/* ------------------------------------------------------------------------- * Special user directives * ------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------- */ /* shadow code */ #define %shadow %insert("shadow") #define %pythoncode %insert("python") #define %pythonbegin %insert("pythonbegin") /* ------------------------------------------------------------------------- */ /* Use the "nondynamic" feature to make a wrapped class behave as a "nondynamic" one, ie, a python class that doesn't dynamically add new attributes. For example, for the class %pythonnondynamic A; struct A { int a; int b; }; you will get: aa = A() aa.a = 1 # Ok aa.b = 1 # Ok aa.c = 3 # error Since nondynamic is a feature, if you use it like %pythonnondynamic; it will make all the wrapped classes nondynamic ones. The implementation is based on this recipe: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/252158 */ #define %pythonnondynamic %feature("python:nondynamic", "1") #define %nopythonnondynamic %feature("python:nondynamic", "0") #define %clearpythonnondynamic %feature("python:nondynamic", "") #define %pythondynamic %nopythonnondynamic /* ------------------------------------------------------------------------- */ /* Use %pythonmaybecall to flag a method like __add__ or __radd__. These don't produce an error when called, they just return NotImplemented. These methods "may be called" if needed. */ #define %pythonmaybecall %feature("python:maybecall", "1") #define %nopythonmaybecall %feature("python:maybecall", "0") #define %clearpythonmaybecall %feature("python:maybecall", "") /* ------------------------------------------------------------------------- */ /* The %pythoncallback feature produce a more natural callback wrapper than the %callback mechanism, ie, it uses the original name for the callback and callable objects. Just use it as %pythoncallback(1) foo; int foo(int a); %pythoncallback(1) A::foo; struct A { static int foo(int a); }; int bar(int, int (*pf)(int)); then, you can use it as: a = foo(1) b = bar(2, foo) c = A.foo(3) d = bar(4, A.foo) If you use it with a member method %pythoncallback(1) A::foom; struct A { int foom(int a); }; then you can use it as r = a.foom(3) # eval the method mptr = A.foom_cb_ptr # returns the callback pointer where the '_cb_ptr' suffix is added for the callback pointer. */ #define %pythoncallback %feature("python:callback") #define %nopythoncallback %feature("python:callback","0") #define %clearpythoncallback %feature("python:callback","") /* ------------------------------------------------------------------------- */ /* Support for the old %callback directive name */ #ifdef %callback #undef %callback #endif #ifdef %nocallback #undef %nocallback #endif #ifdef %clearcallback #undef %clearcallback #endif #define %callback(x) %feature("python:callback",`x`) #define %nocallback %nopythoncallback #define %clearcallback %clearpythoncallback /* ------------------------------------------------------------------------- */ /* Thread support - Advance control */ #define %nothread %feature("nothread") #define %thread %feature("nothread","0") #define %clearnothread %feature("nothread","") #define %nothreadblock %feature("nothreadblock") #define %threadblock %feature("nothreadblock","0") #define %clearnothreadblock %feature("nothreadblock","") #define %nothreadallow %feature("nothreadallow") #define %threadallow %feature("nothreadallow","0") #define %clearnothreadallow %feature("nothreadallow","") /* ------------------------------------------------------------------------- */ /* Implicit Conversion using the C++ constructor mechanism */ #define %implicitconv %feature("implicitconv") #define %noimplicitconv %feature("implicitconv", "0") #define %clearimplicitconv %feature("implicitconv", "") /* ------------------------------------------------------------------------- */ /* Enable keywords parameters */ #define %kwargs %feature("kwargs") #define %nokwargs %feature("kwargs", "0") #define %clearkwargs %feature("kwargs", "") /* ------------------------------------------------------------------------- */ /* Add python code to the proxy/shadow code %pythonprepend - Add code before the C++ function is called %pythonappend - Add code after the C++ function is called */ #define %pythonprepend %feature("pythonprepend") #define %clearpythonprepend %feature("pythonprepend","") #define %pythonappend %feature("pythonappend") #define %clearpythonappend %feature("pythonappend","") /* ------------------------------------------------------------------------- */ /* %extend_smart_pointer extend the smart pointer support. For example, if you have a smart pointer as: template class RCPtr { public: ... RCPtr(Type *p); Type * operator->() const; ... }; you use the %extend_smart_pointer directive as: %extend_smart_pointer(RCPtr); %template(RCPtr_A) RCPtr; then, if you have something like: RCPtr make_ptr(); int foo(A *); you can do the following: a = make_ptr(); b = foo(a); ie, swig will accept a RCPtr object where a 'A *' is expected. Also, when using vectors %extend_smart_pointer(RCPtr); %template(RCPtr_A) RCPtr; %template(vector_A) std::vector >; you can type a = A(); v = vector_A(2) v[0] = a ie, an 'A *' object is accepted, via implicit conversion, where a RCPtr object is expected. Additionally x = v[0] returns (and sets 'x' as) a copy of v[0], making reference counting possible and consistent. */ %define %extend_smart_pointer(Type...) %implicitconv Type; %apply const SWIGTYPE& SMARTPOINTER { const Type& }; %apply SWIGTYPE SMARTPOINTER { Type }; %enddef