/* SPDX-License-Identifier: LGPL-2.1+ */ #include #include #include #include #include #include #include #if HAVE_SECCOMP #include #endif #if HAVE_VALGRIND_VALGRIND_H #include #endif #include "sd-bus.h" #include "sd-daemon.h" #include "sd-messages.h" #include "alloc-util.h" #include "architecture.h" #include "build.h" #include "bus-error.h" #include "bus-util.h" #include "capability-util.h" #include "cgroup-util.h" #include "clock-util.h" #include "conf-parser.h" #include "cpu-set-util.h" #include "dbus-manager.h" #include "dbus.h" #include "def.h" #include "efi-random.h" #include "emergency-action.h" #include "env-util.h" #include "exit-status.h" #include "fd-util.h" #include "fdset.h" #include "fileio.h" #include "format-util.h" #include "fs-util.h" #include "hostname-setup.h" #include "ima-setup.h" #include "killall.h" #include "kmod-setup.h" #include "limits-util.h" #include "load-fragment.h" #include "log.h" #include "loopback-setup.h" #include "machine-id-setup.h" #include "manager.h" #include "mount-setup.h" #include "os-util.h" #include "pager.h" #include "parse-util.h" #include "path-util.h" #include "pretty-print.h" #include "proc-cmdline.h" #include "process-util.h" #include "raw-clone.h" #include "rlimit-util.h" #if HAVE_SECCOMP #include "seccomp-util.h" #endif #include "selinux-setup.h" #include "selinux-util.h" #include "signal-util.h" #include "smack-setup.h" #include "special.h" #include "stat-util.h" #include "stdio-util.h" #include "strv.h" #include "switch-root.h" #include "sysctl-util.h" #include "terminal-util.h" #include "umask-util.h" #include "user-util.h" #include "util.h" #include "virt.h" #include "watchdog.h" #if HAS_FEATURE_ADDRESS_SANITIZER #include #endif #define DEFAULT_TASKS_MAX ((TasksMax) { 15U, 100U }) /* 15% */ static enum { ACTION_RUN, ACTION_HELP, ACTION_VERSION, ACTION_TEST, ACTION_DUMP_CONFIGURATION_ITEMS, ACTION_DUMP_BUS_PROPERTIES, ACTION_BUS_INTROSPECT, } arg_action = ACTION_RUN; static const char *arg_bus_introspect = NULL; /* Those variables are initialized to 0 automatically, so we avoid uninitialized memory access. * Real defaults are assigned in reset_arguments() below. */ static char *arg_default_unit; static bool arg_system; static bool arg_dump_core; static int arg_crash_chvt; static bool arg_crash_shell; static bool arg_crash_reboot; static char *arg_confirm_spawn; static ShowStatus arg_show_status; static StatusUnitFormat arg_status_unit_format; static bool arg_switched_root; static PagerFlags arg_pager_flags; static bool arg_service_watchdogs; static ExecOutput arg_default_std_output; static ExecOutput arg_default_std_error; static usec_t arg_default_restart_usec; static usec_t arg_default_timeout_start_usec; static usec_t arg_default_timeout_stop_usec; static usec_t arg_default_timeout_abort_usec; static bool arg_default_timeout_abort_set; static usec_t arg_default_start_limit_interval; static unsigned arg_default_start_limit_burst; static usec_t arg_runtime_watchdog; static usec_t arg_reboot_watchdog; static usec_t arg_kexec_watchdog; static char *arg_early_core_pattern; static char *arg_watchdog_device; static char **arg_default_environment; static struct rlimit *arg_default_rlimit[_RLIMIT_MAX]; static uint64_t arg_capability_bounding_set; static bool arg_no_new_privs; static nsec_t arg_timer_slack_nsec; static usec_t arg_default_timer_accuracy_usec; static Set* arg_syscall_archs; static FILE* arg_serialization; static int arg_default_cpu_accounting; static bool arg_default_io_accounting; static bool arg_default_ip_accounting; static bool arg_default_blockio_accounting; static bool arg_default_memory_accounting; static bool arg_default_tasks_accounting; static TasksMax arg_default_tasks_max; static sd_id128_t arg_machine_id; static EmergencyAction arg_cad_burst_action; static OOMPolicy arg_default_oom_policy; static CPUSet arg_cpu_affinity; static NUMAPolicy arg_numa_policy; static usec_t arg_clock_usec; /* A copy of the original environment block */ static char **saved_env = NULL; static int parse_configuration(const struct rlimit *saved_rlimit_nofile, const struct rlimit *saved_rlimit_memlock); _noreturn_ static void freeze_or_exit_or_reboot(void) { /* If we are running in a container, let's prefer exiting, after all we can propagate an exit code to * the container manager, and thus inform it that something went wrong. */ if (detect_container() > 0) { log_emergency("Exiting PID 1..."); _exit(EXIT_EXCEPTION); } if (arg_crash_reboot) { log_notice("Rebooting in 10s..."); (void) sleep(10); log_notice("Rebooting now..."); (void) reboot(RB_AUTOBOOT); log_emergency_errno(errno, "Failed to reboot: %m"); } log_emergency("Freezing execution."); freeze(); } _noreturn_ static void crash(int sig) { struct sigaction sa; pid_t pid; if (getpid_cached() != 1) /* Pass this on immediately, if this is not PID 1 */ (void) raise(sig); else if (!arg_dump_core) log_emergency("Caught <%s>, not dumping core.", signal_to_string(sig)); else { sa = (struct sigaction) { .sa_handler = nop_signal_handler, .sa_flags = SA_NOCLDSTOP|SA_RESTART, }; /* We want to wait for the core process, hence let's enable SIGCHLD */ (void) sigaction(SIGCHLD, &sa, NULL); pid = raw_clone(SIGCHLD); if (pid < 0) log_emergency_errno(errno, "Caught <%s>, cannot fork for core dump: %m", signal_to_string(sig)); else if (pid == 0) { /* Enable default signal handler for core dump */ sa = (struct sigaction) { .sa_handler = SIG_DFL, }; (void) sigaction(sig, &sa, NULL); /* Don't limit the coredump size */ (void) setrlimit(RLIMIT_CORE, &RLIMIT_MAKE_CONST(RLIM_INFINITY)); /* Just to be sure... */ (void) chdir("/"); /* Raise the signal again */ pid = raw_getpid(); (void) kill(pid, sig); /* raise() would kill the parent */ assert_not_reached("We shouldn't be here..."); _exit(EXIT_EXCEPTION); } else { siginfo_t status; int r; /* Order things nicely. */ r = wait_for_terminate(pid, &status); if (r < 0) log_emergency_errno(r, "Caught <%s>, waitpid() failed: %m", signal_to_string(sig)); else if (status.si_code != CLD_DUMPED) { const char *s = status.si_code == CLD_EXITED ? exit_status_to_string(status.si_status, EXIT_STATUS_LIBC) : signal_to_string(status.si_status); log_emergency("Caught <%s>, core dump failed (child "PID_FMT", code=%s, status=%i/%s).", signal_to_string(sig), pid, sigchld_code_to_string(status.si_code), status.si_status, strna(s)); } else log_emergency("Caught <%s>, dumped core as pid "PID_FMT".", signal_to_string(sig), pid); } } if (arg_crash_chvt >= 0) (void) chvt(arg_crash_chvt); sa = (struct sigaction) { .sa_handler = SIG_IGN, .sa_flags = SA_NOCLDSTOP|SA_NOCLDWAIT|SA_RESTART, }; /* Let the kernel reap children for us */ (void) sigaction(SIGCHLD, &sa, NULL); if (arg_crash_shell) { log_notice("Executing crash shell in 10s..."); (void) sleep(10); pid = raw_clone(SIGCHLD); if (pid < 0) log_emergency_errno(errno, "Failed to fork off crash shell: %m"); else if (pid == 0) { (void) setsid(); (void) make_console_stdio(); (void) rlimit_nofile_safe(); (void) execle("/bin/sh", "/bin/sh", NULL, environ); log_emergency_errno(errno, "execle() failed: %m"); _exit(EXIT_EXCEPTION); } else { log_info("Spawned crash shell as PID "PID_FMT".", pid); (void) wait_for_terminate(pid, NULL); } } freeze_or_exit_or_reboot(); } static void install_crash_handler(void) { static const struct sigaction sa = { .sa_handler = crash, .sa_flags = SA_NODEFER, /* So that we can raise the signal again from the signal handler */ }; int r; /* We ignore the return value here, since, we don't mind if we * cannot set up a crash handler */ r = sigaction_many(&sa, SIGNALS_CRASH_HANDLER, -1); if (r < 0) log_debug_errno(r, "I had trouble setting up the crash handler, ignoring: %m"); } static int console_setup(void) { _cleanup_close_ int tty_fd = -1; int r; tty_fd = open_terminal("/dev/console", O_WRONLY|O_NOCTTY|O_CLOEXEC); if (tty_fd < 0) return log_error_errno(tty_fd, "Failed to open /dev/console: %m"); /* We don't want to force text mode. plymouth may be showing * pictures already from initrd. */ r = reset_terminal_fd(tty_fd, false); if (r < 0) return log_error_errno(r, "Failed to reset /dev/console: %m"); return 0; } static int set_machine_id(const char *m) { sd_id128_t t; assert(m); if (sd_id128_from_string(m, &t) < 0) return -EINVAL; if (sd_id128_is_null(t)) return -EINVAL; arg_machine_id = t; return 0; } static int parse_proc_cmdline_item(const char *key, const char *value, void *data) { int r; assert(key); if (STR_IN_SET(key, "systemd.unit", "rd.systemd.unit")) { if (proc_cmdline_value_missing(key, value)) return 0; if (!unit_name_is_valid(value, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) log_warning("Unit name specified on %s= is not valid, ignoring: %s", key, value); else if (in_initrd() == !!startswith(key, "rd.")) return free_and_strdup_warn(&arg_default_unit, value); } else if (proc_cmdline_key_streq(key, "systemd.dump_core")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning_errno(r, "Failed to parse dump core switch %s, ignoring: %m", value); else arg_dump_core = r; } else if (proc_cmdline_key_streq(key, "systemd.early_core_pattern")) { if (proc_cmdline_value_missing(key, value)) return 0; if (path_is_absolute(value)) (void) parse_path_argument_and_warn(value, false, &arg_early_core_pattern); else log_warning("Specified core pattern '%s' is not an absolute path, ignoring.", value); } else if (proc_cmdline_key_streq(key, "systemd.crash_chvt")) { if (!value) arg_crash_chvt = 0; /* turn on */ else { r = parse_crash_chvt(value, &arg_crash_chvt); if (r < 0) log_warning_errno(r, "Failed to parse crash chvt switch %s, ignoring: %m", value); } } else if (proc_cmdline_key_streq(key, "systemd.crash_shell")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning_errno(r, "Failed to parse crash shell switch %s, ignoring: %m", value); else arg_crash_shell = r; } else if (proc_cmdline_key_streq(key, "systemd.crash_reboot")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning_errno(r, "Failed to parse crash reboot switch %s, ignoring: %m", value); else arg_crash_reboot = r; } else if (proc_cmdline_key_streq(key, "systemd.confirm_spawn")) { char *s; r = parse_confirm_spawn(value, &s); if (r < 0) log_warning_errno(r, "Failed to parse confirm_spawn switch %s, ignoring: %m", value); else free_and_replace(arg_confirm_spawn, s); } else if (proc_cmdline_key_streq(key, "systemd.service_watchdogs")) { r = value ? parse_boolean(value) : true; if (r < 0) log_warning_errno(r, "Failed to parse service watchdog switch %s, ignoring: %m", value); else arg_service_watchdogs = r; } else if (proc_cmdline_key_streq(key, "systemd.show_status")) { if (value) { r = parse_show_status(value, &arg_show_status); if (r < 0) log_warning_errno(r, "Failed to parse show status switch %s, ignoring: %m", value); } else arg_show_status = SHOW_STATUS_YES; } else if (proc_cmdline_key_streq(key, "systemd.status_unit_format")) { if (proc_cmdline_value_missing(key, value)) return 0; r = status_unit_format_from_string(value); if (r < 0) log_warning_errno(r, "Failed to parse %s=%s, ignoring: %m", key, value); else arg_status_unit_format = r; } else if (proc_cmdline_key_streq(key, "systemd.default_standard_output")) { if (proc_cmdline_value_missing(key, value)) return 0; r = exec_output_from_string(value); if (r < 0) log_warning_errno(r, "Failed to parse default standard output switch %s, ignoring: %m", value); else arg_default_std_output = r; } else if (proc_cmdline_key_streq(key, "systemd.default_standard_error")) { if (proc_cmdline_value_missing(key, value)) return 0; r = exec_output_from_string(value); if (r < 0) log_warning_errno(r, "Failed to parse default standard error switch %s, ignoring: %m", value); else arg_default_std_error = r; } else if (streq(key, "systemd.setenv")) { if (proc_cmdline_value_missing(key, value)) return 0; if (env_assignment_is_valid(value)) { char **env; env = strv_env_set(arg_default_environment, value); if (!env) return log_oom(); arg_default_environment = env; } else log_warning("Environment variable name '%s' is not valid. Ignoring.", value); } else if (proc_cmdline_key_streq(key, "systemd.machine_id")) { if (proc_cmdline_value_missing(key, value)) return 0; r = set_machine_id(value); if (r < 0) log_warning_errno(r, "MachineID '%s' is not valid, ignoring: %m", value); } else if (proc_cmdline_key_streq(key, "systemd.default_timeout_start_sec")) { if (proc_cmdline_value_missing(key, value)) return 0; r = parse_sec(value, &arg_default_timeout_start_usec); if (r < 0) log_warning_errno(r, "Failed to parse default start timeout '%s', ignoring: %m", value); if (arg_default_timeout_start_usec <= 0) arg_default_timeout_start_usec = USEC_INFINITY; } else if (proc_cmdline_key_streq(key, "systemd.cpu_affinity")) { if (proc_cmdline_value_missing(key, value)) return 0; r = parse_cpu_set(value, &arg_cpu_affinity); if (r < 0) log_warning_errno(r, "Failed to parse CPU affinity mask '%s', ignoring: %m", value); } else if (proc_cmdline_key_streq(key, "systemd.watchdog_device")) { if (proc_cmdline_value_missing(key, value)) return 0; (void) parse_path_argument_and_warn(value, false, &arg_watchdog_device); } else if (proc_cmdline_key_streq(key, "systemd.clock_usec")) { if (proc_cmdline_value_missing(key, value)) return 0; r = safe_atou64(value, &arg_clock_usec); if (r < 0) log_warning_errno(r, "Failed to parse systemd.clock_usec= argument, ignoring: %s", value); } else if (streq(key, "quiet") && !value) { if (arg_show_status == _SHOW_STATUS_INVALID) arg_show_status = SHOW_STATUS_ERROR; } else if (streq(key, "debug") && !value) { /* Note that log_parse_environment() handles 'debug' * too, and sets the log level to LOG_DEBUG. */ if (detect_container() > 0) log_set_target(LOG_TARGET_CONSOLE); } else if (!value) { const char *target; /* Compatible with SysV, but supported independently even if SysV compatibility is disabled. */ target = runlevel_to_target(key); if (target) return free_and_strdup_warn(&arg_default_unit, target); } return 0; } #define DEFINE_SETTER(name, func, descr) \ static int name(const char *unit, \ const char *filename, \ unsigned line, \ const char *section, \ unsigned section_line, \ const char *lvalue, \ int ltype, \ const char *rvalue, \ void *data, \ void *userdata) { \ \ int r; \ \ assert(filename); \ assert(lvalue); \ assert(rvalue); \ \ r = func(rvalue); \ if (r < 0) \ log_syntax(unit, LOG_ERR, filename, line, r, \ "Invalid " descr "'%s': %m", \ rvalue); \ \ return 0; \ } DEFINE_SETTER(config_parse_level2, log_set_max_level_from_string, "log level"); DEFINE_SETTER(config_parse_target, log_set_target_from_string, "target"); DEFINE_SETTER(config_parse_color, log_show_color_from_string, "color"); DEFINE_SETTER(config_parse_location, log_show_location_from_string, "location"); DEFINE_SETTER(config_parse_time, log_show_time_from_string, "time"); static int config_parse_default_timeout_abort( const char *unit, const char *filename, unsigned line, const char *section, unsigned section_line, const char *lvalue, int ltype, const char *rvalue, void *data, void *userdata) { int r; r = config_parse_timeout_abort(unit, filename, line, section, section_line, lvalue, ltype, rvalue, &arg_default_timeout_abort_usec, userdata); if (r >= 0) arg_default_timeout_abort_set = r; return 0; } static int parse_config_file(void) { const ConfigTableItem items[] = { { "Manager", "LogLevel", config_parse_level2, 0, NULL }, { "Manager", "LogTarget", config_parse_target, 0, NULL }, { "Manager", "LogColor", config_parse_color, 0, NULL }, { "Manager", "LogLocation", config_parse_location, 0, NULL }, { "Manager", "LogTime", config_parse_time, 0, NULL }, { "Manager", "DumpCore", config_parse_bool, 0, &arg_dump_core }, { "Manager", "CrashChVT", /* legacy */ config_parse_crash_chvt, 0, &arg_crash_chvt }, { "Manager", "CrashChangeVT", config_parse_crash_chvt, 0, &arg_crash_chvt }, { "Manager", "CrashShell", config_parse_bool, 0, &arg_crash_shell }, { "Manager", "CrashReboot", config_parse_bool, 0, &arg_crash_reboot }, { "Manager", "ShowStatus", config_parse_show_status, 0, &arg_show_status }, { "Manager", "StatusUnitFormat", config_parse_status_unit_format, 0, &arg_status_unit_format }, { "Manager", "CPUAffinity", config_parse_cpu_affinity2, 0, &arg_cpu_affinity }, { "Manager", "NUMAPolicy", config_parse_numa_policy, 0, &arg_numa_policy.type }, { "Manager", "NUMAMask", config_parse_numa_mask, 0, &arg_numa_policy }, { "Manager", "JoinControllers", config_parse_warn_compat, DISABLED_CONFIGURATION, NULL }, { "Manager", "RuntimeWatchdogSec", config_parse_sec, 0, &arg_runtime_watchdog }, { "Manager", "RebootWatchdogSec", config_parse_sec, 0, &arg_reboot_watchdog }, { "Manager", "ShutdownWatchdogSec", config_parse_sec, 0, &arg_reboot_watchdog }, /* obsolete alias */ { "Manager", "KExecWatchdogSec", config_parse_sec, 0, &arg_kexec_watchdog }, { "Manager", "WatchdogDevice", config_parse_path, 0, &arg_watchdog_device }, { "Manager", "CapabilityBoundingSet", config_parse_capability_set, 0, &arg_capability_bounding_set }, { "Manager", "NoNewPrivileges", config_parse_bool, 0, &arg_no_new_privs }, #if HAVE_SECCOMP { "Manager", "SystemCallArchitectures", config_parse_syscall_archs, 0, &arg_syscall_archs }, #endif { "Manager", "TimerSlackNSec", config_parse_nsec, 0, &arg_timer_slack_nsec }, { "Manager", "DefaultTimerAccuracySec", config_parse_sec, 0, &arg_default_timer_accuracy_usec }, { "Manager", "DefaultStandardOutput", config_parse_output_restricted, 0, &arg_default_std_output }, { "Manager", "DefaultStandardError", config_parse_output_restricted, 0, &arg_default_std_error }, { "Manager", "DefaultTimeoutStartSec", config_parse_sec, 0, &arg_default_timeout_start_usec }, { "Manager", "DefaultTimeoutStopSec", config_parse_sec, 0, &arg_default_timeout_stop_usec }, { "Manager", "DefaultTimeoutAbortSec", config_parse_default_timeout_abort, 0, NULL }, { "Manager", "DefaultRestartSec", config_parse_sec, 0, &arg_default_restart_usec }, { "Manager", "DefaultStartLimitInterval", config_parse_sec, 0, &arg_default_start_limit_interval }, /* obsolete alias */ { "Manager", "DefaultStartLimitIntervalSec", config_parse_sec, 0, &arg_default_start_limit_interval }, { "Manager", "DefaultStartLimitBurst", config_parse_unsigned, 0, &arg_default_start_limit_burst }, { "Manager", "DefaultEnvironment", config_parse_environ, 0, &arg_default_environment }, { "Manager", "DefaultLimitCPU", config_parse_rlimit, RLIMIT_CPU, arg_default_rlimit }, { "Manager", "DefaultLimitFSIZE", config_parse_rlimit, RLIMIT_FSIZE, arg_default_rlimit }, { "Manager", "DefaultLimitDATA", config_parse_rlimit, RLIMIT_DATA, arg_default_rlimit }, { "Manager", "DefaultLimitSTACK", config_parse_rlimit, RLIMIT_STACK, arg_default_rlimit }, { "Manager", "DefaultLimitCORE", config_parse_rlimit, RLIMIT_CORE, arg_default_rlimit }, { "Manager", "DefaultLimitRSS", config_parse_rlimit, RLIMIT_RSS, arg_default_rlimit }, { "Manager", "DefaultLimitNOFILE", config_parse_rlimit, RLIMIT_NOFILE, arg_default_rlimit }, { "Manager", "DefaultLimitAS", config_parse_rlimit, RLIMIT_AS, arg_default_rlimit }, { "Manager", "DefaultLimitNPROC", config_parse_rlimit, RLIMIT_NPROC, arg_default_rlimit }, { "Manager", "DefaultLimitMEMLOCK", config_parse_rlimit, RLIMIT_MEMLOCK, arg_default_rlimit }, { "Manager", "DefaultLimitLOCKS", config_parse_rlimit, RLIMIT_LOCKS, arg_default_rlimit }, { "Manager", "DefaultLimitSIGPENDING", config_parse_rlimit, RLIMIT_SIGPENDING, arg_default_rlimit }, { "Manager", "DefaultLimitMSGQUEUE", config_parse_rlimit, RLIMIT_MSGQUEUE, arg_default_rlimit }, { "Manager", "DefaultLimitNICE", config_parse_rlimit, RLIMIT_NICE, arg_default_rlimit }, { "Manager", "DefaultLimitRTPRIO", config_parse_rlimit, RLIMIT_RTPRIO, arg_default_rlimit }, { "Manager", "DefaultLimitRTTIME", config_parse_rlimit, RLIMIT_RTTIME, arg_default_rlimit }, { "Manager", "DefaultCPUAccounting", config_parse_tristate, 0, &arg_default_cpu_accounting }, { "Manager", "DefaultIOAccounting", config_parse_bool, 0, &arg_default_io_accounting }, { "Manager", "DefaultIPAccounting", config_parse_bool, 0, &arg_default_ip_accounting }, { "Manager", "DefaultBlockIOAccounting", config_parse_bool, 0, &arg_default_blockio_accounting }, { "Manager", "DefaultMemoryAccounting", config_parse_bool, 0, &arg_default_memory_accounting }, { "Manager", "DefaultTasksAccounting", config_parse_bool, 0, &arg_default_tasks_accounting }, { "Manager", "DefaultTasksMax", config_parse_tasks_max, 0, &arg_default_tasks_max }, { "Manager", "CtrlAltDelBurstAction", config_parse_emergency_action, 0, &arg_cad_burst_action }, { "Manager", "DefaultOOMPolicy", config_parse_oom_policy, 0, &arg_default_oom_policy }, {} }; const char *fn, *conf_dirs_nulstr; fn = arg_system ? PKGSYSCONFDIR "/system.conf" : PKGSYSCONFDIR "/user.conf"; conf_dirs_nulstr = arg_system ? CONF_PATHS_NULSTR("systemd/system.conf.d") : CONF_PATHS_NULSTR("systemd/user.conf.d"); (void) config_parse_many_nulstr( fn, conf_dirs_nulstr, "Manager\0", config_item_table_lookup, items, CONFIG_PARSE_WARN, NULL, NULL); /* Traditionally "0" was used to turn off the default unit timeouts. Fix this up so that we used USEC_INFINITY * like everywhere else. */ if (arg_default_timeout_start_usec <= 0) arg_default_timeout_start_usec = USEC_INFINITY; if (arg_default_timeout_stop_usec <= 0) arg_default_timeout_stop_usec = USEC_INFINITY; return 0; } static void set_manager_defaults(Manager *m) { assert(m); /* Propagates the various default unit property settings into the manager object, i.e. properties that do not * affect the manager itself, but are just what newly allocated units will have set if they haven't set * anything else. (Also see set_manager_settings() for the settings that affect the manager's own behaviour) */ m->default_timer_accuracy_usec = arg_default_timer_accuracy_usec; m->default_std_output = arg_default_std_output; m->default_std_error = arg_default_std_error; m->default_timeout_start_usec = arg_default_timeout_start_usec; m->default_timeout_stop_usec = arg_default_timeout_stop_usec; m->default_timeout_abort_usec = arg_default_timeout_abort_usec; m->default_timeout_abort_set = arg_default_timeout_abort_set; m->default_restart_usec = arg_default_restart_usec; m->default_start_limit_interval = arg_default_start_limit_interval; m->default_start_limit_burst = arg_default_start_limit_burst; /* On 4.15+ with unified hierarchy, CPU accounting is essentially free as it doesn't require the CPU * controller to be enabled, so the default is to enable it unless we got told otherwise. */ if (arg_default_cpu_accounting >= 0) m->default_cpu_accounting = arg_default_cpu_accounting; else m->default_cpu_accounting = cpu_accounting_is_cheap(); m->default_io_accounting = arg_default_io_accounting; m->default_ip_accounting = arg_default_ip_accounting; m->default_blockio_accounting = arg_default_blockio_accounting; m->default_memory_accounting = arg_default_memory_accounting; m->default_tasks_accounting = arg_default_tasks_accounting; m->default_tasks_max = arg_default_tasks_max; m->default_oom_policy = arg_default_oom_policy; (void) manager_set_default_rlimits(m, arg_default_rlimit); (void) manager_default_environment(m); (void) manager_transient_environment_add(m, arg_default_environment); } static void set_manager_settings(Manager *m) { assert(m); /* Propagates the various manager settings into the manager object, i.e. properties that * effect the manager itself (as opposed to just being inherited into newly allocated * units, see set_manager_defaults() above). */ m->confirm_spawn = arg_confirm_spawn; m->service_watchdogs = arg_service_watchdogs; m->cad_burst_action = arg_cad_burst_action; manager_set_watchdog(m, WATCHDOG_RUNTIME, arg_runtime_watchdog); manager_set_watchdog(m, WATCHDOG_REBOOT, arg_reboot_watchdog); manager_set_watchdog(m, WATCHDOG_KEXEC, arg_kexec_watchdog); manager_set_show_status(m, arg_show_status, "commandline"); m->status_unit_format = arg_status_unit_format; } static int parse_argv(int argc, char *argv[]) { enum { ARG_LOG_LEVEL = 0x100, ARG_LOG_TARGET, ARG_LOG_COLOR, ARG_LOG_LOCATION, ARG_LOG_TIME, ARG_UNIT, ARG_SYSTEM, ARG_USER, ARG_TEST, ARG_NO_PAGER, ARG_VERSION, ARG_DUMP_CONFIGURATION_ITEMS, ARG_DUMP_BUS_PROPERTIES, ARG_BUS_INTROSPECT, ARG_DUMP_CORE, ARG_CRASH_CHVT, ARG_CRASH_SHELL, ARG_CRASH_REBOOT, ARG_CONFIRM_SPAWN, ARG_SHOW_STATUS, ARG_DESERIALIZE, ARG_SWITCHED_ROOT, ARG_DEFAULT_STD_OUTPUT, ARG_DEFAULT_STD_ERROR, ARG_MACHINE_ID, ARG_SERVICE_WATCHDOGS, }; static const struct option options[] = { { "log-level", required_argument, NULL, ARG_LOG_LEVEL }, { "log-target", required_argument, NULL, ARG_LOG_TARGET }, { "log-color", optional_argument, NULL, ARG_LOG_COLOR }, { "log-location", optional_argument, NULL, ARG_LOG_LOCATION }, { "log-time", optional_argument, NULL, ARG_LOG_TIME }, { "unit", required_argument, NULL, ARG_UNIT }, { "system", no_argument, NULL, ARG_SYSTEM }, { "user", no_argument, NULL, ARG_USER }, { "test", no_argument, NULL, ARG_TEST }, { "no-pager", no_argument, NULL, ARG_NO_PAGER }, { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, ARG_VERSION }, { "dump-configuration-items", no_argument, NULL, ARG_DUMP_CONFIGURATION_ITEMS }, { "dump-bus-properties", no_argument, NULL, ARG_DUMP_BUS_PROPERTIES }, { "bus-introspect", required_argument, NULL, ARG_BUS_INTROSPECT }, { "dump-core", optional_argument, NULL, ARG_DUMP_CORE }, { "crash-chvt", required_argument, NULL, ARG_CRASH_CHVT }, { "crash-shell", optional_argument, NULL, ARG_CRASH_SHELL }, { "crash-reboot", optional_argument, NULL, ARG_CRASH_REBOOT }, { "confirm-spawn", optional_argument, NULL, ARG_CONFIRM_SPAWN }, { "show-status", optional_argument, NULL, ARG_SHOW_STATUS }, { "deserialize", required_argument, NULL, ARG_DESERIALIZE }, { "switched-root", no_argument, NULL, ARG_SWITCHED_ROOT }, { "default-standard-output", required_argument, NULL, ARG_DEFAULT_STD_OUTPUT, }, { "default-standard-error", required_argument, NULL, ARG_DEFAULT_STD_ERROR, }, { "machine-id", required_argument, NULL, ARG_MACHINE_ID }, { "service-watchdogs", required_argument, NULL, ARG_SERVICE_WATCHDOGS }, {} }; int c, r; assert(argc >= 1); assert(argv); if (getpid_cached() == 1) opterr = 0; while ((c = getopt_long(argc, argv, "hDbsz:", options, NULL)) >= 0) switch (c) { case ARG_LOG_LEVEL: r = log_set_max_level_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log level \"%s\": %m", optarg); break; case ARG_LOG_TARGET: r = log_set_target_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log target \"%s\": %m", optarg); break; case ARG_LOG_COLOR: if (optarg) { r = log_show_color_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log color setting \"%s\": %m", optarg); } else log_show_color(true); break; case ARG_LOG_LOCATION: if (optarg) { r = log_show_location_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log location setting \"%s\": %m", optarg); } else log_show_location(true); break; case ARG_LOG_TIME: if (optarg) { r = log_show_time_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse log time setting \"%s\": %m", optarg); } else log_show_time(true); break; case ARG_DEFAULT_STD_OUTPUT: r = exec_output_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse default standard output setting \"%s\": %m", optarg); arg_default_std_output = r; break; case ARG_DEFAULT_STD_ERROR: r = exec_output_from_string(optarg); if (r < 0) return log_error_errno(r, "Failed to parse default standard error output setting \"%s\": %m", optarg); arg_default_std_error = r; break; case ARG_UNIT: r = free_and_strdup(&arg_default_unit, optarg); if (r < 0) return log_error_errno(r, "Failed to set default unit \"%s\": %m", optarg); break; case ARG_SYSTEM: arg_system = true; break; case ARG_USER: arg_system = false; break; case ARG_TEST: arg_action = ACTION_TEST; break; case ARG_NO_PAGER: arg_pager_flags |= PAGER_DISABLE; break; case ARG_VERSION: arg_action = ACTION_VERSION; break; case ARG_DUMP_CONFIGURATION_ITEMS: arg_action = ACTION_DUMP_CONFIGURATION_ITEMS; break; case ARG_DUMP_BUS_PROPERTIES: arg_action = ACTION_DUMP_BUS_PROPERTIES; break; case ARG_BUS_INTROSPECT: arg_bus_introspect = optarg; arg_action = ACTION_BUS_INTROSPECT; break; case ARG_DUMP_CORE: if (!optarg) arg_dump_core = true; else { r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse dump core boolean: \"%s\": %m", optarg); arg_dump_core = r; } break; case ARG_CRASH_CHVT: r = parse_crash_chvt(optarg, &arg_crash_chvt); if (r < 0) return log_error_errno(r, "Failed to parse crash virtual terminal index: \"%s\": %m", optarg); break; case ARG_CRASH_SHELL: if (!optarg) arg_crash_shell = true; else { r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse crash shell boolean: \"%s\": %m", optarg); arg_crash_shell = r; } break; case ARG_CRASH_REBOOT: if (!optarg) arg_crash_reboot = true; else { r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse crash shell boolean: \"%s\": %m", optarg); arg_crash_reboot = r; } break; case ARG_CONFIRM_SPAWN: arg_confirm_spawn = mfree(arg_confirm_spawn); r = parse_confirm_spawn(optarg, &arg_confirm_spawn); if (r < 0) return log_error_errno(r, "Failed to parse confirm spawn option: \"%s\": %m", optarg); break; case ARG_SERVICE_WATCHDOGS: r = parse_boolean(optarg); if (r < 0) return log_error_errno(r, "Failed to parse service watchdogs boolean: \"%s\": %m", optarg); arg_service_watchdogs = r; break; case ARG_SHOW_STATUS: if (optarg) { r = parse_show_status(optarg, &arg_show_status); if (r < 0) return log_error_errno(r, "Failed to parse show status boolean: \"%s\": %m", optarg); } else arg_show_status = SHOW_STATUS_YES; break; case ARG_DESERIALIZE: { int fd; FILE *f; r = safe_atoi(optarg, &fd); if (r < 0) log_error_errno(r, "Failed to parse deserialize option \"%s\": %m", optarg); if (fd < 0) return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid deserialize fd: %d", fd); (void) fd_cloexec(fd, true); f = fdopen(fd, "r"); if (!f) return log_error_errno(errno, "Failed to open serialization fd %d: %m", fd); safe_fclose(arg_serialization); arg_serialization = f; break; } case ARG_SWITCHED_ROOT: arg_switched_root = true; break; case ARG_MACHINE_ID: r = set_machine_id(optarg); if (r < 0) return log_error_errno(r, "MachineID '%s' is not valid: %m", optarg); break; case 'h': arg_action = ACTION_HELP; break; case 'D': log_set_max_level(LOG_DEBUG); break; case 'b': case 's': case 'z': /* Just to eat away the sysvinit kernel cmdline args that we'll parse in * parse_proc_cmdline_item() or ignore, without any getopt() error messages. */ case '?': if (getpid_cached() != 1) return -EINVAL; else return 0; default: assert_not_reached("Unhandled option code."); } if (optind < argc && getpid_cached() != 1) { /* Hmm, when we aren't run as init system * let's complain about excess arguments */ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Excess arguments."); } return 0; } static int help(void) { _cleanup_free_ char *link = NULL; int r; r = terminal_urlify_man("systemd", "1", &link); if (r < 0) return log_oom(); printf("%s [OPTIONS...]\n\n" "%sStarts and monitors system and user services.%s\n\n" "This program takes no positional arguments.\n\n" "%sOptions%s:\n" " -h --help Show this help\n" " --version Show version\n" " --test Determine initial transaction, dump it and exit\n" " --system In combination with --test: operate as system service manager\n" " --user In combination with --test: operate as per-user service manager\n" " --no-pager Do not pipe output into a pager\n" " --dump-configuration-items Dump understood unit configuration items\n" " --dump-bus-properties Dump exposed bus properties\n" " --bus-introspect=PATH Write XML introspection data\n" " --unit=UNIT Set default unit\n" " --dump-core[=BOOL] Dump core on crash\n" " --crash-vt=NR Change to specified VT on crash\n" " --crash-reboot[=BOOL] Reboot on crash\n" " --crash-shell[=BOOL] Run shell on crash\n" " --confirm-spawn[=BOOL] Ask for confirmation when spawning processes\n" " --show-status[=BOOL] Show status updates on the console during bootup\n" " --log-target=TARGET Set log target (console, journal, kmsg, journal-or-kmsg, null)\n" " --log-level=LEVEL Set log level (debug, info, notice, warning, err, crit, alert, emerg)\n" " --log-color[=BOOL] Highlight important log messages\n" " --log-location[=BOOL] Include code location in log messages\n" " --log-time[=BOOL] Prefix log messages with current time\n" " --default-standard-output= Set default standard output for services\n" " --default-standard-error= Set default standard error output for services\n" "\nSee the %s for details.\n" , program_invocation_short_name , ansi_highlight(), ansi_normal() , ansi_underline(), ansi_normal() , link ); return 0; } static int prepare_reexecute( Manager *m, FILE **ret_f, FDSet **ret_fds, bool switching_root) { _cleanup_fdset_free_ FDSet *fds = NULL; _cleanup_fclose_ FILE *f = NULL; int r; assert(m); assert(ret_f); assert(ret_fds); r = manager_open_serialization(m, &f); if (r < 0) return log_error_errno(r, "Failed to create serialization file: %m"); /* Make sure nothing is really destructed when we shut down */ m->n_reloading++; bus_manager_send_reloading(m, true); fds = fdset_new(); if (!fds) return log_oom(); r = manager_serialize(m, f, fds, switching_root); if (r < 0) return r; if (fseeko(f, 0, SEEK_SET) == (off_t) -1) return log_error_errno(errno, "Failed to rewind serialization fd: %m"); r = fd_cloexec(fileno(f), false); if (r < 0) return log_error_errno(r, "Failed to disable O_CLOEXEC for serialization: %m"); r = fdset_cloexec(fds, false); if (r < 0) return log_error_errno(r, "Failed to disable O_CLOEXEC for serialization fds: %m"); *ret_f = TAKE_PTR(f); *ret_fds = TAKE_PTR(fds); return 0; } static void bump_file_max_and_nr_open(void) { /* Let's bump fs.file-max and fs.nr_open to their respective maximums. On current kernels large numbers of file * descriptors are no longer a performance problem and their memory is properly tracked by memcg, thus counting * them and limiting them in another two layers of limits is unnecessary and just complicates things. This * function hence turns off 2 of the 4 levels of limits on file descriptors, and makes RLIMIT_NOLIMIT (soft + * hard) the only ones that really matter. */ #if BUMP_PROC_SYS_FS_FILE_MAX || BUMP_PROC_SYS_FS_NR_OPEN int r; #endif #if BUMP_PROC_SYS_FS_FILE_MAX /* The maximum the kernel allows for this since 5.2 is LONG_MAX, use that. (Previously thing where * different but the operation would fail silently.) */ r = sysctl_writef("fs/file-max", "%li\n", LONG_MAX); if (r < 0) log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r, "Failed to bump fs.file-max, ignoring: %m"); #endif #if BUMP_PROC_SYS_FS_NR_OPEN int v = INT_MAX; /* Arg! The kernel enforces maximum and minimum values on the fs.nr_open, but we don't really know what they * are. The expression by which the maximum is determined is dependent on the architecture, and is something we * don't really want to copy to userspace, as it is dependent on implementation details of the kernel. Since * the kernel doesn't expose the maximum value to us, we can only try and hope. Hence, let's start with * INT_MAX, and then keep halving the value until we find one that works. Ugly? Yes, absolutely, but kernel * APIs are kernel APIs, so what do can we do... 🤯 */ for (;;) { int k; v &= ~(__SIZEOF_POINTER__ - 1); /* Round down to next multiple of the pointer size */ if (v < 1024) { log_warning("Can't bump fs.nr_open, value too small."); break; } k = read_nr_open(); if (k < 0) { log_error_errno(k, "Failed to read fs.nr_open: %m"); break; } if (k >= v) { /* Already larger */ log_debug("Skipping bump, value is already larger."); break; } r = sysctl_writef("fs/nr_open", "%i\n", v); if (r == -EINVAL) { log_debug("Couldn't write fs.nr_open as %i, halving it.", v); v /= 2; continue; } if (r < 0) { log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r, "Failed to bump fs.nr_open, ignoring: %m"); break; } log_debug("Successfully bumped fs.nr_open to %i", v); break; } #endif } static int bump_rlimit_nofile(struct rlimit *saved_rlimit) { struct rlimit new_rlimit; int r, nr; /* Get the underlying absolute limit the kernel enforces */ nr = read_nr_open(); /* Calculate the new limits to use for us. Never lower from what we inherited. */ new_rlimit = (struct rlimit) { .rlim_cur = MAX((rlim_t) nr, saved_rlimit->rlim_cur), .rlim_max = MAX((rlim_t) nr, saved_rlimit->rlim_max), }; /* Shortcut if nothing changes. */ if (saved_rlimit->rlim_max >= new_rlimit.rlim_max && saved_rlimit->rlim_cur >= new_rlimit.rlim_cur) { log_debug("RLIMIT_NOFILE is already as high or higher than we need it, not bumping."); return 0; } /* Bump up the resource limit for ourselves substantially, all the way to the maximum the kernel allows, for * both hard and soft. */ r = setrlimit_closest(RLIMIT_NOFILE, &new_rlimit); if (r < 0) return log_warning_errno(r, "Setting RLIMIT_NOFILE failed, ignoring: %m"); return 0; } static int bump_rlimit_memlock(struct rlimit *saved_rlimit) { struct rlimit new_rlimit; uint64_t mm; int r; /* BPF_MAP_TYPE_LPM_TRIE bpf maps are charged against RLIMIT_MEMLOCK, even if we have CAP_IPC_LOCK which should * normally disable such checks. We need them to implement IPAddressAllow= and IPAddressDeny=, hence let's bump * the value high enough for our user. */ /* Using MAX() on resource limits only is safe if RLIM_INFINITY is > 0. POSIX declares that rlim_t * must be unsigned, hence this is a given, but let's make this clear here. */ assert_cc(RLIM_INFINITY > 0); mm = physical_memory() / 8; /* Let's scale how much we allow to be locked by the amount of physical * RAM. We allow an eighth to be locked by us, just to pick a value. */ new_rlimit = (struct rlimit) { .rlim_cur = MAX3(HIGH_RLIMIT_MEMLOCK, saved_rlimit->rlim_cur, mm), .rlim_max = MAX3(HIGH_RLIMIT_MEMLOCK, saved_rlimit->rlim_max, mm), }; if (saved_rlimit->rlim_max >= new_rlimit.rlim_cur && saved_rlimit->rlim_cur >= new_rlimit.rlim_max) { log_debug("RLIMIT_MEMLOCK is already as high or higher than we need it, not bumping."); return 0; } r = setrlimit_closest(RLIMIT_MEMLOCK, &new_rlimit); if (r < 0) return log_warning_errno(r, "Setting RLIMIT_MEMLOCK failed, ignoring: %m"); return 0; } static void test_usr(void) { /* Check that /usr is either on the same file system as / or mounted already. */ if (dir_is_empty("/usr") <= 0) return; log_warning("/usr appears to be on its own filesystem and is not already mounted. This is not a supported setup. " "Some things will probably break (sometimes even silently) in mysterious ways. " "Consult http://freedesktop.org/wiki/Software/systemd/separate-usr-is-broken for more information."); } static int enforce_syscall_archs(Set *archs) { #if HAVE_SECCOMP int r; if (!is_seccomp_available()) return 0; r = seccomp_restrict_archs(arg_syscall_archs); if (r < 0) return log_error_errno(r, "Failed to enforce system call architecture restrication: %m"); #endif return 0; } static int status_welcome(void) { _cleanup_free_ char *pretty_name = NULL, *ansi_color = NULL; int r; if (!show_status_on(arg_show_status)) return 0; r = parse_os_release(NULL, "PRETTY_NAME", &pretty_name, "ANSI_COLOR", &ansi_color, NULL); if (r < 0) log_full_errno(r == -ENOENT ? LOG_DEBUG : LOG_WARNING, r, "Failed to read os-release file, ignoring: %m"); if (log_get_show_color()) return status_printf(NULL, 0, "\nWelcome to \x1B[%sm%s\x1B[0m!\n", isempty(ansi_color) ? "1" : ansi_color, isempty(pretty_name) ? "Linux" : pretty_name); else return status_printf(NULL, 0, "\nWelcome to %s!\n", isempty(pretty_name) ? "Linux" : pretty_name); } static int write_container_id(void) { const char *c; int r; c = getenv("container"); if (isempty(c)) return 0; RUN_WITH_UMASK(0022) r = write_string_file("/run/systemd/container", c, WRITE_STRING_FILE_CREATE); if (r < 0) return log_warning_errno(r, "Failed to write /run/systemd/container, ignoring: %m"); return 1; } static int bump_unix_max_dgram_qlen(void) { _cleanup_free_ char *qlen = NULL; unsigned long v; int r; /* Let's bump the net.unix.max_dgram_qlen sysctl. The kernel default of 16 is simply too low. We set the value * really really early during boot, so that it is actually applied to all our sockets, including the * $NOTIFY_SOCKET one. */ r = read_one_line_file("/proc/sys/net/unix/max_dgram_qlen", &qlen); if (r < 0) return log_full_errno(r == -ENOENT ? LOG_DEBUG : LOG_WARNING, r, "Failed to read AF_UNIX datagram queue length, ignoring: %m"); r = safe_atolu(qlen, &v); if (r < 0) return log_warning_errno(r, "Failed to parse AF_UNIX datagram queue length '%s', ignoring: %m", qlen); if (v >= DEFAULT_UNIX_MAX_DGRAM_QLEN) return 0; r = write_string_filef("/proc/sys/net/unix/max_dgram_qlen", WRITE_STRING_FILE_DISABLE_BUFFER, "%lu", DEFAULT_UNIX_MAX_DGRAM_QLEN); if (r < 0) return log_full_errno(IN_SET(r, -EROFS, -EPERM, -EACCES) ? LOG_DEBUG : LOG_WARNING, r, "Failed to bump AF_UNIX datagram queue length, ignoring: %m"); return 1; } static int fixup_environment(void) { _cleanup_free_ char *term = NULL; const char *t; int r; /* Only fix up the environment when we are started as PID 1 */ if (getpid_cached() != 1) return 0; /* We expect the environment to be set correctly if run inside a container. */ if (detect_container() > 0) return 0; /* When started as PID1, the kernel uses /dev/console for our stdios and uses TERM=linux whatever the backend * device used by the console. We try to make a better guess here since some consoles might not have support * for color mode for example. * * However if TERM was configured through the kernel command line then leave it alone. */ r = proc_cmdline_get_key("TERM", 0, &term); if (r < 0) return r; t = term ?: default_term_for_tty("/dev/console"); if (setenv("TERM", t, 1) < 0) return -errno; /* The kernels sets HOME=/ for init. Let's undo this. */ if (path_equal_ptr(getenv("HOME"), "/") && unsetenv("HOME") < 0) log_warning_errno(errno, "Failed to unset $HOME: %m"); return 0; } static void redirect_telinit(int argc, char *argv[]) { /* This is compatibility support for SysV, where calling init as a user is identical to telinit. */ #if HAVE_SYSV_COMPAT if (getpid_cached() == 1) return; if (!strstr(program_invocation_short_name, "init")) return; execv(SYSTEMCTL_BINARY_PATH, argv); log_error_errno(errno, "Failed to exec " SYSTEMCTL_BINARY_PATH ": %m"); exit(EXIT_FAILURE); #endif } static int become_shutdown( const char *shutdown_verb, int retval) { char log_level[DECIMAL_STR_MAX(int) + 1], exit_code[DECIMAL_STR_MAX(uint8_t) + 1], timeout[DECIMAL_STR_MAX(usec_t) + 1]; const char* command_line[13] = { SYSTEMD_SHUTDOWN_BINARY_PATH, shutdown_verb, "--timeout", timeout, "--log-level", log_level, "--log-target", }; _cleanup_strv_free_ char **env_block = NULL; size_t pos = 7; int r; usec_t watchdog_timer = 0; assert(shutdown_verb); assert(!command_line[pos]); env_block = strv_copy(environ); xsprintf(log_level, "%d", log_get_max_level()); xsprintf(timeout, "%" PRI_USEC "us", arg_default_timeout_stop_usec); switch (log_get_target()) { case LOG_TARGET_KMSG: case LOG_TARGET_JOURNAL_OR_KMSG: case LOG_TARGET_SYSLOG_OR_KMSG: command_line[pos++] = "kmsg"; break; case LOG_TARGET_NULL: command_line[pos++] = "null"; break; case LOG_TARGET_CONSOLE: default: command_line[pos++] = "console"; break; }; if (log_get_show_color()) command_line[pos++] = "--log-color"; if (log_get_show_location()) command_line[pos++] = "--log-location"; if (log_get_show_time()) command_line[pos++] = "--log-time"; if (streq(shutdown_verb, "exit")) { command_line[pos++] = "--exit-code"; command_line[pos++] = exit_code; xsprintf(exit_code, "%d", retval); } assert(pos < ELEMENTSOF(command_line)); if (streq(shutdown_verb, "reboot")) watchdog_timer = arg_reboot_watchdog; else if (streq(shutdown_verb, "kexec")) watchdog_timer = arg_kexec_watchdog; if (watchdog_timer > 0 && watchdog_timer != USEC_INFINITY) { char *e; /* If we reboot or kexec let's set the shutdown * watchdog and tell the shutdown binary to * repeatedly ping it */ r = watchdog_set_timeout(&watchdog_timer); watchdog_close(r < 0); /* Tell the binary how often to ping, ignore failure */ if (asprintf(&e, "WATCHDOG_USEC="USEC_FMT, watchdog_timer) > 0) (void) strv_consume(&env_block, e); if (arg_watchdog_device && asprintf(&e, "WATCHDOG_DEVICE=%s", arg_watchdog_device) > 0) (void) strv_consume(&env_block, e); } else watchdog_close(true); /* Avoid the creation of new processes forked by the * kernel; at this point, we will not listen to the * signals anyway */ if (detect_container() <= 0) (void) cg_uninstall_release_agent(SYSTEMD_CGROUP_CONTROLLER); execve(SYSTEMD_SHUTDOWN_BINARY_PATH, (char **) command_line, env_block); return -errno; } static void initialize_clock(void) { int r; /* This is called very early on, before we parse the kernel command line or otherwise figure out why * we are running, but only once. */ if (clock_is_localtime(NULL) > 0) { int min; /* * The very first call of settimeofday() also does a time warp in the kernel. * * In the rtc-in-local time mode, we set the kernel's timezone, and rely on external tools to take care * of maintaining the RTC and do all adjustments. This matches the behavior of Windows, which leaves * the RTC alone if the registry tells that the RTC runs in UTC. */ r = clock_set_timezone(&min); if (r < 0) log_error_errno(r, "Failed to apply local time delta, ignoring: %m"); else log_info("RTC configured in localtime, applying delta of %i minutes to system time.", min); } else if (!in_initrd()) { /* * Do a dummy very first call to seal the kernel's time warp magic. * * Do not call this from inside the initrd. The initrd might not carry /etc/adjtime with LOCAL, but the * real system could be set up that way. In such case, we need to delay the time-warp or the sealing * until we reach the real system. * * Do no set the kernel's timezone. The concept of local time cannot be supported reliably, the time * will jump or be incorrect at every daylight saving time change. All kernel local time concepts will * be treated as UTC that way. */ (void) clock_reset_timewarp(); } r = clock_apply_epoch(); if (r < 0) log_error_errno(r, "Current system time is before build time, but cannot correct: %m"); else if (r > 0) log_info("System time before build time, advancing clock."); } static void apply_clock_update(void) { struct timespec ts; /* This is called later than initialize_clock(), i.e. after we parsed configuration files/kernel * command line and such. */ if (arg_clock_usec == 0) return; if (clock_settime(CLOCK_REALTIME, timespec_store(&ts, arg_clock_usec)) < 0) log_error_errno(errno, "Failed to set system clock to time specified on kernel command line: %m"); else { char buf[FORMAT_TIMESTAMP_MAX]; log_info("Set system clock to %s, as specified on the kernel command line.", format_timestamp(buf, sizeof(buf), arg_clock_usec)); } } static void initialize_coredump(bool skip_setup) { #if ENABLE_COREDUMP if (getpid_cached() != 1) return; /* Don't limit the core dump size, so that coredump handlers such as systemd-coredump (which honour the limit) * will process core dumps for system services by default. */ if (setrlimit(RLIMIT_CORE, &RLIMIT_MAKE_CONST(RLIM_INFINITY)) < 0) log_warning_errno(errno, "Failed to set RLIMIT_CORE: %m"); /* But at the same time, turn off the core_pattern logic by default, so that no * coredumps are stored until the systemd-coredump tool is enabled via * sysctl. However it can be changed via the kernel command line later so core * dumps can still be generated during early startup and in initramfs. */ if (!skip_setup) disable_coredumps(); #endif } static void initialize_core_pattern(bool skip_setup) { int r; if (skip_setup || !arg_early_core_pattern) return; if (getpid_cached() != 1) return; r = write_string_file("/proc/sys/kernel/core_pattern", arg_early_core_pattern, WRITE_STRING_FILE_DISABLE_BUFFER); if (r < 0) log_warning_errno(r, "Failed to write '%s' to /proc/sys/kernel/core_pattern, ignoring: %m", arg_early_core_pattern); } static void update_cpu_affinity(bool skip_setup) { _cleanup_free_ char *mask = NULL; if (skip_setup || !arg_cpu_affinity.set) return; assert(arg_cpu_affinity.allocated > 0); mask = cpu_set_to_string(&arg_cpu_affinity); log_debug("Setting CPU affinity to %s.", strnull(mask)); if (sched_setaffinity(0, arg_cpu_affinity.allocated, arg_cpu_affinity.set) < 0) log_warning_errno(errno, "Failed to set CPU affinity: %m"); } static void update_numa_policy(bool skip_setup) { int r; _cleanup_free_ char *nodes = NULL; const char * policy = NULL; if (skip_setup || !mpol_is_valid(numa_policy_get_type(&arg_numa_policy))) return; if (DEBUG_LOGGING) { policy = mpol_to_string(numa_policy_get_type(&arg_numa_policy)); nodes = cpu_set_to_range_string(&arg_numa_policy.nodes); log_debug("Setting NUMA policy to %s, with nodes %s.", strnull(policy), strnull(nodes)); } r = apply_numa_policy(&arg_numa_policy); if (r == -EOPNOTSUPP) log_debug_errno(r, "NUMA support not available, ignoring."); else if (r < 0) log_warning_errno(r, "Failed to set NUMA memory policy: %m"); } static void do_reexecute( int argc, char *argv[], const struct rlimit *saved_rlimit_nofile, const struct rlimit *saved_rlimit_memlock, FDSet *fds, const char *switch_root_dir, const char *switch_root_init, const char **ret_error_message) { unsigned i, j, args_size; const char **args; int r; assert(saved_rlimit_nofile); assert(saved_rlimit_memlock); assert(ret_error_message); /* Close and disarm the watchdog, so that the new instance can reinitialize it, but doesn't get rebooted while * we do that */ watchdog_close(true); /* Reset RLIMIT_NOFILE + RLIMIT_MEMLOCK back to the kernel defaults, so that the new systemd can pass * the kernel default to its child processes */ if (saved_rlimit_nofile->rlim_cur != 0) (void) setrlimit(RLIMIT_NOFILE, saved_rlimit_nofile); if (saved_rlimit_memlock->rlim_cur != RLIM_INFINITY) (void) setrlimit(RLIMIT_MEMLOCK, saved_rlimit_memlock); if (switch_root_dir) { /* Kill all remaining processes from the initrd, but don't wait for them, so that we can handle the * SIGCHLD for them after deserializing. */ broadcast_signal(SIGTERM, false, true, arg_default_timeout_stop_usec); /* And switch root with MS_MOVE, because we remove the old directory afterwards and detach it. */ r = switch_root(switch_root_dir, "/mnt", true, MS_MOVE); if (r < 0) log_error_errno(r, "Failed to switch root, trying to continue: %m"); } args_size = MAX(6, argc+1); args = newa(const char*, args_size); if (!switch_root_init) { char sfd[DECIMAL_STR_MAX(int) + 1]; /* First try to spawn ourselves with the right path, and with full serialization. We do this only if * the user didn't specify an explicit init to spawn. */ assert(arg_serialization); assert(fds); xsprintf(sfd, "%i", fileno(arg_serialization)); i = 0; args[i++] = SYSTEMD_BINARY_PATH; if (switch_root_dir) args[i++] = "--switched-root"; args[i++] = arg_system ? "--system" : "--user"; args[i++] = "--deserialize"; args[i++] = sfd; args[i++] = NULL; assert(i <= args_size); /* * We want valgrind to print its memory usage summary before reexecution. Valgrind won't do this is on * its own on exec(), but it will do it on exit(). Hence, to ensure we get a summary here, fork() off * a child, let it exit() cleanly, so that it prints the summary, and wait() for it in the parent, * before proceeding into the exec(). */ valgrind_summary_hack(); (void) execv(args[0], (char* const*) args); log_debug_errno(errno, "Failed to execute our own binary, trying fallback: %m"); } /* Try the fallback, if there is any, without any serialization. We pass the original argv[] and envp[]. (Well, * modulo the ordering changes due to getopt() in argv[], and some cleanups in envp[], but let's hope that * doesn't matter.) */ arg_serialization = safe_fclose(arg_serialization); fds = fdset_free(fds); /* Reopen the console */ (void) make_console_stdio(); for (j = 1, i = 1; j < (unsigned) argc; j++) args[i++] = argv[j]; args[i++] = NULL; assert(i <= args_size); /* Re-enable any blocked signals, especially important if we switch from initial ramdisk to init=... */ (void) reset_all_signal_handlers(); (void) reset_signal_mask(); (void) rlimit_nofile_safe(); if (switch_root_init) { args[0] = switch_root_init; (void) execve(args[0], (char* const*) args, saved_env); log_warning_errno(errno, "Failed to execute configured init, trying fallback: %m"); } args[0] = "/sbin/init"; (void) execv(args[0], (char* const*) args); r = -errno; manager_status_printf(NULL, STATUS_TYPE_EMERGENCY, ANSI_HIGHLIGHT_RED " !! " ANSI_NORMAL, "Failed to execute /sbin/init"); if (r == -ENOENT) { log_warning("No /sbin/init, trying fallback"); args[0] = "/bin/sh"; args[1] = NULL; (void) execve(args[0], (char* const*) args, saved_env); log_error_errno(errno, "Failed to execute /bin/sh, giving up: %m"); } else log_warning_errno(r, "Failed to execute /sbin/init, giving up: %m"); *ret_error_message = "Failed to execute fallback shell"; } static int invoke_main_loop( Manager *m, const struct rlimit *saved_rlimit_nofile, const struct rlimit *saved_rlimit_memlock, bool *ret_reexecute, int *ret_retval, /* Return parameters relevant for shutting down */ const char **ret_shutdown_verb, /* … */ FDSet **ret_fds, /* Return parameters for reexecuting */ char **ret_switch_root_dir, /* … */ char **ret_switch_root_init, /* … */ const char **ret_error_message) { int r; assert(m); assert(saved_rlimit_nofile); assert(saved_rlimit_memlock); assert(ret_reexecute); assert(ret_retval); assert(ret_shutdown_verb); assert(ret_fds); assert(ret_switch_root_dir); assert(ret_switch_root_init); assert(ret_error_message); for (;;) { r = manager_loop(m); if (r < 0) { *ret_error_message = "Failed to run main loop"; return log_emergency_errno(r, "Failed to run main loop: %m"); } switch ((ManagerObjective) r) { case MANAGER_RELOAD: { LogTarget saved_log_target; int saved_log_level; log_info("Reloading."); /* First, save any overridden log level/target, then parse the configuration file, which might * change the log level to new settings. */ saved_log_level = m->log_level_overridden ? log_get_max_level() : -1; saved_log_target = m->log_target_overridden ? log_get_target() : _LOG_TARGET_INVALID; (void) parse_configuration(saved_rlimit_nofile, saved_rlimit_memlock); set_manager_defaults(m); set_manager_settings(m); update_cpu_affinity(false); update_numa_policy(false); if (saved_log_level >= 0) manager_override_log_level(m, saved_log_level); if (saved_log_target >= 0) manager_override_log_target(m, saved_log_target); r = manager_reload(m); if (r < 0) /* Reloading failed before the point of no return. Let's continue running as if nothing happened. */ m->objective = MANAGER_OK; break; } case MANAGER_REEXECUTE: r = prepare_reexecute(m, &arg_serialization, ret_fds, false); if (r < 0) { *ret_error_message = "Failed to prepare for reexecution"; return r; } log_notice("Reexecuting."); *ret_reexecute = true; *ret_retval = EXIT_SUCCESS; *ret_shutdown_verb = NULL; *ret_switch_root_dir = *ret_switch_root_init = NULL; return 0; case MANAGER_SWITCH_ROOT: if (!m->switch_root_init) { r = prepare_reexecute(m, &arg_serialization, ret_fds, true); if (r < 0) { *ret_error_message = "Failed to prepare for reexecution"; return r; } } else *ret_fds = NULL; log_notice("Switching root."); *ret_reexecute = true; *ret_retval = EXIT_SUCCESS; *ret_shutdown_verb = NULL; /* Steal the switch root parameters */ *ret_switch_root_dir = TAKE_PTR(m->switch_root); *ret_switch_root_init = TAKE_PTR(m->switch_root_init); return 0; case MANAGER_EXIT: if (MANAGER_IS_USER(m)) { log_debug("Exit."); *ret_reexecute = false; *ret_retval = m->return_value; *ret_shutdown_verb = NULL; *ret_fds = NULL; *ret_switch_root_dir = *ret_switch_root_init = NULL; return 0; } _fallthrough_; case MANAGER_REBOOT: case MANAGER_POWEROFF: case MANAGER_HALT: case MANAGER_KEXEC: { static const char * const table[_MANAGER_OBJECTIVE_MAX] = { [MANAGER_EXIT] = "exit", [MANAGER_REBOOT] = "reboot", [MANAGER_POWEROFF] = "poweroff", [MANAGER_HALT] = "halt", [MANAGER_KEXEC] = "kexec", }; log_notice("Shutting down."); *ret_reexecute = false; *ret_retval = m->return_value; assert_se(*ret_shutdown_verb = table[m->objective]); *ret_fds = NULL; *ret_switch_root_dir = *ret_switch_root_init = NULL; return 0; } default: assert_not_reached("Unknown or unexpected manager objective."); } } } static void log_execution_mode(bool *ret_first_boot) { assert(ret_first_boot); if (arg_system) { int v; log_info("systemd " GIT_VERSION " running in %ssystem mode. (" SYSTEMD_FEATURES ")", arg_action == ACTION_TEST ? "test " : "" ); v = detect_virtualization(); if (v > 0) log_info("Detected virtualization %s.", virtualization_to_string(v)); log_info("Detected architecture %s.", architecture_to_string(uname_architecture())); if (in_initrd()) { *ret_first_boot = false; log_info("Running in initial RAM disk."); } else { /* Let's check whether we are in first boot, i.e. whether /etc is still unpopulated. We use * /etc/machine-id as flag file, for this: if it exists we assume /etc is populated, if it * doesn't it's unpopulated. This allows container managers and installers to provision a * couple of files already. If the container manager wants to provision the machine ID itself * it should pass $container_uuid to PID 1. */ *ret_first_boot = access("/etc/machine-id", F_OK) < 0; if (*ret_first_boot) log_info("Running with unpopulated /etc."); } } else { if (DEBUG_LOGGING) { _cleanup_free_ char *t; t = uid_to_name(getuid()); log_debug("systemd " GIT_VERSION " running in %suser mode for user " UID_FMT "/%s. (" SYSTEMD_FEATURES ")", arg_action == ACTION_TEST ? " test" : "", getuid(), strna(t)); } *ret_first_boot = false; } } static int initialize_runtime( bool skip_setup, struct rlimit *saved_rlimit_nofile, struct rlimit *saved_rlimit_memlock, const char **ret_error_message) { int r; assert(ret_error_message); /* Sets up various runtime parameters. Many of these initializations are conditionalized: * * - Some only apply to --system instances * - Some only apply to --user instances * - Some only apply when we first start up, but not when we reexecute */ if (arg_action != ACTION_RUN) return 0; update_cpu_affinity(skip_setup); update_numa_policy(skip_setup); if (arg_system) { /* Make sure we leave a core dump without panicking the kernel. */ install_crash_handler(); if (!skip_setup) { r = mount_cgroup_controllers(); if (r < 0) { *ret_error_message = "Failed to mount cgroup hierarchies"; return r; } status_welcome(); hostname_setup(); machine_id_setup(NULL, arg_machine_id, NULL); (void) loopback_setup(); bump_unix_max_dgram_qlen(); bump_file_max_and_nr_open(); test_usr(); write_container_id(); } if (arg_watchdog_device) { r = watchdog_set_device(arg_watchdog_device); if (r < 0) log_warning_errno(r, "Failed to set watchdog device to %s, ignoring: %m", arg_watchdog_device); } } if (arg_timer_slack_nsec != NSEC_INFINITY) if (prctl(PR_SET_TIMERSLACK, arg_timer_slack_nsec) < 0) log_warning_errno(errno, "Failed to adjust timer slack, ignoring: %m"); if (arg_system && !cap_test_all(arg_capability_bounding_set)) { r = capability_bounding_set_drop_usermode(arg_capability_bounding_set); if (r < 0) { *ret_error_message = "Failed to drop capability bounding set of usermode helpers"; return log_emergency_errno(r, "Failed to drop capability bounding set of usermode helpers: %m"); } r = capability_bounding_set_drop(arg_capability_bounding_set, true); if (r < 0) { *ret_error_message = "Failed to drop capability bounding set"; return log_emergency_errno(r, "Failed to drop capability bounding set: %m"); } } if (arg_system && arg_no_new_privs) { if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) { *ret_error_message = "Failed to disable new privileges"; return log_emergency_errno(errno, "Failed to disable new privileges: %m"); } } if (arg_syscall_archs) { r = enforce_syscall_archs(arg_syscall_archs); if (r < 0) { *ret_error_message = "Failed to set syscall architectures"; return r; } } if (!arg_system) /* Become reaper of our children */ if (prctl(PR_SET_CHILD_SUBREAPER, 1) < 0) log_warning_errno(errno, "Failed to make us a subreaper: %m"); /* Bump up RLIMIT_NOFILE for systemd itself */ (void) bump_rlimit_nofile(saved_rlimit_nofile); (void) bump_rlimit_memlock(saved_rlimit_memlock); return 0; } static int do_queue_default_job( Manager *m, const char **ret_error_message) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; const char *unit; Job *job; Unit *target; int r; if (arg_default_unit) unit = arg_default_unit; else if (in_initrd()) unit = SPECIAL_INITRD_TARGET; else unit = SPECIAL_DEFAULT_TARGET; log_debug("Activating default unit: %s", unit); r = manager_load_startable_unit_or_warn(m, unit, NULL, &target); if (r < 0 && in_initrd() && !arg_default_unit) { /* Fall back to default.target, which we used to always use by default. Only do this if no * explicit configuration was given. */ log_info("Falling back to " SPECIAL_DEFAULT_TARGET "."); r = manager_load_startable_unit_or_warn(m, SPECIAL_DEFAULT_TARGET, NULL, &target); } if (r < 0) { log_info("Falling back to " SPECIAL_RESCUE_TARGET "."); r = manager_load_startable_unit_or_warn(m, SPECIAL_RESCUE_TARGET, NULL, &target); if (r < 0) { *ret_error_message = r == -ERFKILL ? SPECIAL_RESCUE_TARGET " masked" : "Failed to load " SPECIAL_RESCUE_TARGET; return r; } } assert(target->load_state == UNIT_LOADED); r = manager_add_job(m, JOB_START, target, JOB_ISOLATE, NULL, &error, &job); if (r == -EPERM) { log_debug_errno(r, "Default target could not be isolated, starting instead: %s", bus_error_message(&error, r)); sd_bus_error_free(&error); r = manager_add_job(m, JOB_START, target, JOB_REPLACE, NULL, &error, &job); if (r < 0) { *ret_error_message = "Failed to start default target"; return log_emergency_errno(r, "Failed to start default target: %s", bus_error_message(&error, r)); } } else if (r < 0) { *ret_error_message = "Failed to isolate default target"; return log_emergency_errno(r, "Failed to isolate default target: %s", bus_error_message(&error, r)); } else log_info("Queued %s job for default target %s.", job_type_to_string(job->type), unit_status_string(job->unit)); m->default_unit_job_id = job->id; return 0; } static void save_rlimits(struct rlimit *saved_rlimit_nofile, struct rlimit *saved_rlimit_memlock) { assert(saved_rlimit_nofile); assert(saved_rlimit_memlock); if (getrlimit(RLIMIT_NOFILE, saved_rlimit_nofile) < 0) log_warning_errno(errno, "Reading RLIMIT_NOFILE failed, ignoring: %m"); if (getrlimit(RLIMIT_MEMLOCK, saved_rlimit_memlock) < 0) log_warning_errno(errno, "Reading RLIMIT_MEMLOCK failed, ignoring: %m"); } static void fallback_rlimit_nofile(const struct rlimit *saved_rlimit_nofile) { struct rlimit *rl; if (arg_default_rlimit[RLIMIT_NOFILE]) return; /* Make sure forked processes get limits based on the original kernel setting */ rl = newdup(struct rlimit, saved_rlimit_nofile, 1); if (!rl) { log_oom(); return; } /* Bump the hard limit for system services to a substantially higher value. The default * hard limit current kernels set is pretty low (4K), mostly for historical * reasons. According to kernel developers, the fd handling in recent kernels has been * optimized substantially enough, so that we can bump the limit now, without paying too * high a price in memory or performance. Note however that we only bump the hard limit, * not the soft limit. That's because select() works the way it works, and chokes on fds * >= 1024. If we'd bump the soft limit globally, it might accidentally happen to * unexpecting programs that they get fds higher than what they can process using * select(). By only bumping the hard limit but leaving the low limit as it is we avoid * this pitfall: programs that are written by folks aware of the select() problem in mind * (and thus use poll()/epoll instead of select(), the way everybody should) can * explicitly opt into high fds by bumping their soft limit beyond 1024, to the hard limit * we pass. */ if (arg_system) { int nr; /* Get the underlying absolute limit the kernel enforces */ nr = read_nr_open(); rl->rlim_max = MIN((rlim_t) nr, MAX(rl->rlim_max, (rlim_t) HIGH_RLIMIT_NOFILE)); } /* If for some reason we were invoked with a soft limit above 1024 (which should never * happen!, but who knows what we get passed in from pam_limit when invoked as --user * instance), then lower what we pass on to not confuse our children */ rl->rlim_cur = MIN(rl->rlim_cur, (rlim_t) FD_SETSIZE); arg_default_rlimit[RLIMIT_NOFILE] = rl; } static void fallback_rlimit_memlock(const struct rlimit *saved_rlimit_memlock) { struct rlimit *rl; /* Pass the original value down to invoked processes */ if (arg_default_rlimit[RLIMIT_MEMLOCK]) return; rl = newdup(struct rlimit, saved_rlimit_memlock, 1); if (!rl) { log_oom(); return; } arg_default_rlimit[RLIMIT_MEMLOCK] = rl; } static void reset_arguments(void) { /* Frees/resets arg_* variables, with a few exceptions commented below. */ arg_default_unit = mfree(arg_default_unit); /* arg_system — ignore */ arg_dump_core = true; arg_crash_chvt = -1; arg_crash_shell = false; arg_crash_reboot = false; arg_confirm_spawn = mfree(arg_confirm_spawn); arg_show_status = _SHOW_STATUS_INVALID; arg_status_unit_format = STATUS_UNIT_FORMAT_DEFAULT; arg_switched_root = false; arg_pager_flags = 0; arg_service_watchdogs = true; arg_default_std_output = EXEC_OUTPUT_JOURNAL; arg_default_std_error = EXEC_OUTPUT_INHERIT; arg_default_restart_usec = DEFAULT_RESTART_USEC; arg_default_timeout_start_usec = DEFAULT_TIMEOUT_USEC; arg_default_timeout_stop_usec = DEFAULT_TIMEOUT_USEC; arg_default_timeout_abort_usec = DEFAULT_TIMEOUT_USEC; arg_default_timeout_abort_set = false; arg_default_start_limit_interval = DEFAULT_START_LIMIT_INTERVAL; arg_default_start_limit_burst = DEFAULT_START_LIMIT_BURST; arg_runtime_watchdog = 0; arg_reboot_watchdog = 10 * USEC_PER_MINUTE; arg_kexec_watchdog = 0; arg_early_core_pattern = NULL; arg_watchdog_device = NULL; arg_default_environment = strv_free(arg_default_environment); rlimit_free_all(arg_default_rlimit); arg_capability_bounding_set = CAP_ALL; arg_no_new_privs = false; arg_timer_slack_nsec = NSEC_INFINITY; arg_default_timer_accuracy_usec = 1 * USEC_PER_MINUTE; arg_syscall_archs = set_free(arg_syscall_archs); /* arg_serialization — ignore */ arg_default_cpu_accounting = -1; arg_default_io_accounting = false; arg_default_ip_accounting = false; arg_default_blockio_accounting = false; arg_default_memory_accounting = MEMORY_ACCOUNTING_DEFAULT; arg_default_tasks_accounting = true; arg_default_tasks_max = DEFAULT_TASKS_MAX; arg_machine_id = (sd_id128_t) {}; arg_cad_burst_action = EMERGENCY_ACTION_REBOOT_FORCE; arg_default_oom_policy = OOM_STOP; cpu_set_reset(&arg_cpu_affinity); numa_policy_reset(&arg_numa_policy); } static int parse_configuration(const struct rlimit *saved_rlimit_nofile, const struct rlimit *saved_rlimit_memlock) { int r; assert(saved_rlimit_nofile); assert(saved_rlimit_memlock); /* Assign configuration defaults */ reset_arguments(); r = parse_config_file(); if (r < 0) log_warning_errno(r, "Failed to parse config file, ignoring: %m"); if (arg_system) { r = proc_cmdline_parse(parse_proc_cmdline_item, NULL, 0); if (r < 0) log_warning_errno(r, "Failed to parse kernel command line, ignoring: %m"); } /* Initialize some default rlimits for services if they haven't been configured */ fallback_rlimit_nofile(saved_rlimit_nofile); fallback_rlimit_memlock(saved_rlimit_memlock); /* Note that this also parses bits from the kernel command line, including "debug". */ log_parse_environment(); /* Initialize the show status setting if it hasn't been set explicitly yet */ if (arg_show_status == _SHOW_STATUS_INVALID) arg_show_status = SHOW_STATUS_YES; return 0; } static int safety_checks(void) { if (getpid_cached() == 1 && arg_action != ACTION_RUN) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Unsupported execution mode while PID 1."); if (getpid_cached() == 1 && !arg_system) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Can't run --user mode as PID 1."); if (arg_action == ACTION_RUN && arg_system && getpid_cached() != 1) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Can't run system mode unless PID 1."); if (arg_action == ACTION_TEST && geteuid() == 0) return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Don't run test mode as root."); if (!arg_system && arg_action == ACTION_RUN && sd_booted() <= 0) return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Trying to run as user instance, but the system has not been booted with systemd."); if (!arg_system && arg_action == ACTION_RUN && !getenv("XDG_RUNTIME_DIR")) return log_error_errno(SYNTHETIC_ERRNO(EUNATCH), "Trying to run as user instance, but $XDG_RUNTIME_DIR is not set."); if (arg_system && arg_action == ACTION_RUN && running_in_chroot() > 0) return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "Cannot be run in a chroot() environment."); return 0; } static int initialize_security( bool *loaded_policy, dual_timestamp *security_start_timestamp, dual_timestamp *security_finish_timestamp, const char **ret_error_message) { int r; assert(loaded_policy); assert(security_start_timestamp); assert(security_finish_timestamp); assert(ret_error_message); dual_timestamp_get(security_start_timestamp); r = mac_selinux_setup(loaded_policy); if (r < 0) { *ret_error_message = "Failed to load SELinux policy"; return r; } r = mac_smack_setup(loaded_policy); if (r < 0) { *ret_error_message = "Failed to load SMACK policy"; return r; } r = ima_setup(); if (r < 0) { *ret_error_message = "Failed to load IMA policy"; return r; } dual_timestamp_get(security_finish_timestamp); return 0; } static void test_summary(Manager *m) { assert(m); printf("-> By units:\n"); manager_dump_units(m, stdout, "\t"); printf("-> By jobs:\n"); manager_dump_jobs(m, stdout, "\t"); } static int collect_fds(FDSet **ret_fds, const char **ret_error_message) { int r; assert(ret_fds); assert(ret_error_message); r = fdset_new_fill(ret_fds); if (r < 0) { *ret_error_message = "Failed to allocate fd set"; return log_emergency_errno(r, "Failed to allocate fd set: %m"); } fdset_cloexec(*ret_fds, true); if (arg_serialization) assert_se(fdset_remove(*ret_fds, fileno(arg_serialization)) >= 0); return 0; } static void setup_console_terminal(bool skip_setup) { if (!arg_system) return; /* Become a session leader if we aren't one yet. */ (void) setsid(); /* If we are init, we connect stdin/stdout/stderr to /dev/null and make sure we don't have a controlling * tty. */ (void) release_terminal(); /* Reset the console, but only if this is really init and we are freshly booted */ if (getpid_cached() == 1 && !skip_setup) (void) console_setup(); } static bool early_skip_setup_check(int argc, char *argv[]) { bool found_deserialize = false; int i; /* Determine if this is a reexecution or normal bootup. We do the full command line parsing much later, so * let's just have a quick peek here. Note that if we have switched root, do all the special setup things * anyway, even if in that case we also do deserialization. */ for (i = 1; i < argc; i++) { if (streq(argv[i], "--switched-root")) return false; /* If we switched root, don't skip the setup. */ else if (streq(argv[i], "--deserialize")) found_deserialize = true; } return found_deserialize; /* When we are deserializing, then we are reexecuting, hence avoid the extensive setup */ } static int save_env(void) { char **l; l = strv_copy(environ); if (!l) return -ENOMEM; strv_free_and_replace(saved_env, l); return 0; } int main(int argc, char *argv[]) { dual_timestamp initrd_timestamp = DUAL_TIMESTAMP_NULL, userspace_timestamp = DUAL_TIMESTAMP_NULL, kernel_timestamp = DUAL_TIMESTAMP_NULL, security_start_timestamp = DUAL_TIMESTAMP_NULL, security_finish_timestamp = DUAL_TIMESTAMP_NULL; struct rlimit saved_rlimit_nofile = RLIMIT_MAKE_CONST(0), saved_rlimit_memlock = RLIMIT_MAKE_CONST(RLIM_INFINITY); /* The original rlimits we passed * in. Note we use different values * for the two that indicate whether * these fields are initialized! */ bool skip_setup, loaded_policy = false, queue_default_job = false, first_boot = false, reexecute = false; char *switch_root_dir = NULL, *switch_root_init = NULL; usec_t before_startup, after_startup; static char systemd[] = "systemd"; char timespan[FORMAT_TIMESPAN_MAX]; const char *shutdown_verb = NULL, *error_message = NULL; int r, retval = EXIT_FAILURE; Manager *m = NULL; FDSet *fds = NULL; /* SysV compatibility: redirect init → telinit */ redirect_telinit(argc, argv); /* Take timestamps early on */ dual_timestamp_from_monotonic(&kernel_timestamp, 0); dual_timestamp_get(&userspace_timestamp); /* Figure out whether we need to do initialize the system, or if we already did that because we are * reexecuting */ skip_setup = early_skip_setup_check(argc, argv); /* If we get started via the /sbin/init symlink then we are called 'init'. After a subsequent reexecution we * are then called 'systemd'. That is confusing, hence let's call us systemd right-away. */ program_invocation_short_name = systemd; (void) prctl(PR_SET_NAME, systemd); /* Save the original command line */ save_argc_argv(argc, argv); /* Save the original environment as we might need to restore it if we're requested to execute another * system manager later. */ r = save_env(); if (r < 0) { error_message = "Failed to copy environment block"; goto finish; } /* Make sure that if the user says "syslog" we actually log to the journal. */ log_set_upgrade_syslog_to_journal(true); if (getpid_cached() == 1) { /* When we run as PID 1 force system mode */ arg_system = true; /* Disable the umask logic */ umask(0); /* Make sure that at least initially we do not ever log to journald/syslogd, because it might not be * activated yet (even though the log socket for it exists). */ log_set_prohibit_ipc(true); /* Always reopen /dev/console when running as PID 1 or one of its pre-execve() children. This is * important so that we never end up logging to any foreign stderr, for example if we have to log in a * child process right before execve()'ing the actual binary, at a point in time where socket * activation stderr/stdout area already set up. */ log_set_always_reopen_console(true); if (detect_container() <= 0) { /* Running outside of a container as PID 1 */ log_set_target(LOG_TARGET_KMSG); log_open(); if (in_initrd()) initrd_timestamp = userspace_timestamp; if (!skip_setup) { r = mount_setup_early(); if (r < 0) { error_message = "Failed to mount early API filesystems"; goto finish; } /* Let's open the log backend a second time, in case the first time didn't * work. Quite possibly we have mounted /dev just now, so /dev/kmsg became * available, and it previously wasn't. */ log_open(); disable_printk_ratelimit(); r = initialize_security( &loaded_policy, &security_start_timestamp, &security_finish_timestamp, &error_message); if (r < 0) goto finish; } if (mac_selinux_init() < 0) { error_message = "Failed to initialize SELinux policy"; goto finish; } if (!skip_setup) initialize_clock(); /* Set the default for later on, but don't actually open the logs like this for now. Note that * if we are transitioning from the initrd there might still be journal fd open, and we * shouldn't attempt opening that before we parsed /proc/cmdline which might redirect output * elsewhere. */ log_set_target(LOG_TARGET_JOURNAL_OR_KMSG); } else { /* Running inside a container, as PID 1 */ log_set_target(LOG_TARGET_CONSOLE); log_open(); /* For later on, see above... */ log_set_target(LOG_TARGET_JOURNAL); /* clear the kernel timestamp, * because we are in a container */ kernel_timestamp = DUAL_TIMESTAMP_NULL; } initialize_coredump(skip_setup); r = fixup_environment(); if (r < 0) { log_emergency_errno(r, "Failed to fix up PID 1 environment: %m"); error_message = "Failed to fix up PID1 environment"; goto finish; } } else { /* Running as user instance */ arg_system = false; log_set_target(LOG_TARGET_AUTO); log_open(); /* clear the kernel timestamp, * because we are not PID 1 */ kernel_timestamp = DUAL_TIMESTAMP_NULL; } if (arg_system) { /* Try to figure out if we can use colors with the console. No need to do that for user instances since * they never log into the console. */ log_show_color(colors_enabled()); r = make_null_stdio(); if (r < 0) log_warning_errno(r, "Failed to redirect standard streams to /dev/null, ignoring: %m"); } /* Mount /proc, /sys and friends, so that /proc/cmdline and * /proc/$PID/fd is available. */ if (getpid_cached() == 1) { /* Load the kernel modules early. */ if (!skip_setup) kmod_setup(); r = mount_setup(loaded_policy, skip_setup); if (r < 0) { error_message = "Failed to mount API filesystems"; goto finish; } /* The efivarfs is now mounted, let's read the random seed off it */ (void) efi_take_random_seed(); } /* Save the original RLIMIT_NOFILE/RLIMIT_MEMLOCK so that we can reset it later when * transitioning from the initrd to the main systemd or suchlike. */ save_rlimits(&saved_rlimit_nofile, &saved_rlimit_memlock); /* Reset all signal handlers. */ (void) reset_all_signal_handlers(); (void) ignore_signals(SIGNALS_IGNORE, -1); (void) parse_configuration(&saved_rlimit_nofile, &saved_rlimit_memlock); r = parse_argv(argc, argv); if (r < 0) { error_message = "Failed to parse commandline arguments"; goto finish; } r = safety_checks(); if (r < 0) goto finish; if (IN_SET(arg_action, ACTION_TEST, ACTION_HELP, ACTION_DUMP_CONFIGURATION_ITEMS, ACTION_DUMP_BUS_PROPERTIES, ACTION_BUS_INTROSPECT)) (void) pager_open(arg_pager_flags); if (arg_action != ACTION_RUN) skip_setup = true; if (arg_action == ACTION_HELP) { retval = help() < 0 ? EXIT_FAILURE : EXIT_SUCCESS; goto finish; } else if (arg_action == ACTION_VERSION) { retval = version(); goto finish; } else if (arg_action == ACTION_DUMP_CONFIGURATION_ITEMS) { unit_dump_config_items(stdout); retval = EXIT_SUCCESS; goto finish; } else if (arg_action == ACTION_DUMP_BUS_PROPERTIES) { dump_bus_properties(stdout); retval = EXIT_SUCCESS; goto finish; } else if (arg_action == ACTION_BUS_INTROSPECT) { r = bus_manager_introspect_implementations(stdout, arg_bus_introspect); retval = r >= 0 ? EXIT_SUCCESS : EXIT_FAILURE; goto finish; } assert_se(IN_SET(arg_action, ACTION_RUN, ACTION_TEST)); /* Move out of the way, so that we won't block unmounts */ assert_se(chdir("/") == 0); if (arg_action == ACTION_RUN) { /* Apply the systemd.clock_usec= kernel command line switch */ apply_clock_update(); /* A core pattern might have been specified via the cmdline. */ initialize_core_pattern(skip_setup); /* Close logging fds, in order not to confuse collecting passed fds and terminal logic below */ log_close(); /* Remember open file descriptors for later deserialization */ r = collect_fds(&fds, &error_message); if (r < 0) goto finish; /* Give up any control of the console, but make sure its initialized. */ setup_console_terminal(skip_setup); /* Open the logging devices, if possible and necessary */ log_open(); } log_execution_mode(&first_boot); r = initialize_runtime(skip_setup, &saved_rlimit_nofile, &saved_rlimit_memlock, &error_message); if (r < 0) goto finish; r = manager_new(arg_system ? UNIT_FILE_SYSTEM : UNIT_FILE_USER, arg_action == ACTION_TEST ? MANAGER_TEST_FULL : 0, &m); if (r < 0) { log_emergency_errno(r, "Failed to allocate manager object: %m"); error_message = "Failed to allocate manager object"; goto finish; } m->timestamps[MANAGER_TIMESTAMP_KERNEL] = kernel_timestamp; m->timestamps[MANAGER_TIMESTAMP_INITRD] = initrd_timestamp; m->timestamps[MANAGER_TIMESTAMP_USERSPACE] = userspace_timestamp; m->timestamps[manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_SECURITY_START)] = security_start_timestamp; m->timestamps[manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_SECURITY_FINISH)] = security_finish_timestamp; set_manager_defaults(m); set_manager_settings(m); manager_set_first_boot(m, first_boot); /* Remember whether we should queue the default job */ queue_default_job = !arg_serialization || arg_switched_root; before_startup = now(CLOCK_MONOTONIC); r = manager_startup(m, arg_serialization, fds); if (r < 0) { error_message = "Failed to start up manager"; goto finish; } /* This will close all file descriptors that were opened, but not claimed by any unit. */ fds = fdset_free(fds); arg_serialization = safe_fclose(arg_serialization); if (queue_default_job) { r = do_queue_default_job(m, &error_message); if (r < 0) goto finish; } after_startup = now(CLOCK_MONOTONIC); log_full(arg_action == ACTION_TEST ? LOG_INFO : LOG_DEBUG, "Loaded units and determined initial transaction in %s.", format_timespan(timespan, sizeof(timespan), after_startup - before_startup, 100 * USEC_PER_MSEC)); if (arg_action == ACTION_TEST) { test_summary(m); retval = EXIT_SUCCESS; goto finish; } (void) invoke_main_loop(m, &saved_rlimit_nofile, &saved_rlimit_memlock, &reexecute, &retval, &shutdown_verb, &fds, &switch_root_dir, &switch_root_init, &error_message); finish: pager_close(); if (m) { arg_reboot_watchdog = manager_get_watchdog(m, WATCHDOG_REBOOT); arg_kexec_watchdog = manager_get_watchdog(m, WATCHDOG_KEXEC); m = manager_free(m); } reset_arguments(); mac_selinux_finish(); if (reexecute) do_reexecute(argc, argv, &saved_rlimit_nofile, &saved_rlimit_memlock, fds, switch_root_dir, switch_root_init, &error_message); /* This only returns if reexecution failed */ arg_serialization = safe_fclose(arg_serialization); fds = fdset_free(fds); saved_env = strv_free(saved_env); #if HAVE_VALGRIND_VALGRIND_H /* If we are PID 1 and running under valgrind, then let's exit * here explicitly. valgrind will only generate nice output on * exit(), not on exec(), hence let's do the former not the * latter here. */ if (getpid_cached() == 1 && RUNNING_ON_VALGRIND) { /* Cleanup watchdog_device strings for valgrind. We need them * in become_shutdown() so normally we cannot free them yet. */ watchdog_free_device(); arg_watchdog_device = mfree(arg_watchdog_device); return retval; } #endif #if HAS_FEATURE_ADDRESS_SANITIZER __lsan_do_leak_check(); #endif if (shutdown_verb) { r = become_shutdown(shutdown_verb, retval); log_error_errno(r, "Failed to execute shutdown binary, %s: %m", getpid_cached() == 1 ? "freezing" : "quitting"); error_message = "Failed to execute shutdown binary"; } watchdog_free_device(); arg_watchdog_device = mfree(arg_watchdog_device); if (getpid_cached() == 1) { if (error_message) manager_status_printf(NULL, STATUS_TYPE_EMERGENCY, ANSI_HIGHLIGHT_RED "!!!!!!" ANSI_NORMAL, "%s.", error_message); freeze_or_exit_or_reboot(); } return retval; }