/* SPDX-License-Identifier: LGPL-2.1-or-later */ #pragma once #ifndef SD_BOOT #include #endif #include #include "types-fundamental.h" #define _align_(x) __attribute__((__aligned__(x))) #define _const_ __attribute__((__const__)) #define _pure_ __attribute__((__pure__)) #define _section_(x) __attribute__((__section__(x))) #define _packed_ __attribute__((__packed__)) #define _retain_ __attribute__((__retain__)) #define _used_ __attribute__((__used__)) #define _unused_ __attribute__((__unused__)) #define _cleanup_(x) __attribute__((__cleanup__(x))) #define _likely_(x) (__builtin_expect(!!(x), 1)) #define _unlikely_(x) (__builtin_expect(!!(x), 0)) #if __GNUC__ >= 7 #define _fallthrough_ __attribute__((__fallthrough__)) #else #define _fallthrough_ #endif /* Define C11 noreturn without and even on older gcc * compiler versions */ #ifndef _noreturn_ #if __STDC_VERSION__ >= 201112L #define _noreturn_ _Noreturn #else #define _noreturn_ __attribute__((__noreturn__)) #endif #endif #define XSTRINGIFY(x) #x #define STRINGIFY(x) XSTRINGIFY(x) #ifndef __COVERITY__ # define VOID_0 ((void)0) #else # define VOID_0 ((void*)0) #endif #define ELEMENTSOF(x) \ (__builtin_choose_expr( \ !__builtin_types_compatible_p(typeof(x), typeof(&*(x))), \ sizeof(x)/sizeof((x)[0]), \ VOID_0)) #define XCONCATENATE(x, y) x ## y #define CONCATENATE(x, y) XCONCATENATE(x, y) #ifdef SD_BOOT #ifdef NDEBUG #define assert(expr) #define assert_not_reached() __builtin_unreachable() #else void efi_assert(const char *expr, const char *file, unsigned line, const char *function) _noreturn_; #define assert(expr) ({ _likely_(expr) ? VOID_0 : efi_assert(#expr, __FILE__, __LINE__, __PRETTY_FUNCTION__); }) #define assert_not_reached() efi_assert("Code should not be reached", __FILE__, __LINE__, __PRETTY_FUNCTION__) #endif #define memcpy(a, b, c) CopyMem((a), (b), (c)) #define free(a) FreePool(a) #endif /* This passes the argument through after (if asserts are enabled) checking that it is not null. */ #define ASSERT_PTR(expr) \ ({ \ typeof(expr) _expr_ = (expr); \ assert(_expr_); \ _expr_; \ }) #if defined(static_assert) #define assert_cc(expr) \ static_assert(expr, #expr) #else #define assert_cc(expr) \ struct CONCATENATE(_assert_struct_, __COUNTER__) { \ char x[(expr) ? 0 : -1]; \ } #endif #define UNIQ_T(x, uniq) CONCATENATE(__unique_prefix_, CONCATENATE(x, uniq)) #define UNIQ __COUNTER__ /* Note that this works differently from pthread_once(): this macro does * not synchronize code execution, i.e. code that is run conditionalized * on this macro will run concurrently to all other code conditionalized * the same way, there's no ordering or completion enforced. */ #define ONCE __ONCE(UNIQ_T(_once_, UNIQ)) #define __ONCE(o) \ ({ \ static sd_bool (o) = sd_false; \ __sync_bool_compare_and_swap(&(o), sd_false, sd_true); \ }) #undef MAX #define MAX(a, b) __MAX(UNIQ, (a), UNIQ, (b)) #define __MAX(aq, a, bq, b) \ ({ \ const typeof(a) UNIQ_T(A, aq) = (a); \ const typeof(b) UNIQ_T(B, bq) = (b); \ UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \ }) #define IS_UNSIGNED_INTEGER_TYPE(type) \ (__builtin_types_compatible_p(typeof(type), unsigned char) || \ __builtin_types_compatible_p(typeof(type), unsigned short) || \ __builtin_types_compatible_p(typeof(type), unsigned) || \ __builtin_types_compatible_p(typeof(type), unsigned long) || \ __builtin_types_compatible_p(typeof(type), unsigned long long)) #define IS_SIGNED_INTEGER_TYPE(type) \ (__builtin_types_compatible_p(typeof(type), signed char) || \ __builtin_types_compatible_p(typeof(type), signed short) || \ __builtin_types_compatible_p(typeof(type), signed) || \ __builtin_types_compatible_p(typeof(type), signed long) || \ __builtin_types_compatible_p(typeof(type), signed long long)) /* Evaluates to (void) if _A or _B are not constant or of different types (being integers of different sizes * is also OK as long as the signedness matches) */ #define CONST_MAX(_A, _B) \ (__builtin_choose_expr( \ __builtin_constant_p(_A) && \ __builtin_constant_p(_B) && \ (__builtin_types_compatible_p(typeof(_A), typeof(_B)) || \ (IS_UNSIGNED_INTEGER_TYPE(_A) && IS_UNSIGNED_INTEGER_TYPE(_B)) || \ (IS_SIGNED_INTEGER_TYPE(_A) && IS_SIGNED_INTEGER_TYPE(_B))), \ ((_A) > (_B)) ? (_A) : (_B), \ VOID_0)) /* takes two types and returns the size of the larger one */ #define MAXSIZE(A, B) (sizeof(union _packed_ { typeof(A) a; typeof(B) b; })) #define MAX3(x, y, z) \ ({ \ const typeof(x) _c = MAX(x, y); \ MAX(_c, z); \ }) #define MAX4(x, y, z, a) \ ({ \ const typeof(x) _d = MAX3(x, y, z); \ MAX(_d, a); \ }) #undef MIN #define MIN(a, b) __MIN(UNIQ, (a), UNIQ, (b)) #define __MIN(aq, a, bq, b) \ ({ \ const typeof(a) UNIQ_T(A, aq) = (a); \ const typeof(b) UNIQ_T(B, bq) = (b); \ UNIQ_T(A, aq) < UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \ }) /* evaluates to (void) if _A or _B are not constant or of different types */ #define CONST_MIN(_A, _B) \ (__builtin_choose_expr( \ __builtin_constant_p(_A) && \ __builtin_constant_p(_B) && \ __builtin_types_compatible_p(typeof(_A), typeof(_B)), \ ((_A) < (_B)) ? (_A) : (_B), \ VOID_0)) #define MIN3(x, y, z) \ ({ \ const typeof(x) _c = MIN(x, y); \ MIN(_c, z); \ }) #define LESS_BY(a, b) __LESS_BY(UNIQ, (a), UNIQ, (b)) #define __LESS_BY(aq, a, bq, b) \ ({ \ const typeof(a) UNIQ_T(A, aq) = (a); \ const typeof(b) UNIQ_T(B, bq) = (b); \ UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) - UNIQ_T(B, bq) : 0; \ }) #define CMP(a, b) __CMP(UNIQ, (a), UNIQ, (b)) #define __CMP(aq, a, bq, b) \ ({ \ const typeof(a) UNIQ_T(A, aq) = (a); \ const typeof(b) UNIQ_T(B, bq) = (b); \ UNIQ_T(A, aq) < UNIQ_T(B, bq) ? -1 : \ UNIQ_T(A, aq) > UNIQ_T(B, bq) ? 1 : 0; \ }) #undef CLAMP #define CLAMP(x, low, high) __CLAMP(UNIQ, (x), UNIQ, (low), UNIQ, (high)) #define __CLAMP(xq, x, lowq, low, highq, high) \ ({ \ const typeof(x) UNIQ_T(X, xq) = (x); \ const typeof(low) UNIQ_T(LOW, lowq) = (low); \ const typeof(high) UNIQ_T(HIGH, highq) = (high); \ UNIQ_T(X, xq) > UNIQ_T(HIGH, highq) ? \ UNIQ_T(HIGH, highq) : \ UNIQ_T(X, xq) < UNIQ_T(LOW, lowq) ? \ UNIQ_T(LOW, lowq) : \ UNIQ_T(X, xq); \ }) /* [(x + y - 1) / y] suffers from an integer overflow, even though the * computation should be possible in the given type. Therefore, we use * [x / y + !!(x % y)]. Note that on "Real CPUs" a division returns both the * quotient and the remainder, so both should be equally fast. */ #define DIV_ROUND_UP(x, y) __DIV_ROUND_UP(UNIQ, (x), UNIQ, (y)) #define __DIV_ROUND_UP(xq, x, yq, y) \ ({ \ const typeof(x) UNIQ_T(X, xq) = (x); \ const typeof(y) UNIQ_T(Y, yq) = (y); \ (UNIQ_T(X, xq) / UNIQ_T(Y, yq) + !!(UNIQ_T(X, xq) % UNIQ_T(Y, yq))); \ }) #define CASE_F(X) case X: #define CASE_F_1(CASE, X) CASE_F(X) #define CASE_F_2(CASE, X, ...) CASE(X) CASE_F_1(CASE, __VA_ARGS__) #define CASE_F_3(CASE, X, ...) CASE(X) CASE_F_2(CASE, __VA_ARGS__) #define CASE_F_4(CASE, X, ...) CASE(X) CASE_F_3(CASE, __VA_ARGS__) #define CASE_F_5(CASE, X, ...) CASE(X) CASE_F_4(CASE, __VA_ARGS__) #define CASE_F_6(CASE, X, ...) CASE(X) CASE_F_5(CASE, __VA_ARGS__) #define CASE_F_7(CASE, X, ...) CASE(X) CASE_F_6(CASE, __VA_ARGS__) #define CASE_F_8(CASE, X, ...) CASE(X) CASE_F_7(CASE, __VA_ARGS__) #define CASE_F_9(CASE, X, ...) CASE(X) CASE_F_8(CASE, __VA_ARGS__) #define CASE_F_10(CASE, X, ...) CASE(X) CASE_F_9(CASE, __VA_ARGS__) #define CASE_F_11(CASE, X, ...) CASE(X) CASE_F_10(CASE, __VA_ARGS__) #define CASE_F_12(CASE, X, ...) CASE(X) CASE_F_11(CASE, __VA_ARGS__) #define CASE_F_13(CASE, X, ...) CASE(X) CASE_F_12(CASE, __VA_ARGS__) #define CASE_F_14(CASE, X, ...) CASE(X) CASE_F_13(CASE, __VA_ARGS__) #define CASE_F_15(CASE, X, ...) CASE(X) CASE_F_14(CASE, __VA_ARGS__) #define CASE_F_16(CASE, X, ...) CASE(X) CASE_F_15(CASE, __VA_ARGS__) #define CASE_F_17(CASE, X, ...) CASE(X) CASE_F_16(CASE, __VA_ARGS__) #define CASE_F_18(CASE, X, ...) CASE(X) CASE_F_17(CASE, __VA_ARGS__) #define CASE_F_19(CASE, X, ...) CASE(X) CASE_F_18(CASE, __VA_ARGS__) #define CASE_F_20(CASE, X, ...) CASE(X) CASE_F_19(CASE, __VA_ARGS__) #define GET_CASE_F(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,_12,_13,_14,_15,_16,_17,_18,_19,_20,NAME,...) NAME #define FOR_EACH_MAKE_CASE(...) \ GET_CASE_F(__VA_ARGS__,CASE_F_20,CASE_F_19,CASE_F_18,CASE_F_17,CASE_F_16,CASE_F_15,CASE_F_14,CASE_F_13,CASE_F_12,CASE_F_11, \ CASE_F_10,CASE_F_9,CASE_F_8,CASE_F_7,CASE_F_6,CASE_F_5,CASE_F_4,CASE_F_3,CASE_F_2,CASE_F_1) \ (CASE_F,__VA_ARGS__) #define IN_SET(x, ...) \ ({ \ sd_bool _found = sd_false; \ /* If the build breaks in the line below, you need to extend the case macros. (We use "long double" as \ * type for the array, in the hope that checkers such as ubsan don't complain that the initializers for \ * the array are not representable by the base type. Ideally we'd use typeof(x) as base type, but that \ * doesn't work, as we want to use this on bitfields and gcc refuses typeof() on bitfields.) */ \ static const long double __assert_in_set[] _unused_ = { __VA_ARGS__ }; \ assert_cc(ELEMENTSOF(__assert_in_set) <= 20); \ switch(x) { \ FOR_EACH_MAKE_CASE(__VA_ARGS__) \ _found = sd_true; \ break; \ default: \ break; \ } \ _found; \ }) /* Takes inspiration from Rust's Option::take() method: reads and returns a pointer, but at the same time * resets it to NULL. See: https://doc.rust-lang.org/std/option/enum.Option.html#method.take */ #define TAKE_PTR(ptr) \ ({ \ typeof(ptr) *_pptr_ = &(ptr); \ typeof(ptr) _ptr_ = *_pptr_; \ *_pptr_ = NULL; \ _ptr_; \ }) /* * STRLEN - return the length of a string literal, minus the trailing NUL byte. * Contrary to strlen(), this is a constant expression. * @x: a string literal. */ #define STRLEN(x) (sizeof(""x"") - sizeof(typeof(x[0]))) #define mfree(memory) \ ({ \ free(memory); \ (typeof(memory)) NULL; \ }) static inline size_t ALIGN_TO(size_t l, size_t ali) { /* sd-boot uses UINTN for size_t, let's make sure SIZE_MAX is correct. */ assert_cc(SIZE_MAX == ~(size_t)0); /* Check that alignment is exponent of 2 */ #if SIZE_MAX == UINT_MAX assert(__builtin_popcount(ali) == 1); #elif SIZE_MAX == ULONG_MAX assert(__builtin_popcountl(ali) == 1); #elif SIZE_MAX == ULLONG_MAX assert(__builtin_popcountll(ali) == 1); #else #error "Unexpected size_t" #endif if (l > SIZE_MAX - (ali - 1)) return SIZE_MAX; /* indicate overflow */ return ((l + ali - 1) & ~(ali - 1)); } /* Same as ALIGN_TO but callable in constant contexts. */ #define CONST_ALIGN_TO(l, ali) \ __builtin_choose_expr( \ __builtin_constant_p(l) && \ __builtin_constant_p(ali) && \ __builtin_popcountll(ali) == 1 && /* is power of 2? */ \ (l <= SIZE_MAX - (ali - 1)), /* overflow? */ \ ((l) + (ali) - 1) & ~((ali) - 1), \ VOID_0) #define UPDATE_FLAG(orig, flag, b) \ ((b) ? ((orig) | (flag)) : ((orig) & ~(flag))) #define SET_FLAG(v, flag, b) \ (v) = UPDATE_FLAG(v, flag, b) #define FLAGS_SET(v, flags) \ ((~(v) & (flags)) == 0)