/* SPDX-License-Identifier: LGPL-2.1-or-later */ #include #include "af-list.h" #include "alloc-util.h" #include "bpf-firewall.h" #include "bpf-foreign.h" #include "bus-get-properties.h" #include "cgroup-util.h" #include "cgroup.h" #include "core-varlink.h" #include "dbus-cgroup.h" #include "dbus-util.h" #include "errno-util.h" #include "fd-util.h" #include "fileio.h" #include "firewall-util.h" #include "in-addr-prefix-util.h" #include "ip-protocol-list.h" #include "limits-util.h" #include "parse-util.h" #include "path-util.h" #include "percent-util.h" #include "socket-util.h" BUS_DEFINE_PROPERTY_GET(bus_property_get_tasks_max, "t", TasksMax, tasks_max_resolve); static BUS_DEFINE_PROPERTY_GET_ENUM(property_get_cgroup_device_policy, cgroup_device_policy, CGroupDevicePolicy); static BUS_DEFINE_PROPERTY_GET_ENUM(property_get_managed_oom_mode, managed_oom_mode, ManagedOOMMode); static BUS_DEFINE_PROPERTY_GET_ENUM(property_get_managed_oom_preference, managed_oom_preference, ManagedOOMPreference); static int property_get_cgroup_mask( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupMask *mask = userdata; int r; assert(bus); assert(reply); r = sd_bus_message_open_container(reply, 'a', "s"); if (r < 0) return r; for (CGroupController ctrl = 0; ctrl < _CGROUP_CONTROLLER_MAX; ctrl++) { if ((*mask & CGROUP_CONTROLLER_TO_MASK(ctrl)) == 0) continue; r = sd_bus_message_append(reply, "s", cgroup_controller_to_string(ctrl)); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_delegate_controllers( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupContext *c = userdata; assert(bus); assert(reply); assert(c); if (!c->delegate) return sd_bus_message_append(reply, "as", 0); return property_get_cgroup_mask(bus, path, interface, property, reply, &c->delegate_controllers, error); } static int property_get_cpuset( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CPUSet *cpus = userdata; _cleanup_free_ uint8_t *array = NULL; size_t allocated; assert(bus); assert(reply); assert(cpus); (void) cpu_set_to_dbus(cpus, &array, &allocated); return sd_bus_message_append_array(reply, 'y', array, allocated); } static int property_get_io_device_weight( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupContext *c = userdata; int r; assert(bus); assert(reply); assert(c); r = sd_bus_message_open_container(reply, 'a', "(st)"); if (r < 0) return r; LIST_FOREACH(device_weights, w, c->io_device_weights) { r = sd_bus_message_append(reply, "(st)", w->path, w->weight); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_io_device_limits( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupContext *c = userdata; int r; assert(bus); assert(reply); assert(c); r = sd_bus_message_open_container(reply, 'a', "(st)"); if (r < 0) return r; LIST_FOREACH(device_limits, l, c->io_device_limits) { CGroupIOLimitType type; type = cgroup_io_limit_type_from_string(property); if (type < 0 || l->limits[type] == cgroup_io_limit_defaults[type]) continue; r = sd_bus_message_append(reply, "(st)", l->path, l->limits[type]); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_io_device_latency( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupContext *c = userdata; int r; assert(bus); assert(reply); assert(c); r = sd_bus_message_open_container(reply, 'a', "(st)"); if (r < 0) return r; LIST_FOREACH(device_latencies, l, c->io_device_latencies) { r = sd_bus_message_append(reply, "(st)", l->path, l->target_usec); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_blockio_device_weight( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupContext *c = userdata; int r; assert(bus); assert(reply); assert(c); r = sd_bus_message_open_container(reply, 'a', "(st)"); if (r < 0) return r; LIST_FOREACH(device_weights, w, c->blockio_device_weights) { r = sd_bus_message_append(reply, "(st)", w->path, w->weight); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_blockio_device_bandwidths( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupContext *c = userdata; int r; assert(bus); assert(reply); assert(c); r = sd_bus_message_open_container(reply, 'a', "(st)"); if (r < 0) return r; LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) { uint64_t v; if (streq(property, "BlockIOReadBandwidth")) v = b->rbps; else v = b->wbps; if (v == CGROUP_LIMIT_MAX) continue; r = sd_bus_message_append(reply, "(st)", b->path, v); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_device_allow( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupContext *c = userdata; int r; assert(bus); assert(reply); assert(c); r = sd_bus_message_open_container(reply, 'a', "(ss)"); if (r < 0) return r; LIST_FOREACH(device_allow, a, c->device_allow) { unsigned k = 0; char rwm[4]; if (a->r) rwm[k++] = 'r'; if (a->w) rwm[k++] = 'w'; if (a->m) rwm[k++] = 'm'; rwm[k] = 0; r = sd_bus_message_append(reply, "(ss)", a->path, rwm); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_ip_address_access( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { Set **prefixes = userdata; struct in_addr_prefix *i; int r; assert(prefixes); r = sd_bus_message_open_container(reply, 'a', "(iayu)"); if (r < 0) return r; SET_FOREACH(i, *prefixes) { r = sd_bus_message_open_container(reply, 'r', "iayu"); if (r < 0) return r; r = sd_bus_message_append(reply, "i", i->family); if (r < 0) return r; r = sd_bus_message_append_array(reply, 'y', &i->address, FAMILY_ADDRESS_SIZE(i->family)); if (r < 0) return r; r = sd_bus_message_append(reply, "u", (uint32_t) i->prefixlen); if (r < 0) return r; r = sd_bus_message_close_container(reply); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_bpf_foreign_program( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupContext *c = userdata; int r; r = sd_bus_message_open_container(reply, 'a', "(ss)"); if (r < 0) return r; LIST_FOREACH(programs, p, c->bpf_foreign_programs) { const char *attach_type = bpf_cgroup_attach_type_to_string(p->attach_type); r = sd_bus_message_append(reply, "(ss)", attach_type, p->bpffs_path); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_socket_bind( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { CGroupSocketBindItem **items = userdata; int r; assert(items); r = sd_bus_message_open_container(reply, 'a', "(iiqq)"); if (r < 0) return r; LIST_FOREACH(socket_bind_items, i, *items) { r = sd_bus_message_append(reply, "(iiqq)", i->address_family, i->ip_protocol, i->nr_ports, i->port_min); if (r < 0) return r; } return sd_bus_message_close_container(reply); } static int property_get_restrict_network_interfaces( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { int r; CGroupContext *c = userdata; char *iface; assert(bus); assert(reply); assert(c); r = sd_bus_message_open_container(reply, 'r', "bas"); if (r < 0) return r; r = sd_bus_message_append(reply, "b", c->restrict_network_interfaces_is_allow_list); if (r < 0) return r; r = sd_bus_message_open_container(reply, 'a', "s"); if (r < 0) return r; SET_FOREACH(iface, c->restrict_network_interfaces) { r = sd_bus_message_append(reply, "s", iface); if (r < 0) return r; } r = sd_bus_message_close_container(reply); if (r < 0) return r; return sd_bus_message_close_container(reply); } static int property_get_cgroup_nft_set( sd_bus *bus, const char *path, const char *interface, const char *property, sd_bus_message *reply, void *userdata, sd_bus_error *error) { int r; CGroupContext *c = userdata; assert(bus); assert(reply); assert(c); r = sd_bus_message_open_container(reply, 'a', "(iss)"); if (r < 0) return r; for (size_t i = 0; i < c->n_nft_set_contexts; i++) { NFTSetContext *s = &c->nft_set_context[i]; r = sd_bus_message_append(reply, "(iss)", s->nfproto, s->table, s->set); if (r < 0) return r; } return sd_bus_message_close_container(reply); } const sd_bus_vtable bus_cgroup_vtable[] = { SD_BUS_VTABLE_START(0), SD_BUS_PROPERTY("Delegate", "b", bus_property_get_bool, offsetof(CGroupContext, delegate), 0), SD_BUS_PROPERTY("DelegateControllers", "as", property_get_delegate_controllers, 0, 0), SD_BUS_PROPERTY("CPUAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, cpu_accounting), 0), SD_BUS_PROPERTY("CPUWeight", "t", NULL, offsetof(CGroupContext, cpu_weight), 0), SD_BUS_PROPERTY("StartupCPUWeight", "t", NULL, offsetof(CGroupContext, startup_cpu_weight), 0), SD_BUS_PROPERTY("CPUShares", "t", NULL, offsetof(CGroupContext, cpu_shares), 0), SD_BUS_PROPERTY("StartupCPUShares", "t", NULL, offsetof(CGroupContext, startup_cpu_shares), 0), SD_BUS_PROPERTY("CPUQuotaPerSecUSec", "t", bus_property_get_usec, offsetof(CGroupContext, cpu_quota_per_sec_usec), 0), SD_BUS_PROPERTY("CPUQuotaPeriodUSec", "t", bus_property_get_usec, offsetof(CGroupContext, cpu_quota_period_usec), 0), SD_BUS_PROPERTY("AllowedCPUs", "ay", property_get_cpuset, offsetof(CGroupContext, cpuset_cpus), 0), SD_BUS_PROPERTY("StartupAllowedCPUs", "ay", property_get_cpuset, offsetof(CGroupContext, startup_cpuset_cpus), 0), SD_BUS_PROPERTY("AllowedMemoryNodes", "ay", property_get_cpuset, offsetof(CGroupContext, cpuset_mems), 0), SD_BUS_PROPERTY("StartupAllowedMemoryNodes", "ay", property_get_cpuset, offsetof(CGroupContext, startup_cpuset_mems), 0), SD_BUS_PROPERTY("IOAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, io_accounting), 0), SD_BUS_PROPERTY("IOWeight", "t", NULL, offsetof(CGroupContext, io_weight), 0), SD_BUS_PROPERTY("StartupIOWeight", "t", NULL, offsetof(CGroupContext, startup_io_weight), 0), SD_BUS_PROPERTY("IODeviceWeight", "a(st)", property_get_io_device_weight, 0, 0), SD_BUS_PROPERTY("IOReadBandwidthMax", "a(st)", property_get_io_device_limits, 0, 0), SD_BUS_PROPERTY("IOWriteBandwidthMax", "a(st)", property_get_io_device_limits, 0, 0), SD_BUS_PROPERTY("IOReadIOPSMax", "a(st)", property_get_io_device_limits, 0, 0), SD_BUS_PROPERTY("IOWriteIOPSMax", "a(st)", property_get_io_device_limits, 0, 0), SD_BUS_PROPERTY("IODeviceLatencyTargetUSec", "a(st)", property_get_io_device_latency, 0, 0), SD_BUS_PROPERTY("BlockIOAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, blockio_accounting), 0), SD_BUS_PROPERTY("BlockIOWeight", "t", NULL, offsetof(CGroupContext, blockio_weight), 0), SD_BUS_PROPERTY("StartupBlockIOWeight", "t", NULL, offsetof(CGroupContext, startup_blockio_weight), 0), SD_BUS_PROPERTY("BlockIODeviceWeight", "a(st)", property_get_blockio_device_weight, 0, 0), SD_BUS_PROPERTY("BlockIOReadBandwidth", "a(st)", property_get_blockio_device_bandwidths, 0, 0), SD_BUS_PROPERTY("BlockIOWriteBandwidth", "a(st)", property_get_blockio_device_bandwidths, 0, 0), SD_BUS_PROPERTY("MemoryAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, memory_accounting), 0), SD_BUS_PROPERTY("DefaultMemoryLow", "t", NULL, offsetof(CGroupContext, default_memory_low), 0), SD_BUS_PROPERTY("DefaultMemoryMin", "t", NULL, offsetof(CGroupContext, default_memory_min), 0), SD_BUS_PROPERTY("MemoryMin", "t", NULL, offsetof(CGroupContext, memory_min), 0), SD_BUS_PROPERTY("MemoryLow", "t", NULL, offsetof(CGroupContext, memory_low), 0), SD_BUS_PROPERTY("MemoryHigh", "t", NULL, offsetof(CGroupContext, memory_high), 0), SD_BUS_PROPERTY("MemoryMax", "t", NULL, offsetof(CGroupContext, memory_max), 0), SD_BUS_PROPERTY("MemorySwapMax", "t", NULL, offsetof(CGroupContext, memory_swap_max), 0), SD_BUS_PROPERTY("MemoryLimit", "t", NULL, offsetof(CGroupContext, memory_limit), 0), SD_BUS_PROPERTY("DevicePolicy", "s", property_get_cgroup_device_policy, offsetof(CGroupContext, device_policy), 0), SD_BUS_PROPERTY("DeviceAllow", "a(ss)", property_get_device_allow, 0, 0), SD_BUS_PROPERTY("TasksAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, tasks_accounting), 0), SD_BUS_PROPERTY("TasksMax", "t", bus_property_get_tasks_max, offsetof(CGroupContext, tasks_max), 0), SD_BUS_PROPERTY("IPAccounting", "b", bus_property_get_bool, offsetof(CGroupContext, ip_accounting), 0), SD_BUS_PROPERTY("IPAddressAllow", "a(iayu)", property_get_ip_address_access, offsetof(CGroupContext, ip_address_allow), 0), SD_BUS_PROPERTY("IPAddressDeny", "a(iayu)", property_get_ip_address_access, offsetof(CGroupContext, ip_address_deny), 0), SD_BUS_PROPERTY("IPIngressFilterPath", "as", NULL, offsetof(CGroupContext, ip_filters_ingress), 0), SD_BUS_PROPERTY("IPEgressFilterPath", "as", NULL, offsetof(CGroupContext, ip_filters_egress), 0), SD_BUS_PROPERTY("DisableControllers", "as", property_get_cgroup_mask, offsetof(CGroupContext, disable_controllers), 0), SD_BUS_PROPERTY("ManagedOOMSwap", "s", property_get_managed_oom_mode, offsetof(CGroupContext, moom_swap), 0), SD_BUS_PROPERTY("ManagedOOMMemoryPressure", "s", property_get_managed_oom_mode, offsetof(CGroupContext, moom_mem_pressure), 0), SD_BUS_PROPERTY("ManagedOOMMemoryPressureLimit", "u", NULL, offsetof(CGroupContext, moom_mem_pressure_limit), 0), SD_BUS_PROPERTY("ManagedOOMPreference", "s", property_get_managed_oom_preference, offsetof(CGroupContext, moom_preference), 0), SD_BUS_PROPERTY("BPFProgram", "a(ss)", property_get_bpf_foreign_program, 0, 0), SD_BUS_PROPERTY("SocketBindAllow", "a(iiqq)", property_get_socket_bind, offsetof(CGroupContext, socket_bind_allow), 0), SD_BUS_PROPERTY("SocketBindDeny", "a(iiqq)", property_get_socket_bind, offsetof(CGroupContext, socket_bind_deny), 0), SD_BUS_PROPERTY("RestrictNetworkInterfaces", "(bas)", property_get_restrict_network_interfaces, 0, 0), SD_BUS_PROPERTY("ControlGroupNFTSet", "a(iss)", property_get_cgroup_nft_set, 0, SD_BUS_VTABLE_PROPERTY_CONST), SD_BUS_VTABLE_END }; static int bus_cgroup_set_transient_property( Unit *u, CGroupContext *c, const char *name, sd_bus_message *message, UnitWriteFlags flags, sd_bus_error *error) { int r; assert(u); assert(c); assert(name); assert(message); flags |= UNIT_PRIVATE; if (streq(name, "Delegate")) { int b; if (!UNIT_VTABLE(u)->can_delegate) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "Delegation not available for unit type"); r = sd_bus_message_read(message, "b", &b); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { c->delegate = b; c->delegate_controllers = b ? _CGROUP_MASK_ALL : 0; unit_write_settingf(u, flags, name, "Delegate=%s", yes_no(b)); } return 1; } else if (STR_IN_SET(name, "DelegateControllers", "DisableControllers")) { CGroupMask mask = 0; if (streq(name, "DelegateControllers") && !UNIT_VTABLE(u)->can_delegate) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "Delegation not available for unit type"); r = sd_bus_message_enter_container(message, 'a', "s"); if (r < 0) return r; for (;;) { CGroupController cc; const char *t; r = sd_bus_message_read(message, "s", &t); if (r < 0) return r; if (r == 0) break; cc = cgroup_controller_from_string(t); if (cc < 0) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Unknown cgroup controller '%s'", t); mask |= CGROUP_CONTROLLER_TO_MASK(cc); } r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *t = NULL; r = cg_mask_to_string(mask, &t); if (r < 0) return r; if (streq(name, "DelegateControllers")) { c->delegate = true; if (mask == 0) c->delegate_controllers = 0; else c->delegate_controllers |= mask; unit_write_settingf(u, flags, name, "Delegate=%s", strempty(t)); } else if (streq(name, "DisableControllers")) { if (mask == 0) c->disable_controllers = 0; else c->disable_controllers |= mask; unit_write_settingf(u, flags, name, "%s=%s", name, strempty(t)); } } return 1; } else if (STR_IN_SET(name, "IPIngressFilterPath", "IPEgressFilterPath")) { char ***filters; size_t n = 0; filters = streq(name, "IPIngressFilterPath") ? &c->ip_filters_ingress : &c->ip_filters_egress; r = sd_bus_message_enter_container(message, 'a', "s"); if (r < 0) return r; for (;;) { const char *path; r = sd_bus_message_read(message, "s", &path); if (r < 0) return r; if (r == 0) break; if (!path_is_normalized(path) || !path_is_absolute(path)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects a normalized absolute path.", name); if (!UNIT_WRITE_FLAGS_NOOP(flags) && !strv_contains(*filters, path)) { r = strv_extend(filters, path); if (r < 0) return log_oom(); } n++; } r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) *filters = strv_free(*filters); unit_invalidate_cgroup_bpf(u); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; fputs(name, f); fputs("=\n", f); STRV_FOREACH(entry, *filters) fprintf(f, "%s=%s\n", name, *entry); r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); if (*filters) { r = bpf_firewall_supported(); if (r < 0) return r; if (r != BPF_FIREWALL_SUPPORTED_WITH_MULTI) { static bool warned = false; log_full(warned ? LOG_DEBUG : LOG_WARNING, "Transient unit %s configures an IP firewall with BPF, but the local system does not support BPF/cgroup firewalling with multiple filters.\n" "Starting this unit will fail! (This warning is only shown for the first started transient unit using IP firewalling.)", u->id); warned = true; } } } return 1; } else if (streq(name, "BPFProgram")) { const char *a, *p; size_t n = 0; r = sd_bus_message_enter_container(message, 'a', "(ss)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(ss)", &a, &p)) > 0) { int attach_type = bpf_cgroup_attach_type_from_string(a); if (attach_type < 0) return sd_bus_error_setf( error, SD_BUS_ERROR_INVALID_ARGS, "%s expects a valid BPF attach type, got '%s'.", name, a); if (!path_is_normalized(p) || !path_is_absolute(p)) return sd_bus_error_setf( error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects a normalized absolute path.", name); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { r = cgroup_add_bpf_foreign_program(c, attach_type, p); if (r < 0) return r; } n++; } if (r < 0) return r; r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) while (c->bpf_foreign_programs) cgroup_context_remove_bpf_foreign_program(c, c->bpf_foreign_programs); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; fputs(name, f); fputs("=\n", f); LIST_FOREACH(programs, fp, c->bpf_foreign_programs) fprintf(f, "%s=%s:%s\n", name, bpf_cgroup_attach_type_to_string(fp->attach_type), fp->bpffs_path); r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); if (!LIST_IS_EMPTY(c->bpf_foreign_programs)) { r = bpf_foreign_supported(); if (r < 0) return r; if (r == 0) log_full(LOG_DEBUG, "Transient unit %s configures a BPF program pinned to BPF " "filesystem, but the local system does not support that.\n" "Starting this unit will fail!", u->id); } } return 1; } return 0; } static int bus_cgroup_set_boolean( Unit *u, const char *name, bool *p, CGroupMask mask, sd_bus_message *message, UnitWriteFlags flags, sd_bus_error *error) { int b, r; assert(p); r = sd_bus_message_read(message, "b", &b); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { *p = b; unit_invalidate_cgroup(u, mask); unit_write_settingf(u, flags, name, "%s=%s", name, yes_no(b)); } return 1; } #define BUS_DEFINE_SET_CGROUP_WEIGHT(function, mask, check, val) \ static int bus_cgroup_set_##function( \ Unit *u, \ const char *name, \ uint64_t *p, \ sd_bus_message *message, \ UnitWriteFlags flags, \ sd_bus_error *error) { \ \ uint64_t v; \ int r; \ \ assert(p); \ \ r = sd_bus_message_read(message, "t", &v); \ if (r < 0) \ return r; \ \ if (!check(v)) \ return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \ "Value specified in %s is out of range", name); \ \ if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \ *p = v; \ unit_invalidate_cgroup(u, mask); \ \ if (v == (val)) \ unit_write_settingf(u, flags, name, \ "%s=", name); \ else \ unit_write_settingf(u, flags, name, \ "%s=%" PRIu64, name, v); \ } \ \ return 1; \ } #define BUS_DEFINE_SET_CGROUP_LIMIT(function, mask, scale, minimum) \ static int bus_cgroup_set_##function( \ Unit *u, \ const char *name, \ uint64_t *p, \ sd_bus_message *message, \ UnitWriteFlags flags, \ sd_bus_error *error) { \ \ uint64_t v; \ int r; \ \ assert(p); \ \ r = sd_bus_message_read(message, "t", &v); \ if (r < 0) \ return r; \ \ if (v < minimum) \ return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \ "Value specified in %s is out of range", name); \ \ if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \ *p = v; \ unit_invalidate_cgroup(u, mask); \ \ if (v == CGROUP_LIMIT_MAX) \ unit_write_settingf(u, flags, name, \ "%s=infinity", name); \ else \ unit_write_settingf(u, flags, name, \ "%s=%" PRIu64, name, v); \ } \ \ return 1; \ } \ static int bus_cgroup_set_##function##_scale( \ Unit *u, \ const char *name, \ uint64_t *p, \ sd_bus_message *message, \ UnitWriteFlags flags, \ sd_bus_error *error) { \ \ uint64_t v; \ uint32_t raw; \ int r; \ \ assert(p); \ \ r = sd_bus_message_read(message, "u", &raw); \ if (r < 0) \ return r; \ \ v = scale(raw, UINT32_MAX); \ if (v < minimum || v >= UINT64_MAX) \ return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, \ "Value specified in %s is out of range", name); \ \ if (!UNIT_WRITE_FLAGS_NOOP(flags)) { \ *p = v; \ unit_invalidate_cgroup(u, mask); \ \ /* Prepare to chop off suffix */ \ assert_se(endswith(name, "Scale")); \ \ int scaled = UINT32_SCALE_TO_PERMYRIAD(raw); \ unit_write_settingf(u, flags, name, "%.*s=" PERMYRIAD_AS_PERCENT_FORMAT_STR, \ (int)(strlen(name) - strlen("Scale")), name, \ PERMYRIAD_AS_PERCENT_FORMAT_VAL(scaled)); \ } \ \ return 1; \ } DISABLE_WARNING_TYPE_LIMITS; BUS_DEFINE_SET_CGROUP_WEIGHT(cpu_weight, CGROUP_MASK_CPU, CGROUP_WEIGHT_IS_OK, CGROUP_WEIGHT_INVALID); BUS_DEFINE_SET_CGROUP_WEIGHT(cpu_shares, CGROUP_MASK_CPU, CGROUP_CPU_SHARES_IS_OK, CGROUP_CPU_SHARES_INVALID); BUS_DEFINE_SET_CGROUP_WEIGHT(io_weight, CGROUP_MASK_IO, CGROUP_WEIGHT_IS_OK, CGROUP_WEIGHT_INVALID); BUS_DEFINE_SET_CGROUP_WEIGHT(blockio_weight, CGROUP_MASK_BLKIO, CGROUP_BLKIO_WEIGHT_IS_OK, CGROUP_BLKIO_WEIGHT_INVALID); BUS_DEFINE_SET_CGROUP_LIMIT(memory, CGROUP_MASK_MEMORY, physical_memory_scale, 1); BUS_DEFINE_SET_CGROUP_LIMIT(memory_protection, CGROUP_MASK_MEMORY, physical_memory_scale, 0); BUS_DEFINE_SET_CGROUP_LIMIT(swap, CGROUP_MASK_MEMORY, physical_memory_scale, 0); REENABLE_WARNING; static int bus_cgroup_set_tasks_max( Unit *u, const char *name, TasksMax *p, sd_bus_message *message, UnitWriteFlags flags, sd_bus_error *error) { uint64_t v; int r; assert(p); r = sd_bus_message_read(message, "t", &v); if (r < 0) return r; if (v < 1) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Value specified in %s is out of range", name); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { *p = (TasksMax) { .value = v, .scale = 0 }; /* When .scale==0, .value is the absolute value */ unit_invalidate_cgroup(u, CGROUP_MASK_PIDS); if (v == CGROUP_LIMIT_MAX) unit_write_settingf(u, flags, name, "%s=infinity", name); else unit_write_settingf(u, flags, name, "%s=%" PRIu64, name, v); } return 1; } static int bus_cgroup_set_tasks_max_scale( Unit *u, const char *name, TasksMax *p, sd_bus_message *message, UnitWriteFlags flags, sd_bus_error *error) { uint32_t v; int r; assert(p); r = sd_bus_message_read(message, "u", &v); if (r < 0) return r; if (v < 1 || v >= UINT32_MAX) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Value specified in %s is out of range", name); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { *p = (TasksMax) { v, UINT32_MAX }; /* .scale is not 0, so this is interpreted as v/UINT32_MAX. */ unit_invalidate_cgroup(u, CGROUP_MASK_PIDS); uint32_t scaled = DIV_ROUND_UP((uint64_t) v * 100U, (uint64_t) UINT32_MAX); unit_write_settingf(u, flags, name, "%s=%" PRIu32 ".%" PRIu32 "%%", "TasksMax", scaled / 10, scaled % 10); } return 1; } int bus_cgroup_set_property( Unit *u, CGroupContext *c, const char *name, sd_bus_message *message, UnitWriteFlags flags, sd_bus_error *error) { CGroupIOLimitType iol_type; int r; assert(u); assert(c); assert(name); assert(message); flags |= UNIT_PRIVATE; if (streq(name, "CPUAccounting")) return bus_cgroup_set_boolean(u, name, &c->cpu_accounting, get_cpu_accounting_mask(), message, flags, error); if (streq(name, "CPUWeight")) return bus_cgroup_set_cpu_weight(u, name, &c->cpu_weight, message, flags, error); if (streq(name, "StartupCPUWeight")) return bus_cgroup_set_cpu_weight(u, name, &c->startup_cpu_weight, message, flags, error); if (streq(name, "CPUShares")) return bus_cgroup_set_cpu_shares(u, name, &c->cpu_shares, message, flags, error); if (streq(name, "StartupCPUShares")) return bus_cgroup_set_cpu_shares(u, name, &c->startup_cpu_shares, message, flags, error); if (streq(name, "IOAccounting")) return bus_cgroup_set_boolean(u, name, &c->io_accounting, CGROUP_MASK_IO, message, flags, error); if (streq(name, "IOWeight")) return bus_cgroup_set_io_weight(u, name, &c->io_weight, message, flags, error); if (streq(name, "StartupIOWeight")) return bus_cgroup_set_io_weight(u, name, &c->startup_io_weight, message, flags, error); if (streq(name, "BlockIOAccounting")) return bus_cgroup_set_boolean(u, name, &c->blockio_accounting, CGROUP_MASK_BLKIO, message, flags, error); if (streq(name, "BlockIOWeight")) return bus_cgroup_set_blockio_weight(u, name, &c->blockio_weight, message, flags, error); if (streq(name, "StartupBlockIOWeight")) return bus_cgroup_set_blockio_weight(u, name, &c->startup_blockio_weight, message, flags, error); if (streq(name, "MemoryAccounting")) return bus_cgroup_set_boolean(u, name, &c->memory_accounting, CGROUP_MASK_MEMORY, message, flags, error); if (streq(name, "MemoryMin")) { r = bus_cgroup_set_memory_protection(u, name, &c->memory_min, message, flags, error); if (r > 0) c->memory_min_set = true; return r; } if (streq(name, "MemoryLow")) { r = bus_cgroup_set_memory_protection(u, name, &c->memory_low, message, flags, error); if (r > 0) c->memory_low_set = true; return r; } if (streq(name, "DefaultMemoryMin")) { r = bus_cgroup_set_memory_protection(u, name, &c->default_memory_min, message, flags, error); if (r > 0) c->default_memory_min_set = true; return r; } if (streq(name, "DefaultMemoryLow")) { r = bus_cgroup_set_memory_protection(u, name, &c->default_memory_low, message, flags, error); if (r > 0) c->default_memory_low_set = true; return r; } if (streq(name, "MemoryHigh")) return bus_cgroup_set_memory(u, name, &c->memory_high, message, flags, error); if (streq(name, "MemorySwapMax")) return bus_cgroup_set_swap(u, name, &c->memory_swap_max, message, flags, error); if (streq(name, "MemoryMax")) return bus_cgroup_set_memory(u, name, &c->memory_max, message, flags, error); if (streq(name, "MemoryLimit")) return bus_cgroup_set_memory(u, name, &c->memory_limit, message, flags, error); if (streq(name, "MemoryMinScale")) { r = bus_cgroup_set_memory_protection_scale(u, name, &c->memory_min, message, flags, error); if (r > 0) c->memory_min_set = true; return r; } if (streq(name, "MemoryLowScale")) { r = bus_cgroup_set_memory_protection_scale(u, name, &c->memory_low, message, flags, error); if (r > 0) c->memory_low_set = true; return r; } if (streq(name, "DefaultMemoryMinScale")) { r = bus_cgroup_set_memory_protection_scale(u, name, &c->default_memory_min, message, flags, error); if (r > 0) c->default_memory_min_set = true; return r; } if (streq(name, "DefaultMemoryLowScale")) { r = bus_cgroup_set_memory_protection_scale(u, name, &c->default_memory_low, message, flags, error); if (r > 0) c->default_memory_low_set = true; return r; } if (streq(name, "MemoryHighScale")) return bus_cgroup_set_memory_scale(u, name, &c->memory_high, message, flags, error); if (streq(name, "MemorySwapMaxScale")) return bus_cgroup_set_swap_scale(u, name, &c->memory_swap_max, message, flags, error); if (streq(name, "MemoryMaxScale")) return bus_cgroup_set_memory_scale(u, name, &c->memory_max, message, flags, error); if (streq(name, "MemoryLimitScale")) return bus_cgroup_set_memory_scale(u, name, &c->memory_limit, message, flags, error); if (streq(name, "TasksAccounting")) return bus_cgroup_set_boolean(u, name, &c->tasks_accounting, CGROUP_MASK_PIDS, message, flags, error); if (streq(name, "TasksMax")) return bus_cgroup_set_tasks_max(u, name, &c->tasks_max, message, flags, error); if (streq(name, "TasksMaxScale")) return bus_cgroup_set_tasks_max_scale(u, name, &c->tasks_max, message, flags, error); if (streq(name, "CPUQuotaPerSecUSec")) { uint64_t u64; r = sd_bus_message_read(message, "t", &u64); if (r < 0) return r; if (u64 <= 0) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "CPUQuotaPerSecUSec= value out of range"); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { c->cpu_quota_per_sec_usec = u64; u->warned_clamping_cpu_quota_period = false; unit_invalidate_cgroup(u, CGROUP_MASK_CPU); if (c->cpu_quota_per_sec_usec == USEC_INFINITY) unit_write_setting(u, flags, "CPUQuota", "CPUQuota="); else /* config_parse_cpu_quota() requires an integer, so truncating division is used on * purpose here. */ unit_write_settingf(u, flags, "CPUQuota", "CPUQuota=%0.f%%", (double) (c->cpu_quota_per_sec_usec / 10000)); } return 1; } else if (streq(name, "CPUQuotaPeriodUSec")) { uint64_t u64; r = sd_bus_message_read(message, "t", &u64); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { c->cpu_quota_period_usec = u64; u->warned_clamping_cpu_quota_period = false; unit_invalidate_cgroup(u, CGROUP_MASK_CPU); if (c->cpu_quota_period_usec == USEC_INFINITY) unit_write_setting(u, flags, "CPUQuotaPeriodSec", "CPUQuotaPeriodSec="); else unit_write_settingf(u, flags, "CPUQuotaPeriodSec", "CPUQuotaPeriodSec=%s", FORMAT_TIMESPAN(c->cpu_quota_period_usec, 1)); } return 1; } else if (STR_IN_SET(name, "AllowedCPUs", "StartupAllowedCPUs", "AllowedMemoryNodes", "StartupAllowedMemoryNodes")) { const void *a; size_t n; _cleanup_(cpu_set_reset) CPUSet new_set = {}; r = sd_bus_message_read_array(message, 'y', &a, &n); if (r < 0) return r; r = cpu_set_from_dbus(a, n, &new_set); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *setstr = NULL; CPUSet *set = NULL; setstr = cpu_set_to_range_string(&new_set); if (!setstr) return -ENOMEM; if (streq(name, "AllowedCPUs")) set = &c->cpuset_cpus; else if (streq(name, "StartupAllowedCPUs")) set = &c->startup_cpuset_cpus; else if (streq(name, "AllowedMemoryNodes")) set = &c->cpuset_mems; else if (streq(name, "StartupAllowedMemoryNodes")) set = &c->startup_cpuset_mems; assert(set); cpu_set_reset(set); *set = new_set; new_set = (CPUSet) {}; unit_invalidate_cgroup(u, CGROUP_MASK_CPUSET); unit_write_settingf(u, flags, name, "%s=%s", name, setstr); } return 1; } else if ((iol_type = cgroup_io_limit_type_from_string(name)) >= 0) { const char *path; unsigned n = 0; uint64_t u64; r = sd_bus_message_enter_container(message, 'a', "(st)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(st)", &path, &u64)) > 0) { if (!path_is_normalized(path)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { CGroupIODeviceLimit *a = NULL; LIST_FOREACH(device_limits, b, c->io_device_limits) if (path_equal(path, b->path)) { a = b; break; } if (!a) { CGroupIOLimitType type; a = new0(CGroupIODeviceLimit, 1); if (!a) return -ENOMEM; a->path = strdup(path); if (!a->path) { free(a); return -ENOMEM; } for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++) a->limits[type] = cgroup_io_limit_defaults[type]; LIST_PREPEND(device_limits, c->io_device_limits, a); } a->limits[iol_type] = u64; } n++; } if (r < 0) return r; r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) LIST_FOREACH(device_limits, a, c->io_device_limits) a->limits[iol_type] = cgroup_io_limit_defaults[iol_type]; unit_invalidate_cgroup(u, CGROUP_MASK_IO); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; fprintf(f, "%s=\n", name); LIST_FOREACH(device_limits, a, c->io_device_limits) if (a->limits[iol_type] != cgroup_io_limit_defaults[iol_type]) fprintf(f, "%s=%s %" PRIu64 "\n", name, a->path, a->limits[iol_type]); r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); } return 1; } else if (streq(name, "IODeviceWeight")) { const char *path; uint64_t weight; unsigned n = 0; r = sd_bus_message_enter_container(message, 'a', "(st)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(st)", &path, &weight)) > 0) { if (!path_is_normalized(path)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path); if (!CGROUP_WEIGHT_IS_OK(weight) || weight == CGROUP_WEIGHT_INVALID) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "IODeviceWeight= value out of range"); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { CGroupIODeviceWeight *a = NULL; LIST_FOREACH(device_weights, b, c->io_device_weights) if (path_equal(b->path, path)) { a = b; break; } if (!a) { a = new0(CGroupIODeviceWeight, 1); if (!a) return -ENOMEM; a->path = strdup(path); if (!a->path) { free(a); return -ENOMEM; } LIST_PREPEND(device_weights, c->io_device_weights, a); } a->weight = weight; } n++; } r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) while (c->io_device_weights) cgroup_context_free_io_device_weight(c, c->io_device_weights); unit_invalidate_cgroup(u, CGROUP_MASK_IO); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; fputs("IODeviceWeight=\n", f); LIST_FOREACH(device_weights, a, c->io_device_weights) fprintf(f, "IODeviceWeight=%s %" PRIu64 "\n", a->path, a->weight); r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); } return 1; } else if (streq(name, "IODeviceLatencyTargetUSec")) { const char *path; uint64_t target; unsigned n = 0; r = sd_bus_message_enter_container(message, 'a', "(st)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(st)", &path, &target)) > 0) { if (!path_is_normalized(path)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { CGroupIODeviceLatency *a = NULL; LIST_FOREACH(device_latencies, b, c->io_device_latencies) if (path_equal(b->path, path)) { a = b; break; } if (!a) { a = new0(CGroupIODeviceLatency, 1); if (!a) return -ENOMEM; a->path = strdup(path); if (!a->path) { free(a); return -ENOMEM; } LIST_PREPEND(device_latencies, c->io_device_latencies, a); } a->target_usec = target; } n++; } r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) while (c->io_device_latencies) cgroup_context_free_io_device_latency(c, c->io_device_latencies); unit_invalidate_cgroup(u, CGROUP_MASK_IO); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; fputs("IODeviceLatencyTargetSec=\n", f); LIST_FOREACH(device_latencies, a, c->io_device_latencies) fprintf(f, "IODeviceLatencyTargetSec=%s %s\n", a->path, FORMAT_TIMESPAN(a->target_usec, 1)); r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); } return 1; } else if (STR_IN_SET(name, "BlockIOReadBandwidth", "BlockIOWriteBandwidth")) { const char *path; bool read = true; unsigned n = 0; uint64_t u64; if (streq(name, "BlockIOWriteBandwidth")) read = false; r = sd_bus_message_enter_container(message, 'a', "(st)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(st)", &path, &u64)) > 0) { if (!path_is_normalized(path)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { CGroupBlockIODeviceBandwidth *a = NULL; LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) if (path_equal(path, b->path)) { a = b; break; } if (!a) { a = new0(CGroupBlockIODeviceBandwidth, 1); if (!a) return -ENOMEM; a->rbps = CGROUP_LIMIT_MAX; a->wbps = CGROUP_LIMIT_MAX; a->path = strdup(path); if (!a->path) { free(a); return -ENOMEM; } LIST_PREPEND(device_bandwidths, c->blockio_device_bandwidths, a); } if (read) a->rbps = u64; else a->wbps = u64; } n++; } if (r < 0) return r; r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths) { if (read) a->rbps = CGROUP_LIMIT_MAX; else a->wbps = CGROUP_LIMIT_MAX; } unit_invalidate_cgroup(u, CGROUP_MASK_BLKIO); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; if (read) { fputs("BlockIOReadBandwidth=\n", f); LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths) if (a->rbps != CGROUP_LIMIT_MAX) fprintf(f, "BlockIOReadBandwidth=%s %" PRIu64 "\n", a->path, a->rbps); } else { fputs("BlockIOWriteBandwidth=\n", f); LIST_FOREACH(device_bandwidths, a, c->blockio_device_bandwidths) if (a->wbps != CGROUP_LIMIT_MAX) fprintf(f, "BlockIOWriteBandwidth=%s %" PRIu64 "\n", a->path, a->wbps); } r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); } return 1; } else if (streq(name, "BlockIODeviceWeight")) { const char *path; uint64_t weight; unsigned n = 0; r = sd_bus_message_enter_container(message, 'a', "(st)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(st)", &path, &weight)) > 0) { if (!path_is_normalized(path)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' specified in %s= is not normalized.", name, path); if (!CGROUP_BLKIO_WEIGHT_IS_OK(weight) || weight == CGROUP_BLKIO_WEIGHT_INVALID) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "BlockIODeviceWeight= out of range"); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { CGroupBlockIODeviceWeight *a = NULL; LIST_FOREACH(device_weights, b, c->blockio_device_weights) if (path_equal(b->path, path)) { a = b; break; } if (!a) { a = new0(CGroupBlockIODeviceWeight, 1); if (!a) return -ENOMEM; a->path = strdup(path); if (!a->path) { free(a); return -ENOMEM; } LIST_PREPEND(device_weights, c->blockio_device_weights, a); } a->weight = weight; } n++; } r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) while (c->blockio_device_weights) cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights); unit_invalidate_cgroup(u, CGROUP_MASK_BLKIO); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; fputs("BlockIODeviceWeight=\n", f); LIST_FOREACH(device_weights, a, c->blockio_device_weights) fprintf(f, "BlockIODeviceWeight=%s %" PRIu64 "\n", a->path, a->weight); r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); } return 1; } else if (streq(name, "DevicePolicy")) { const char *policy; CGroupDevicePolicy p; r = sd_bus_message_read(message, "s", &policy); if (r < 0) return r; p = cgroup_device_policy_from_string(policy); if (p < 0) return p; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { c->device_policy = p; unit_invalidate_cgroup(u, CGROUP_MASK_DEVICES); unit_write_settingf(u, flags, name, "DevicePolicy=%s", policy); } return 1; } else if (streq(name, "DeviceAllow")) { const char *path, *rwm; unsigned n = 0; r = sd_bus_message_enter_container(message, 'a', "(ss)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(ss)", &path, &rwm)) > 0) { if (!valid_device_allow_pattern(path) || strpbrk(path, WHITESPACE)) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "DeviceAllow= requires device node or pattern"); if (isempty(rwm)) rwm = "rwm"; else if (!in_charset(rwm, "rwm")) return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "DeviceAllow= requires combination of rwm flags"); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { CGroupDeviceAllow *a = NULL; LIST_FOREACH(device_allow, b, c->device_allow) if (path_equal(b->path, path)) { a = b; break; } if (!a) { a = new0(CGroupDeviceAllow, 1); if (!a) return -ENOMEM; a->path = strdup(path); if (!a->path) { free(a); return -ENOMEM; } LIST_PREPEND(device_allow, c->device_allow, a); } a->r = strchr(rwm, 'r'); a->w = strchr(rwm, 'w'); a->m = strchr(rwm, 'm'); } n++; } if (r < 0) return r; r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) while (c->device_allow) cgroup_context_free_device_allow(c, c->device_allow); unit_invalidate_cgroup(u, CGROUP_MASK_DEVICES); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; fputs("DeviceAllow=\n", f); LIST_FOREACH(device_allow, a, c->device_allow) fprintf(f, "DeviceAllow=%s %s%s%s\n", a->path, a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : ""); r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); } return 1; } else if (streq(name, "IPAccounting")) { int b; r = sd_bus_message_read(message, "b", &b); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { c->ip_accounting = b; unit_invalidate_cgroup_bpf(u); unit_write_settingf(u, flags, name, "IPAccounting=%s", yes_no(b)); } return 1; } else if (STR_IN_SET(name, "IPAddressAllow", "IPAddressDeny")) { _cleanup_set_free_ Set *new_prefixes = NULL; size_t n = 0; r = sd_bus_message_enter_container(message, 'a', "(iayu)"); if (r < 0) return r; for (;;) { const void *ap; int32_t family; uint32_t prefixlen; size_t an; r = sd_bus_message_enter_container(message, 'r', "iayu"); if (r < 0) return r; if (r == 0) break; r = sd_bus_message_read(message, "i", &family); if (r < 0) return r; if (!IN_SET(family, AF_INET, AF_INET6)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects IPv4 or IPv6 addresses only.", name); r = sd_bus_message_read_array(message, 'y', &ap, &an); if (r < 0) return r; if (an != FAMILY_ADDRESS_SIZE(family)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "IP address has wrong size for family (%s, expected %zu, got %zu)", af_to_name(family), FAMILY_ADDRESS_SIZE(family), an); r = sd_bus_message_read(message, "u", &prefixlen); if (r < 0) return r; if (prefixlen > FAMILY_ADDRESS_SIZE(family)*8) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Prefix length %" PRIu32 " too large for address family %s.", prefixlen, af_to_name(family)); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { struct in_addr_prefix prefix = { .family = family, .prefixlen = prefixlen, }; memcpy(&prefix.address, ap, an); r = in_addr_prefix_add(&new_prefixes, &prefix); if (r < 0) return r; } r = sd_bus_message_exit_container(message); if (r < 0) return r; n++; } r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; Set **prefixes; bool *reduced; unit_invalidate_cgroup_bpf(u); f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; prefixes = streq(name, "IPAddressAllow") ? &c->ip_address_allow : &c->ip_address_deny; reduced = streq(name, "IPAddressAllow") ? &c->ip_address_allow_reduced : &c->ip_address_deny_reduced; if (n == 0) { *reduced = true; *prefixes = set_free(*prefixes); fputs(name, f); fputs("=\n", f); } else { *reduced = false; r = in_addr_prefixes_merge(prefixes, new_prefixes); if (r < 0) return r; const struct in_addr_prefix *p; SET_FOREACH(p, new_prefixes) fprintf(f, "%s=%s\n", name, IN_ADDR_PREFIX_TO_STRING(p->family, &p->address, p->prefixlen)); } r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); } return 1; } if (STR_IN_SET(name, "ManagedOOMSwap", "ManagedOOMMemoryPressure")) { ManagedOOMMode *cgroup_mode = streq(name, "ManagedOOMSwap") ? &c->moom_swap : &c->moom_mem_pressure; ManagedOOMMode m; const char *mode; if (!UNIT_VTABLE(u)->can_set_managed_oom) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Cannot set %s for this unit type", name); r = sd_bus_message_read(message, "s", &mode); if (r < 0) return r; m = managed_oom_mode_from_string(mode); if (m < 0) return -EINVAL; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { *cgroup_mode = m; unit_write_settingf(u, flags, name, "%s=%s", name, mode); } (void) manager_varlink_send_managed_oom_update(u); return 1; } if (streq(name, "ManagedOOMMemoryPressureLimit")) { uint32_t v; if (!UNIT_VTABLE(u)->can_set_managed_oom) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Cannot set %s for this unit type", name); r = sd_bus_message_read(message, "u", &v); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { c->moom_mem_pressure_limit = v; unit_write_settingf(u, flags, name, "ManagedOOMMemoryPressureLimit=" PERMYRIAD_AS_PERCENT_FORMAT_STR, PERMYRIAD_AS_PERCENT_FORMAT_VAL(UINT32_SCALE_TO_PERMYRIAD(v))); } if (c->moom_mem_pressure == MANAGED_OOM_KILL) (void) manager_varlink_send_managed_oom_update(u); return 1; } if (streq(name, "ManagedOOMPreference")) { ManagedOOMPreference p; const char *pref; r = sd_bus_message_read(message, "s", &pref); if (r < 0) return r; p = managed_oom_preference_from_string(pref); if (p < 0) return p; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { c->moom_preference = p; unit_write_settingf(u, flags, name, "ManagedOOMPreference=%s", pref); } return 1; } if (STR_IN_SET(name, "SocketBindAllow", "SocketBindDeny")) { CGroupSocketBindItem **list; uint16_t nr_ports, port_min; size_t n = 0; int32_t family, ip_protocol; list = streq(name, "SocketBindAllow") ? &c->socket_bind_allow : &c->socket_bind_deny; r = sd_bus_message_enter_container(message, 'a', "(iiqq)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(iiqq)", &family, &ip_protocol, &nr_ports, &port_min)) > 0) { if (!IN_SET(family, AF_UNSPEC, AF_INET, AF_INET6)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects INET or INET6 family, if specified.", name); if (!IN_SET(ip_protocol, 0, IPPROTO_TCP, IPPROTO_UDP)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects TCP or UDP protocol, if specified.", name); if (port_min + (uint32_t) nr_ports > (1 << 16)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects maximum port value lesser than 65536.", name); if (port_min == 0 && nr_ports != 0) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "%s= expects port range starting with positive value.", name); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ CGroupSocketBindItem *item = NULL; item = new(CGroupSocketBindItem, 1); if (!item) return log_oom(); *item = (CGroupSocketBindItem) { .address_family = family, .ip_protocol = ip_protocol, .nr_ports = nr_ports, .port_min = port_min }; LIST_PREPEND(socket_bind_items, *list, TAKE_PTR(item)); } n++; } if (r < 0) return r; r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *buf = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size = 0; if (n == 0) cgroup_context_remove_socket_bind(list); else { if ((u->manager->cgroup_supported & CGROUP_MASK_BPF_SOCKET_BIND) == 0) log_full(LOG_DEBUG, "Unit %s configures source compiled BPF programs " "but the local system does not support that.\n" "Starting this unit will fail!", u->id); } f = open_memstream_unlocked(&buf, &size); if (!f) return -ENOMEM; fprintf(f, "%s:", name); LIST_FOREACH(socket_bind_items, item, *list) cgroup_context_dump_socket_bind_item(item, f); fputc('\n', f); r = fflush_and_check(f); if (r < 0) return r; unit_write_setting(u, flags, name, buf); } return 1; } if (streq(name, "RestrictNetworkInterfaces")) { int is_allow_list; _cleanup_strv_free_ char **l = NULL; r = sd_bus_message_enter_container(message, 'r', "bas"); if (r < 0) return r; r = sd_bus_message_read(message, "b", &is_allow_list); if (r < 0) return r; r = sd_bus_message_read_strv(message, &l); if (r < 0) return r; r = sd_bus_message_exit_container(message); if (r < 0) return r; if (!UNIT_WRITE_FLAGS_NOOP(flags)) { _cleanup_free_ char *joined = NULL; if (strv_isempty(l)) { c->restrict_network_interfaces_is_allow_list = false; c->restrict_network_interfaces = set_free(c->restrict_network_interfaces); unit_write_settingf(u, flags, name, "%s=", name); return 1; } if (set_isempty(c->restrict_network_interfaces)) c->restrict_network_interfaces_is_allow_list = is_allow_list; STRV_FOREACH(s, l) { if (!ifname_valid(*s)) { log_full(LOG_WARNING, "Invalid interface name, ignoring: %s", *s); continue; } if (c->restrict_network_interfaces_is_allow_list != (bool) is_allow_list) free(set_remove(c->restrict_network_interfaces, *s)); else { r = set_put_strdup(&c->restrict_network_interfaces, *s); if (r < 0) return log_oom(); } } joined = strv_join(l, " "); if (!joined) return -ENOMEM; unit_write_settingf(u, flags, name, "%s=%s%s", name, is_allow_list ? "" : "~", joined); } return 1; } if (streq(name, "DisableControllers") || (u->transient && u->load_state == UNIT_STUB)) return bus_cgroup_set_transient_property(u, c, name, message, flags, error); if (streq(name, "ControlGroupNFTSet")) { int nfproto; const char *table, *set; bool empty = true; r = sd_bus_message_enter_container(message, 'a', "(iss)"); if (r < 0) return r; while ((r = sd_bus_message_read(message, "(iss)", &nfproto, &table, &set)) > 0) { const char *nfproto_name; nfproto_name = nfproto_to_string(nfproto); if (!nfproto_name) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Invalid protocol %d.", nfproto); if (nft_identifier_bad(table)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Invalid NFT table name %s.", table); if (nft_identifier_bad(set)) return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Invalid NFT set name %s.", set); if (!UNIT_WRITE_FLAGS_NOOP(flags)) { r = nft_set_context_add(&c->nft_set_context, &c->n_nft_set_contexts, nfproto, table, set); if (r < 0) return r; unit_write_settingf( u, flags|UNIT_ESCAPE_SPECIFIERS, name, "%s=%s:%s:%s", name, nfproto_name, table, set); } empty = false; } if (r < 0) return r; r = sd_bus_message_exit_container(message); if (r < 0) return r; if (empty) { c->nft_set_context = nft_set_context_free_many(c->nft_set_context, &c->n_nft_set_contexts); unit_write_settingf(u, flags, name, "%s=", name); } return 1; } return 0; }