Otherwise, the DESERIALIZER is called
* re-construct the proper object from the serialized data.
* Allocations will be done in POOL.
*/
static svn_error_t *
membuffer_cache_get(svn_membuffer_t *cache,
const full_key_t *key,
void **item,
svn_cache__deserialize_func_t deserializer,
DEBUG_CACHE_MEMBUFFER_TAG_ARG
apr_pool_t *result_pool)
{
apr_uint32_t group_index;
char *buffer;
apr_size_t size;
/* find the entry group that will hold the key.
*/
group_index = get_group_index(&cache, &key->entry_key);
WITH_READ_LOCK(cache,
membuffer_cache_get_internal(cache,
group_index,
key,
&buffer,
&size,
DEBUG_CACHE_MEMBUFFER_TAG
result_pool));
/* re-construct the original data object from its serialized form.
*/
if (buffer == NULL)
{
*item = NULL;
return SVN_NO_ERROR;
}
return deserializer(item, buffer, size, result_pool);
}
/* Look for the cache entry in group GROUP_INDEX of CACHE, identified
* by the hash value TO_FIND. If no item has been stored for KEY, *FOUND
* will be FALSE and TRUE otherwise.
*/
static svn_error_t *
membuffer_cache_has_key_internal(svn_membuffer_t *cache,
apr_uint32_t group_index,
const full_key_t *to_find,
svn_boolean_t *found)
{
entry_t *entry = find_entry(cache, group_index, to_find, FALSE);
if (entry)
{
/* This often be called by "block read" when most data is already
in L2 and only a few previously evicted items are added to L1
again. While items in L1 are well protected for a while, L2
items may get evicted soon. Thus, mark all them as "hit" to give
them a higher chance of survival. */
increment_hit_counters(cache, entry);
*found = TRUE;
}
else
{
*found = FALSE;
}
return SVN_NO_ERROR;
}
/* Look for an entry identified by KEY. If no item has been stored
* for KEY, *FOUND will be set to FALSE and TRUE otherwise.
*/
/* Implements svn_cache__has_key for membuffer caches.
*/
static svn_error_t *
membuffer_cache_has_key(svn_membuffer_t *cache,
const full_key_t *key,
svn_boolean_t *found)
{
/* find the entry group that will hold the key.
*/
apr_uint32_t group_index = get_group_index(&cache, &key->entry_key);
cache->total_reads++;
WITH_READ_LOCK(cache,
membuffer_cache_has_key_internal(cache,
group_index,
key,
found));
return SVN_NO_ERROR;
}
/* Look for the cache entry in group GROUP_INDEX of CACHE, identified
* by the hash value TO_FIND. FOUND indicates whether that entry exists.
* If not found, *ITEM will be NULL.
*
* Otherwise, the DESERIALIZER is called with that entry and the BATON
* provided and will extract the desired information. The result is set
* in *ITEM. Allocations will be done in POOL.
*
* Note: This function requires the caller to serialization access.
* Don't call it directly, call membuffer_cache_get_partial instead.
*/
static svn_error_t *
membuffer_cache_get_partial_internal(svn_membuffer_t *cache,
apr_uint32_t group_index,
const full_key_t *to_find,
void **item,
svn_boolean_t *found,
svn_cache__partial_getter_func_t deserializer,
void *baton,
DEBUG_CACHE_MEMBUFFER_TAG_ARG
apr_pool_t *result_pool)
{
entry_t *entry = find_entry(cache, group_index, to_find, FALSE);
cache->total_reads++;
if (entry == NULL)
{
*item = NULL;
*found = FALSE;
return SVN_NO_ERROR;
}
else
{
const void *item_data = cache->data + entry->offset + entry->key.key_len;
apr_size_t item_size = entry->size - entry->key.key_len;
*found = TRUE;
increment_hit_counters(cache, entry);
#ifdef SVN_DEBUG_CACHE_MEMBUFFER
/* Check for overlapping entries.
*/
SVN_ERR_ASSERT(entry->next == NO_INDEX ||
entry->offset + entry->size
<= get_entry(cache, entry->next)->offset);
/* Compare original content, type and key (hashes)
*/
SVN_ERR(store_content_part(tag, item_data, item_size, result_pool));
SVN_ERR(assert_equal_tags(&entry->tag, tag));
#endif
return deserializer(item, item_data, item_size, baton, result_pool);
}
}
/* Look for the cache entry identified by KEY. FOUND indicates
* whether that entry exists. If not found, *ITEM will be NULL. Otherwise,
* the DESERIALIZER is called with that entry and the BATON provided
* and will extract the desired information. The result is set in *ITEM.
* Allocations will be done in POOL.
*/
static svn_error_t *
membuffer_cache_get_partial(svn_membuffer_t *cache,
const full_key_t *key,
void **item,
svn_boolean_t *found,
svn_cache__partial_getter_func_t deserializer,
void *baton,
DEBUG_CACHE_MEMBUFFER_TAG_ARG
apr_pool_t *result_pool)
{
apr_uint32_t group_index = get_group_index(&cache, &key->entry_key);
WITH_READ_LOCK(cache,
membuffer_cache_get_partial_internal
(cache, group_index, key, item, found,
deserializer, baton, DEBUG_CACHE_MEMBUFFER_TAG
result_pool));
return SVN_NO_ERROR;
}
/* Look for the cache entry in group GROUP_INDEX of CACHE, identified
* by the hash value TO_FIND. If no entry has been found, the function
* returns without modifying the cache.
*
* Otherwise, FUNC is called with that entry and the BATON provided
* and may modify the cache entry. Allocations will be done in POOL.
*
* Note: This function requires the caller to serialization access.
* Don't call it directly, call membuffer_cache_set_partial instead.
*/
static svn_error_t *
membuffer_cache_set_partial_internal(svn_membuffer_t *cache,
apr_uint32_t group_index,
const full_key_t *to_find,
svn_cache__partial_setter_func_t func,
void *baton,
DEBUG_CACHE_MEMBUFFER_TAG_ARG
apr_pool_t *scratch_pool)
{
/* cache item lookup
*/
entry_t *entry = find_entry(cache, group_index, to_find, FALSE);
cache->total_reads++;
/* this function is a no-op if the item is not in cache
*/
if (entry != NULL)
{
svn_error_t *err;
/* access the serialized cache item */
apr_size_t key_len = entry->key.key_len;
void *item_data = cache->data + entry->offset + key_len;
void *orig_data = item_data;
apr_size_t item_size = entry->size - key_len;
increment_hit_counters(cache, entry);
cache->total_writes++;
#ifdef SVN_DEBUG_CACHE_MEMBUFFER
/* Check for overlapping entries.
*/
SVN_ERR_ASSERT(entry->next == NO_INDEX ||
entry->offset + entry->size
<= get_entry(cache, entry->next)->offset);
/* Compare original content, type and key (hashes)
*/
SVN_ERR(store_content_part(tag, item_data, item_size, scratch_pool));
SVN_ERR(assert_equal_tags(&entry->tag, tag));
#endif
/* modify it, preferably in-situ.
*/
err = func(&item_data, &item_size, baton, scratch_pool);
if (err)
{
/* Something somewhere when wrong while FUNC was modifying the
* changed item. Thus, it might have become invalid /corrupted.
* We better drop that.
*/
drop_entry(cache, entry);
return err;
}
else
{
/* if the modification caused a re-allocation, we need to remove
* the old entry and to copy the new data back into cache.
*/
if (item_data != orig_data)
{
/* Remove the old entry and try to make space for the new one.
*/
drop_entry(cache, entry);
if ( (cache->max_entry_size >= item_size + key_len)
&& ensure_data_insertable_l1(cache, item_size + key_len))
{
/* Write the new entry.
*/
entry = find_entry(cache, group_index, to_find, TRUE);
entry->size = item_size + key_len;
entry->offset = cache->l1.current_data;
if (key_len)
memcpy(cache->data + entry->offset,
to_find->full_key.data, key_len);
if (item_size)
memcpy(cache->data + entry->offset + key_len, item_data,
item_size);
/* Link the entry properly.
*/
insert_entry(cache, entry);
}
}
#ifdef SVN_DEBUG_CACHE_MEMBUFFER
/* Remember original content, type and key (hashes)
*/
SVN_ERR(store_content_part(tag, item_data, item_size, scratch_pool));
memcpy(&entry->tag, tag, sizeof(*tag));
#endif
}
}
return SVN_NO_ERROR;
}
/* Look for the cache entry identified by KEY. If no entry
* has been found, the function returns without modifying the cache.
* Otherwise, FUNC is called with that entry and the BATON provided
* and may modify the cache entry. Allocations will be done in POOL.
*/
static svn_error_t *
membuffer_cache_set_partial(svn_membuffer_t *cache,
const full_key_t *key,
svn_cache__partial_setter_func_t func,
void *baton,
DEBUG_CACHE_MEMBUFFER_TAG_ARG
apr_pool_t *scratch_pool)
{
/* cache item lookup
*/
apr_uint32_t group_index = get_group_index(&cache, &key->entry_key);
WITH_WRITE_LOCK(cache,
membuffer_cache_set_partial_internal
(cache, group_index, key, func, baton,
DEBUG_CACHE_MEMBUFFER_TAG
scratch_pool));
/* done here -> unlock the cache
*/
return SVN_NO_ERROR;
}
/* Implement the svn_cache__t interface on top of a shared membuffer cache.
*
* Because membuffer caches tend to be very large, there will be rather few
* of them (usually only one). Thus, the same instance shall be used as the
* backend to many application-visible svn_cache__t instances. This should
* also achieve global resource usage fairness.
*
* To accommodate items from multiple resources, the individual keys must be
* unique over all sources. This is achieved by simply adding a prefix key
* that unambiguously identifies the item's context (e.g. path to the
* respective repository). The prefix will be set upon construction of the
* svn_cache__t instance.
*/
/* Internal cache structure (used in svn_cache__t.cache_internal) basically
* holding the additional parameters needed to call the respective membuffer
* functions.
*/
typedef struct svn_membuffer_cache_t
{
/* this is where all our data will end up in
*/
svn_membuffer_t *membuffer;
/* use this conversion function when inserting an item into the memcache
*/
svn_cache__serialize_func_t serializer;
/* use this conversion function when reading an item from the memcache
*/
svn_cache__deserialize_func_t deserializer;
/* Prepend this byte sequence to any key passed to us.
* This makes our keys different from all keys used by svn_membuffer_cache_t
* instances that we don't want to share cached data with.
*/
full_key_t prefix;
/* length of the keys that will be passed to us through the
* svn_cache_t interface. May be APR_HASH_KEY_STRING.
*/
apr_ssize_t key_len;
/* priority class for all items written through this interface */
apr_uint32_t priority;
/* Temporary buffer containing the hash key for the current access
*/
full_key_t combined_key;
/* if enabled, this will serialize the access to this instance.
*/
svn_mutex__t *mutex;
} svn_membuffer_cache_t;
/* After an estimated ALLOCATIONS_PER_POOL_CLEAR allocations, we should
* clear the svn_membuffer_cache_t.pool to keep memory consumption in check.
*/
#define ALLOCATIONS_PER_POOL_CLEAR 10
/* Basically calculate a hash value for KEY of length KEY_LEN, combine it
* with the CACHE->PREFIX and write the result in CACHE->COMBINED_KEY.
* This could replace combine_key() entirely but we actually use it only
* when the quick path failed.
*/
static void
combine_long_key(svn_membuffer_cache_t *cache,
const void *key,
apr_ssize_t key_len)
{
apr_uint32_t *digest_buffer;
char *key_copy;
apr_size_t prefix_len = cache->prefix.entry_key.key_len;
apr_size_t aligned_key_len;
/* handle variable-length keys */
if (key_len == APR_HASH_KEY_STRING)
key_len = strlen((const char *) key);
aligned_key_len = ALIGN_VALUE(key_len);
/* Combine keys. */
svn_membuf__ensure(&cache->combined_key.full_key,
aligned_key_len + prefix_len);
key_copy = (char *)cache->combined_key.full_key.data + prefix_len;
cache->combined_key.entry_key.key_len = aligned_key_len + prefix_len;
memcpy(key_copy, key, key_len);
memset(key_copy + key_len, 0, aligned_key_len - key_len);
/* Hash key into 16 bytes. */
digest_buffer = (apr_uint32_t *)cache->combined_key.entry_key.fingerprint;
svn__fnv1a_32x4_raw(digest_buffer, key, key_len);
/* Combine with prefix. */
cache->combined_key.entry_key.fingerprint[0]
^= cache->prefix.entry_key.fingerprint[0];
cache->combined_key.entry_key.fingerprint[1]
^= cache->prefix.entry_key.fingerprint[1];
}
/* Basically calculate a hash value for KEY of length KEY_LEN, combine it
* with the CACHE->PREFIX and write the result in CACHE->COMBINED_KEY.
*/
static void
combine_key(svn_membuffer_cache_t *cache,
const void *key,
apr_ssize_t key_len)
{
/* short, fixed-size keys are the most common case */
if (key_len != APR_HASH_KEY_STRING && key_len <= 16)
{
const apr_size_t prefix_len = cache->prefix.entry_key.key_len;
/* Copy of *key, padded with 0.
* We put it just behind the prefix already copied into the COMBINED_KEY.
* The buffer space has been allocated when the cache was created. */
apr_uint64_t *data = (void *)((char *)cache->combined_key.full_key.data +
prefix_len);
assert(prefix_len <= cache->combined_key.full_key.size - 16);
cache->combined_key.entry_key.key_len = prefix_len + 16;
data[0] = 0;
data[1] = 0;
memcpy(data, key, key_len);
/* scramble key DATA. All of this must be reversible to prevent key
* collisions. So, we limit ourselves to xor and permutations. */
data[1] = (data[1] << 27) | (data[1] >> 37);
data[1] ^= data[0] & 0xffff;
data[0] ^= data[1] & APR_UINT64_C(0xffffffffffff0000);
/* combine with this cache's namespace */
cache->combined_key.entry_key.fingerprint[0]
= data[0] ^ cache->prefix.entry_key.fingerprint[0];
cache->combined_key.entry_key.fingerprint[1]
= data[1] ^ cache->prefix.entry_key.fingerprint[1];
}
else
{
/* longer or variably sized keys */
combine_long_key(cache, key, key_len);
}
}
/* Implement svn_cache__vtable_t.get (not thread-safe)
*/
static svn_error_t *
svn_membuffer_cache_get(void **value_p,
svn_boolean_t *found,
void *cache_void,
const void *key,
apr_pool_t *result_pool)
{
svn_membuffer_cache_t *cache = cache_void;
DEBUG_CACHE_MEMBUFFER_INIT_TAG(result_pool)
/* special case */
if (key == NULL)
{
*value_p = NULL;
*found = FALSE;
return SVN_NO_ERROR;
}
/* construct the full, i.e. globally unique, key by adding
* this cache instances' prefix
*/
combine_key(cache, key, cache->key_len);
/* Look the item up. */
SVN_ERR(membuffer_cache_get(cache->membuffer,
&cache->combined_key,
value_p,
cache->deserializer,
DEBUG_CACHE_MEMBUFFER_TAG
result_pool));
/* return result */
*found = *value_p != NULL;
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.has_key (not thread-safe)
*/
static svn_error_t *
svn_membuffer_cache_has_key(svn_boolean_t *found,
void *cache_void,
const void *key,
apr_pool_t *scratch_pool)
{
svn_membuffer_cache_t *cache = cache_void;
/* special case */
if (key == NULL)
{
*found = FALSE;
return SVN_NO_ERROR;
}
/* construct the full, i.e. globally unique, key by adding
* this cache instances' prefix
*/
combine_key(cache, key, cache->key_len);
/* Look the item up. */
SVN_ERR(membuffer_cache_has_key(cache->membuffer,
&cache->combined_key,
found));
/* return result */
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.set (not thread-safe)
*/
static svn_error_t *
svn_membuffer_cache_set(void *cache_void,
const void *key,
void *value,
apr_pool_t *scratch_pool)
{
svn_membuffer_cache_t *cache = cache_void;
DEBUG_CACHE_MEMBUFFER_INIT_TAG(scratch_pool)
/* special case */
if (key == NULL)
return SVN_NO_ERROR;
/* construct the full, i.e. globally unique, key by adding
* this cache instances' prefix
*/
combine_key(cache, key, cache->key_len);
/* (probably) add the item to the cache. But there is no real guarantee
* that the item will actually be cached afterwards.
*/
return membuffer_cache_set(cache->membuffer,
&cache->combined_key,
value,
cache->serializer,
cache->priority,
DEBUG_CACHE_MEMBUFFER_TAG
scratch_pool);
}
/* Implement svn_cache__vtable_t.iter as "not implemented"
*/
static svn_error_t *
svn_membuffer_cache_iter(svn_boolean_t *completed,
void *cache_void,
svn_iter_apr_hash_cb_t user_cb,
void *user_baton,
apr_pool_t *scratch_pool)
{
return svn_error_create(SVN_ERR_UNSUPPORTED_FEATURE, NULL,
_("Can't iterate a membuffer-based cache"));
}
/* Implement svn_cache__vtable_t.get_partial (not thread-safe)
*/
static svn_error_t *
svn_membuffer_cache_get_partial(void **value_p,
svn_boolean_t *found,
void *cache_void,
const void *key,
svn_cache__partial_getter_func_t func,
void *baton,
apr_pool_t *result_pool)
{
svn_membuffer_cache_t *cache = cache_void;
DEBUG_CACHE_MEMBUFFER_INIT_TAG(result_pool)
if (key == NULL)
{
*value_p = NULL;
*found = FALSE;
return SVN_NO_ERROR;
}
combine_key(cache, key, cache->key_len);
SVN_ERR(membuffer_cache_get_partial(cache->membuffer,
&cache->combined_key,
value_p,
found,
func,
baton,
DEBUG_CACHE_MEMBUFFER_TAG
result_pool));
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.set_partial (not thread-safe)
*/
static svn_error_t *
svn_membuffer_cache_set_partial(void *cache_void,
const void *key,
svn_cache__partial_setter_func_t func,
void *baton,
apr_pool_t *scratch_pool)
{
svn_membuffer_cache_t *cache = cache_void;
DEBUG_CACHE_MEMBUFFER_INIT_TAG(scratch_pool)
if (key != NULL)
{
combine_key(cache, key, cache->key_len);
SVN_ERR(membuffer_cache_set_partial(cache->membuffer,
&cache->combined_key,
func,
baton,
DEBUG_CACHE_MEMBUFFER_TAG
scratch_pool));
}
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.is_cachable
* (thread-safe even without mutex)
*/
static svn_boolean_t
svn_membuffer_cache_is_cachable(void *cache_void, apr_size_t size)
{
/* Don't allow extremely large element sizes. Otherwise, the cache
* might by thrashed by a few extremely large entries. And the size
* must be small enough to be stored in a 32 bit value.
*/
svn_membuffer_cache_t *cache = cache_void;
return cache->priority > SVN_CACHE__MEMBUFFER_DEFAULT_PRIORITY
? cache->membuffer->l2.size >= size && MAX_ITEM_SIZE >= size
: size <= cache->membuffer->max_entry_size;
}
/* Add statistics of SEGMENT to INFO. If INCLUDE_HISTOGRAM is TRUE,
* accumulate index bucket fill levels in INFO->HISTOGRAM.
*/
static svn_error_t *
svn_membuffer_get_segment_info(svn_membuffer_t *segment,
svn_cache__info_t *info,
svn_boolean_t include_histogram)
{
apr_uint32_t i;
info->data_size += segment->l1.size + segment->l2.size;
info->used_size += segment->data_used;
info->total_size += segment->l1.size + segment->l2.size +
segment->group_count * GROUP_SIZE * sizeof(entry_t);
info->used_entries += segment->used_entries;
info->total_entries += segment->group_count * GROUP_SIZE;
if (include_histogram)
for (i = 0; i < segment->group_count; ++i)
if (is_group_initialized(segment, i))
{
entry_group_t *chain_end
= last_group_in_chain(segment, &segment->directory[i]);
apr_size_t use
= MIN(chain_end->header.used,
sizeof(info->histogram) / sizeof(info->histogram[0]) - 1);
info->histogram[use]++;
}
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.get_info
* (thread-safe even without mutex)
*/
static svn_error_t *
svn_membuffer_cache_get_info(void *cache_void,
svn_cache__info_t *info,
svn_boolean_t reset,
apr_pool_t *result_pool)
{
svn_membuffer_cache_t *cache = cache_void;
apr_uint32_t i;
/* cache front-end specific data */
info->id = apr_pstrdup(result_pool, cache->prefix.full_key.data);
/* collect info from shared cache back-end */
for (i = 0; i < cache->membuffer->segment_count; ++i)
{
svn_membuffer_t *segment = cache->membuffer + i;
WITH_READ_LOCK(segment,
svn_membuffer_get_segment_info(segment, info, FALSE));
}
return SVN_NO_ERROR;
}
/* the v-table for membuffer-based caches (single-threaded access)
*/
static svn_cache__vtable_t membuffer_cache_vtable = {
svn_membuffer_cache_get,
svn_membuffer_cache_has_key,
svn_membuffer_cache_set,
svn_membuffer_cache_iter,
svn_membuffer_cache_is_cachable,
svn_membuffer_cache_get_partial,
svn_membuffer_cache_set_partial,
svn_membuffer_cache_get_info
};
/* Implement svn_cache__vtable_t.get and serialize all cache access.
*/
static svn_error_t *
svn_membuffer_cache_get_synced(void **value_p,
svn_boolean_t *found,
void *cache_void,
const void *key,
apr_pool_t *result_pool)
{
svn_membuffer_cache_t *cache = cache_void;
SVN_MUTEX__WITH_LOCK(cache->mutex,
svn_membuffer_cache_get(value_p,
found,
cache_void,
key,
result_pool));
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.has_key and serialize all cache access.
*/
static svn_error_t *
svn_membuffer_cache_has_key_synced(svn_boolean_t *found,
void *cache_void,
const void *key,
apr_pool_t *result_pool)
{
svn_membuffer_cache_t *cache = cache_void;
SVN_MUTEX__WITH_LOCK(cache->mutex,
svn_membuffer_cache_has_key(found,
cache_void,
key,
result_pool));
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.set and serialize all cache access.
*/
static svn_error_t *
svn_membuffer_cache_set_synced(void *cache_void,
const void *key,
void *value,
apr_pool_t *scratch_pool)
{
svn_membuffer_cache_t *cache = cache_void;
SVN_MUTEX__WITH_LOCK(cache->mutex,
svn_membuffer_cache_set(cache_void,
key,
value,
scratch_pool));
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.get_partial and serialize all cache access.
*/
static svn_error_t *
svn_membuffer_cache_get_partial_synced(void **value_p,
svn_boolean_t *found,
void *cache_void,
const void *key,
svn_cache__partial_getter_func_t func,
void *baton,
apr_pool_t *result_pool)
{
svn_membuffer_cache_t *cache = cache_void;
SVN_MUTEX__WITH_LOCK(cache->mutex,
svn_membuffer_cache_get_partial(value_p,
found,
cache_void,
key,
func,
baton,
result_pool));
return SVN_NO_ERROR;
}
/* Implement svn_cache__vtable_t.set_partial and serialize all cache access.
*/
static svn_error_t *
svn_membuffer_cache_set_partial_synced(void *cache_void,
const void *key,
svn_cache__partial_setter_func_t func,
void *baton,
apr_pool_t *scratch_pool)
{
svn_membuffer_cache_t *cache = cache_void;
SVN_MUTEX__WITH_LOCK(cache->mutex,
svn_membuffer_cache_set_partial(cache_void,
key,
func,
baton,
scratch_pool));
return SVN_NO_ERROR;
}
/* the v-table for membuffer-based caches with multi-threading support)
*/
static svn_cache__vtable_t membuffer_cache_synced_vtable = {
svn_membuffer_cache_get_synced,
svn_membuffer_cache_has_key_synced,
svn_membuffer_cache_set_synced,
svn_membuffer_cache_iter, /* no sync required */
svn_membuffer_cache_is_cachable, /* no sync required */
svn_membuffer_cache_get_partial_synced,
svn_membuffer_cache_set_partial_synced,
svn_membuffer_cache_get_info /* no sync required */
};
/* standard serialization function for svn_stringbuf_t items.
* Implements svn_cache__serialize_func_t.
*/
static svn_error_t *
serialize_svn_stringbuf(void **buffer,
apr_size_t *buffer_size,
void *item,
apr_pool_t *result_pool)
{
svn_stringbuf_t *value_str = item;
*buffer = value_str->data;
*buffer_size = value_str->len + 1;
return SVN_NO_ERROR;
}
/* standard de-serialization function for svn_stringbuf_t items.
* Implements svn_cache__deserialize_func_t.
*/
static svn_error_t *
deserialize_svn_stringbuf(void **item,
void *buffer,
apr_size_t buffer_size,
apr_pool_t *result_pool)
{
svn_stringbuf_t *value_str = apr_palloc(result_pool, sizeof(svn_stringbuf_t));
value_str->pool = result_pool;
value_str->blocksize = buffer_size;
value_str->data = buffer;
value_str->len = buffer_size-1;
*item = value_str;
return SVN_NO_ERROR;
}
/* Construct a svn_cache__t object on top of a shared memcache.
*/
svn_error_t *
svn_cache__create_membuffer_cache(svn_cache__t **cache_p,
svn_membuffer_t *membuffer,
svn_cache__serialize_func_t serializer,
svn_cache__deserialize_func_t deserializer,
apr_ssize_t klen,
const char *prefix,
apr_uint32_t priority,
svn_boolean_t thread_safe,
apr_pool_t *result_pool,
apr_pool_t *scratch_pool)
{
svn_checksum_t *checksum;
apr_size_t prefix_len, prefix_orig_len;
/* allocate the cache header structures
*/
svn_cache__t *wrapper = apr_pcalloc(result_pool, sizeof(*wrapper));
svn_membuffer_cache_t *cache = apr_pcalloc(result_pool, sizeof(*cache));
/* initialize our internal cache header
*/
cache->membuffer = membuffer;
cache->serializer = serializer
? serializer
: serialize_svn_stringbuf;
cache->deserializer = deserializer
? deserializer
: deserialize_svn_stringbuf;
cache->priority = priority;
cache->key_len = klen;
SVN_ERR(svn_mutex__init(&cache->mutex, thread_safe, result_pool));
/* Copy the prefix into the prefix full key. Align it to ITEM_ALIGMENT.
* Don't forget to include the terminating NUL. */
prefix_orig_len = strlen(prefix) + 1;
prefix_len = ALIGN_VALUE(prefix_orig_len);
svn_membuf__create(&cache->prefix.full_key, prefix_len, result_pool);
memcpy((char *)cache->prefix.full_key.data, prefix, prefix_orig_len);
memset((char *)cache->prefix.full_key.data + prefix_orig_len, 0,
prefix_len - prefix_orig_len);
/* Construct the folded prefix key. */
SVN_ERR(svn_checksum(&checksum,
svn_checksum_md5,
prefix,
strlen(prefix),
scratch_pool));
memcpy(cache->prefix.entry_key.fingerprint, checksum->digest,
sizeof(cache->prefix.entry_key.fingerprint));
cache->prefix.entry_key.key_len = prefix_len;
/* Initialize the combined key. Pre-allocate some extra room in the full
* key such that we probably don't need to re-alloc. */
cache->combined_key.entry_key = cache->prefix.entry_key;
svn_membuf__create(&cache->combined_key.full_key, prefix_len + 200,
result_pool);
memcpy(cache->combined_key.full_key.data, cache->prefix.full_key.data,
prefix_len);
/* initialize the generic cache wrapper
*/
wrapper->vtable = thread_safe ? &membuffer_cache_synced_vtable
: &membuffer_cache_vtable;
wrapper->cache_internal = cache;
wrapper->error_handler = 0;
wrapper->error_baton = 0;
wrapper->pretend_empty = !!getenv("SVN_X_DOES_NOT_MARK_THE_SPOT");
*cache_p = wrapper;
return SVN_NO_ERROR;
}
static svn_error_t *
svn_membuffer_get_global_segment_info(svn_membuffer_t *segment,
svn_cache__info_t *info)
{
info->gets += segment->total_reads;
info->sets += segment->total_writes;
info->hits += segment->total_hits;
WITH_READ_LOCK(segment,
svn_membuffer_get_segment_info(segment, info, TRUE));
return SVN_NO_ERROR;
}
svn_cache__info_t *
svn_cache__membuffer_get_global_info(apr_pool_t *pool)
{
apr_uint32_t i;
svn_membuffer_t *membuffer = svn_cache__get_global_membuffer_cache();
svn_cache__info_t *info = apr_pcalloc(pool, sizeof(*info));
/* cache front-end specific data */
info->id = "membuffer globals";
/* collect info from shared cache back-end */
for (i = 0; i < membuffer->segment_count; ++i)
svn_error_clear(svn_membuffer_get_global_segment_info(membuffer + i,
info));
return info;
}
|