/* * Copyright (c) 2001 * Fortress Technologies, Inc. All rights reserved. * Charlie Lenahan (clenahan@fortresstech.com) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that: (1) source code distributions * retain the above copyright notice and this paragraph in its entirety, (2) * distributions including binary code include the above copyright notice and * this paragraph in its entirety in the documentation or other materials * provided with the distribution, and (3) all advertising materials mentioning * features or use of this software display the following acknowledgement: * ``This product includes software developed by the University of California, * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of * the University nor the names of its contributors may be used to endorse * or promote products derived from this software without specific prior * written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "interface.h" #include "addrtoname.h" #include "ethertype.h" #include "extract.h" #include "cpack.h" /* Lengths of 802.11 header components. */ #define IEEE802_11_FC_LEN 2 #define IEEE802_11_DUR_LEN 2 #define IEEE802_11_DA_LEN 6 #define IEEE802_11_SA_LEN 6 #define IEEE802_11_BSSID_LEN 6 #define IEEE802_11_RA_LEN 6 #define IEEE802_11_TA_LEN 6 #define IEEE802_11_SEQ_LEN 2 #define IEEE802_11_CTL_LEN 2 #define IEEE802_11_IV_LEN 3 #define IEEE802_11_KID_LEN 1 /* Frame check sequence length. */ #define IEEE802_11_FCS_LEN 4 /* Lengths of beacon components. */ #define IEEE802_11_TSTAMP_LEN 8 #define IEEE802_11_BCNINT_LEN 2 #define IEEE802_11_CAPINFO_LEN 2 #define IEEE802_11_LISTENINT_LEN 2 #define IEEE802_11_AID_LEN 2 #define IEEE802_11_STATUS_LEN 2 #define IEEE802_11_REASON_LEN 2 /* Length of previous AP in reassocation frame */ #define IEEE802_11_AP_LEN 6 #define T_MGMT 0x0 /* management */ #define T_CTRL 0x1 /* control */ #define T_DATA 0x2 /* data */ #define T_RESV 0x3 /* reserved */ #define ST_ASSOC_REQUEST 0x0 #define ST_ASSOC_RESPONSE 0x1 #define ST_REASSOC_REQUEST 0x2 #define ST_REASSOC_RESPONSE 0x3 #define ST_PROBE_REQUEST 0x4 #define ST_PROBE_RESPONSE 0x5 /* RESERVED 0x6 */ /* RESERVED 0x7 */ #define ST_BEACON 0x8 #define ST_ATIM 0x9 #define ST_DISASSOC 0xA #define ST_AUTH 0xB #define ST_DEAUTH 0xC #define ST_ACTION 0xD /* RESERVED 0xE */ /* RESERVED 0xF */ #define CTRL_CONTROL_WRAPPER 0x7 #define CTRL_BAR 0x8 #define CTRL_BA 0x9 #define CTRL_PS_POLL 0xA #define CTRL_RTS 0xB #define CTRL_CTS 0xC #define CTRL_ACK 0xD #define CTRL_CF_END 0xE #define CTRL_END_ACK 0xF #define DATA_DATA 0x0 #define DATA_DATA_CF_ACK 0x1 #define DATA_DATA_CF_POLL 0x2 #define DATA_DATA_CF_ACK_POLL 0x3 #define DATA_NODATA 0x4 #define DATA_NODATA_CF_ACK 0x5 #define DATA_NODATA_CF_POLL 0x6 #define DATA_NODATA_CF_ACK_POLL 0x7 #define DATA_QOS_DATA 0x8 #define DATA_QOS_DATA_CF_ACK 0x9 #define DATA_QOS_DATA_CF_POLL 0xA #define DATA_QOS_DATA_CF_ACK_POLL 0xB #define DATA_QOS_NODATA 0xC #define DATA_QOS_CF_POLL_NODATA 0xE #define DATA_QOS_CF_ACK_POLL_NODATA 0xF /* * The subtype field of a data frame is, in effect, composed of 4 flag * bits - CF-Ack, CF-Poll, Null (means the frame doesn't actually have * any data), and QoS. */ #define DATA_FRAME_IS_CF_ACK(x) ((x) & 0x01) #define DATA_FRAME_IS_CF_POLL(x) ((x) & 0x02) #define DATA_FRAME_IS_NULL(x) ((x) & 0x04) #define DATA_FRAME_IS_QOS(x) ((x) & 0x08) /* * Bits in the frame control field. */ #define FC_VERSION(fc) ((fc) & 0x3) #define FC_TYPE(fc) (((fc) >> 2) & 0x3) #define FC_SUBTYPE(fc) (((fc) >> 4) & 0xF) #define FC_TO_DS(fc) ((fc) & 0x0100) #define FC_FROM_DS(fc) ((fc) & 0x0200) #define FC_MORE_FLAG(fc) ((fc) & 0x0400) #define FC_RETRY(fc) ((fc) & 0x0800) #define FC_POWER_MGMT(fc) ((fc) & 0x1000) #define FC_MORE_DATA(fc) ((fc) & 0x2000) #define FC_WEP(fc) ((fc) & 0x4000) #define FC_ORDER(fc) ((fc) & 0x8000) struct mgmt_header_t { u_int16_t fc; u_int16_t duration; u_int8_t da[6]; u_int8_t sa[6]; u_int8_t bssid[6]; u_int16_t seq_ctrl; }; #define MGMT_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\ IEEE802_11_DA_LEN+IEEE802_11_SA_LEN+\ IEEE802_11_BSSID_LEN+IEEE802_11_SEQ_LEN) #define CAPABILITY_ESS(cap) ((cap) & 0x0001) #define CAPABILITY_IBSS(cap) ((cap) & 0x0002) #define CAPABILITY_CFP(cap) ((cap) & 0x0004) #define CAPABILITY_CFP_REQ(cap) ((cap) & 0x0008) #define CAPABILITY_PRIVACY(cap) ((cap) & 0x0010) struct ssid_t { u_int8_t element_id; u_int8_t length; u_char ssid[33]; /* 32 + 1 for null */ }; struct rates_t { u_int8_t element_id; u_int8_t length; u_int8_t rate[16]; }; struct challenge_t { u_int8_t element_id; u_int8_t length; u_int8_t text[254]; /* 1-253 + 1 for null */ }; struct fh_t { u_int8_t element_id; u_int8_t length; u_int16_t dwell_time; u_int8_t hop_set; u_int8_t hop_pattern; u_int8_t hop_index; }; struct ds_t { u_int8_t element_id; u_int8_t length; u_int8_t channel; }; struct cf_t { u_int8_t element_id; u_int8_t length; u_int8_t count; u_int8_t period; u_int16_t max_duration; u_int16_t dur_remaing; }; struct tim_t { u_int8_t element_id; u_int8_t length; u_int8_t count; u_int8_t period; u_int8_t bitmap_control; u_int8_t bitmap[251]; }; #define E_SSID 0 #define E_RATES 1 #define E_FH 2 #define E_DS 3 #define E_CF 4 #define E_TIM 5 #define E_IBSS 6 /* reserved 7 */ /* reserved 8 */ /* reserved 9 */ /* reserved 10 */ /* reserved 11 */ /* reserved 12 */ /* reserved 13 */ /* reserved 14 */ /* reserved 15 */ /* reserved 16 */ #define E_CHALLENGE 16 /* reserved 17 */ /* reserved 18 */ /* reserved 19 */ /* reserved 16 */ /* reserved 16 */ struct mgmt_body_t { u_int8_t timestamp[IEEE802_11_TSTAMP_LEN]; u_int16_t beacon_interval; u_int16_t listen_interval; u_int16_t status_code; u_int16_t aid; u_char ap[IEEE802_11_AP_LEN]; u_int16_t reason_code; u_int16_t auth_alg; u_int16_t auth_trans_seq_num; int challenge_present; struct challenge_t challenge; u_int16_t capability_info; int ssid_present; struct ssid_t ssid; int rates_present; struct rates_t rates; int ds_present; struct ds_t ds; int cf_present; struct cf_t cf; int fh_present; struct fh_t fh; int tim_present; struct tim_t tim; }; struct ctrl_rts_t { u_int16_t fc; u_int16_t duration; u_int8_t ra[6]; u_int8_t ta[6]; u_int8_t fcs[4]; }; #define CTRL_RTS_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\ IEEE802_11_RA_LEN+IEEE802_11_TA_LEN) struct ctrl_cts_t { u_int16_t fc; u_int16_t duration; u_int8_t ra[6]; u_int8_t fcs[4]; }; #define CTRL_CTS_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN) struct ctrl_ack_t { u_int16_t fc; u_int16_t duration; u_int8_t ra[6]; u_int8_t fcs[4]; }; #define CTRL_ACK_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN) struct ctrl_ps_poll_t { u_int16_t fc; u_int16_t aid; u_int8_t bssid[6]; u_int8_t ta[6]; u_int8_t fcs[4]; }; #define CTRL_PS_POLL_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_AID_LEN+\ IEEE802_11_BSSID_LEN+IEEE802_11_TA_LEN) struct ctrl_end_t { u_int16_t fc; u_int16_t duration; u_int8_t ra[6]; u_int8_t bssid[6]; u_int8_t fcs[4]; }; #define CTRL_END_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\ IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN) struct ctrl_end_ack_t { u_int16_t fc; u_int16_t duration; u_int8_t ra[6]; u_int8_t bssid[6]; u_int8_t fcs[4]; }; #define CTRL_END_ACK_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\ IEEE802_11_RA_LEN+IEEE802_11_BSSID_LEN) struct ctrl_ba_t { u_int16_t fc; u_int16_t duration; u_int8_t ra[6]; u_int8_t fcs[4]; }; #define CTRL_BA_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+IEEE802_11_RA_LEN) struct ctrl_bar_t { u_int16_t fc; u_int16_t dur; u_int8_t ra[6]; u_int8_t ta[6]; u_int16_t ctl; u_int16_t seq; u_int8_t fcs[4]; }; #define CTRL_BAR_HDRLEN (IEEE802_11_FC_LEN+IEEE802_11_DUR_LEN+\ IEEE802_11_RA_LEN+IEEE802_11_TA_LEN+\ IEEE802_11_CTL_LEN+IEEE802_11_SEQ_LEN) struct meshcntl_t { u_int8_t flags; u_int8_t ttl; u_int8_t seq[4]; u_int8_t addr4[6]; u_int8_t addr5[6]; u_int8_t addr6[6]; }; #define IV_IV(iv) ((iv) & 0xFFFFFF) #define IV_PAD(iv) (((iv) >> 24) & 0x3F) #define IV_KEYID(iv) (((iv) >> 30) & 0x03) /* $FreeBSD: src/sys/net80211/ieee80211_radiotap.h,v 1.5 2005/01/22 20:12:05 sam Exp $ */ /* NetBSD: ieee802_11_radio.h,v 1.2 2006/02/26 03:04:03 dyoung Exp */ /*- * Copyright (c) 2003, 2004 David Young. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of David Young may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY DAVID YOUNG ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DAVID * YOUNG BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. */ /* A generic radio capture format is desirable. It must be * rigidly defined (e.g., units for fields should be given), * and easily extensible. * * The following is an extensible radio capture format. It is * based on a bitmap indicating which fields are present. * * I am trying to describe precisely what the application programmer * should expect in the following, and for that reason I tell the * units and origin of each measurement (where it applies), or else I * use sufficiently weaselly language ("is a monotonically nondecreasing * function of...") that I cannot set false expectations for lawyerly * readers. */ /* * The radio capture header precedes the 802.11 header. * * Note well: all radiotap fields are little-endian. */ struct ieee80211_radiotap_header { u_int8_t it_version; /* Version 0. Only increases * for drastic changes, * introduction of compatible * new fields does not count. */ u_int8_t it_pad; u_int16_t it_len; /* length of the whole * header in bytes, including * it_version, it_pad, * it_len, and data fields. */ u_int32_t it_present; /* A bitmap telling which * fields are present. Set bit 31 * (0x80000000) to extend the * bitmap by another 32 bits. * Additional extensions are made * by setting bit 31. */ }; /* Name Data type Units * ---- --------- ----- * * IEEE80211_RADIOTAP_TSFT u_int64_t microseconds * * Value in microseconds of the MAC's 64-bit 802.11 Time * Synchronization Function timer when the first bit of the * MPDU arrived at the MAC. For received frames, only. * * IEEE80211_RADIOTAP_CHANNEL 2 x u_int16_t MHz, bitmap * * Tx/Rx frequency in MHz, followed by flags (see below). * Note that IEEE80211_RADIOTAP_XCHANNEL must be used to * represent an HT channel as there is not enough room in * the flags word. * * IEEE80211_RADIOTAP_FHSS u_int16_t see below * * For frequency-hopping radios, the hop set (first byte) * and pattern (second byte). * * IEEE80211_RADIOTAP_RATE u_int8_t 500kb/s or index * * Tx/Rx data rate. If bit 0x80 is set then it represents an * an MCS index and not an IEEE rate. * * IEEE80211_RADIOTAP_DBM_ANTSIGNAL int8_t decibels from * one milliwatt (dBm) * * RF signal power at the antenna, decibel difference from * one milliwatt. * * IEEE80211_RADIOTAP_DBM_ANTNOISE int8_t decibels from * one milliwatt (dBm) * * RF noise power at the antenna, decibel difference from one * milliwatt. * * IEEE80211_RADIOTAP_DB_ANTSIGNAL u_int8_t decibel (dB) * * RF signal power at the antenna, decibel difference from an * arbitrary, fixed reference. * * IEEE80211_RADIOTAP_DB_ANTNOISE u_int8_t decibel (dB) * * RF noise power at the antenna, decibel difference from an * arbitrary, fixed reference point. * * IEEE80211_RADIOTAP_LOCK_QUALITY u_int16_t unitless * * Quality of Barker code lock. Unitless. Monotonically * nondecreasing with "better" lock strength. Called "Signal * Quality" in datasheets. (Is there a standard way to measure * this?) * * IEEE80211_RADIOTAP_TX_ATTENUATION u_int16_t unitless * * Transmit power expressed as unitless distance from max * power set at factory calibration. 0 is max power. * Monotonically nondecreasing with lower power levels. * * IEEE80211_RADIOTAP_DB_TX_ATTENUATION u_int16_t decibels (dB) * * Transmit power expressed as decibel distance from max power * set at factory calibration. 0 is max power. Monotonically * nondecreasing with lower power levels. * * IEEE80211_RADIOTAP_DBM_TX_POWER int8_t decibels from * one milliwatt (dBm) * * Transmit power expressed as dBm (decibels from a 1 milliwatt * reference). This is the absolute power level measured at * the antenna port. * * IEEE80211_RADIOTAP_FLAGS u_int8_t bitmap * * Properties of transmitted and received frames. See flags * defined below. * * IEEE80211_RADIOTAP_ANTENNA u_int8_t antenna index * * Unitless indication of the Rx/Tx antenna for this packet. * The first antenna is antenna 0. * * IEEE80211_RADIOTAP_RX_FLAGS u_int16_t bitmap * * Properties of received frames. See flags defined below. * * IEEE80211_RADIOTAP_XCHANNEL u_int32_t bitmap * u_int16_t MHz * u_int8_t channel number * u_int8_t .5 dBm * * Extended channel specification: flags (see below) followed by * frequency in MHz, the corresponding IEEE channel number, and * finally the maximum regulatory transmit power cap in .5 dBm * units. This property supersedes IEEE80211_RADIOTAP_CHANNEL * and only one of the two should be present. * * IEEE80211_RADIOTAP_MCS u_int8_t known * u_int8_t flags * u_int8_t mcs * * Bitset indicating which fields have known values, followed * by bitset of flag values, followed by the MCS rate index as * in IEEE 802.11n. * * IEEE80211_RADIOTAP_VENDOR_NAMESPACE * u_int8_t OUI[3] * u_int8_t subspace * u_int16_t length * * The Vendor Namespace Field contains three sub-fields. The first * sub-field is 3 bytes long. It contains the vendor's IEEE 802 * Organizationally Unique Identifier (OUI). The fourth byte is a * vendor-specific "namespace selector." * */ enum ieee80211_radiotap_type { IEEE80211_RADIOTAP_TSFT = 0, IEEE80211_RADIOTAP_FLAGS = 1, IEEE80211_RADIOTAP_RATE = 2, IEEE80211_RADIOTAP_CHANNEL = 3, IEEE80211_RADIOTAP_FHSS = 4, IEEE80211_RADIOTAP_DBM_ANTSIGNAL = 5, IEEE80211_RADIOTAP_DBM_ANTNOISE = 6, IEEE80211_RADIOTAP_LOCK_QUALITY = 7, IEEE80211_RADIOTAP_TX_ATTENUATION = 8, IEEE80211_RADIOTAP_DB_TX_ATTENUATION = 9, IEEE80211_RADIOTAP_DBM_TX_POWER = 10, IEEE80211_RADIOTAP_ANTENNA = 11, IEEE80211_RADIOTAP_DB_ANTSIGNAL = 12, IEEE80211_RADIOTAP_DB_ANTNOISE = 13, IEEE80211_RADIOTAP_RX_FLAGS = 14, /* NB: gap for netbsd definitions */ IEEE80211_RADIOTAP_XCHANNEL = 18, IEEE80211_RADIOTAP_MCS = 19, IEEE80211_RADIOTAP_NAMESPACE = 29, IEEE80211_RADIOTAP_VENDOR_NAMESPACE = 30, IEEE80211_RADIOTAP_EXT = 31 }; /* channel attributes */ #define IEEE80211_CHAN_TURBO 0x00010 /* Turbo channel */ #define IEEE80211_CHAN_CCK 0x00020 /* CCK channel */ #define IEEE80211_CHAN_OFDM 0x00040 /* OFDM channel */ #define IEEE80211_CHAN_2GHZ 0x00080 /* 2 GHz spectrum channel. */ #define IEEE80211_CHAN_5GHZ 0x00100 /* 5 GHz spectrum channel */ #define IEEE80211_CHAN_PASSIVE 0x00200 /* Only passive scan allowed */ #define IEEE80211_CHAN_DYN 0x00400 /* Dynamic CCK-OFDM channel */ #define IEEE80211_CHAN_GFSK 0x00800 /* GFSK channel (FHSS PHY) */ #define IEEE80211_CHAN_GSM 0x01000 /* 900 MHz spectrum channel */ #define IEEE80211_CHAN_STURBO 0x02000 /* 11a static turbo channel only */ #define IEEE80211_CHAN_HALF 0x04000 /* Half rate channel */ #define IEEE80211_CHAN_QUARTER 0x08000 /* Quarter rate channel */ #define IEEE80211_CHAN_HT20 0x10000 /* HT 20 channel */ #define IEEE80211_CHAN_HT40U 0x20000 /* HT 40 channel w/ ext above */ #define IEEE80211_CHAN_HT40D 0x40000 /* HT 40 channel w/ ext below */ /* Useful combinations of channel characteristics, borrowed from Ethereal */ #define IEEE80211_CHAN_A \ (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM) #define IEEE80211_CHAN_B \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK) #define IEEE80211_CHAN_G \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN) #define IEEE80211_CHAN_TA \ (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_TURBO) #define IEEE80211_CHAN_TG \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN | IEEE80211_CHAN_TURBO) /* For IEEE80211_RADIOTAP_FLAGS */ #define IEEE80211_RADIOTAP_F_CFP 0x01 /* sent/received * during CFP */ #define IEEE80211_RADIOTAP_F_SHORTPRE 0x02 /* sent/received * with short * preamble */ #define IEEE80211_RADIOTAP_F_WEP 0x04 /* sent/received * with WEP encryption */ #define IEEE80211_RADIOTAP_F_FRAG 0x08 /* sent/received * with fragmentation */ #define IEEE80211_RADIOTAP_F_FCS 0x10 /* frame includes FCS */ #define IEEE80211_RADIOTAP_F_DATAPAD 0x20 /* frame has padding between * 802.11 header and payload * (to 32-bit boundary) */ #define IEEE80211_RADIOTAP_F_BADFCS 0x40 /* does not pass FCS check */ /* For IEEE80211_RADIOTAP_RX_FLAGS */ #define IEEE80211_RADIOTAP_F_RX_BADFCS 0x0001 /* frame failed crc check */ #define IEEE80211_RADIOTAP_F_RX_PLCP_CRC 0x0002 /* frame failed PLCP CRC check */ /* For IEEE80211_RADIOTAP_MCS known */ #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN 0x01 #define IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN 0x02 /* MCS index field */ #define IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN 0x04 #define IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN 0x08 #define IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN 0x10 #define IEEE80211_RADIOTAP_MCS_STBC_KNOWN 0x20 /* For IEEE80211_RADIOTAP_MCS flags */ #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK 0x03 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20 0 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 1 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20L 2 #define IEEE80211_RADIOTAP_MCS_BANDWIDTH_20U 3 #define IEEE80211_RADIOTAP_MCS_SHORT_GI 0x04 /* short guard interval */ #define IEEE80211_RADIOTAP_MCS_HT_GREENFIELD 0x08 #define IEEE80211_RADIOTAP_MCS_FEC_LDPC 0x10 #define IEEE80211_RADIOTAP_MCS_STBC_MASK 0x60 #define IEEE80211_RADIOTAP_MCS_STBC_1 1 #define IEEE80211_RADIOTAP_MCS_STBC_2 2 #define IEEE80211_RADIOTAP_MCS_STBC_3 3 #define IEEE80211_RADIOTAP_MCS_STBC_SHIFT 5 static const char tstr[] = "[|802.11]"; /* Radiotap state */ /* This is used to save state when parsing/processing parameters */ struct radiotap_state { u_int32_t present; u_int8_t rate; }; #define PRINT_SSID(p) \ if (p.ssid_present) { \ printf(" ("); \ fn_print(p.ssid.ssid, NULL); \ printf(")"); \ } #define PRINT_RATE(_sep, _r, _suf) \ printf("%s%2.1f%s", _sep, (.5 * ((_r) & 0x7f)), _suf) #define PRINT_RATES(p) \ if (p.rates_present) { \ int z; \ const char *sep = " ["; \ for (z = 0; z < p.rates.length ; z++) { \ PRINT_RATE(sep, p.rates.rate[z], \ (p.rates.rate[z] & 0x80 ? "*" : "")); \ sep = " "; \ } \ if (p.rates.length != 0) \ printf(" Mbit]"); \ } #define PRINT_DS_CHANNEL(p) \ if (p.ds_present) \ printf(" CH: %u", p.ds.channel); \ printf("%s", \ CAPABILITY_PRIVACY(p.capability_info) ? ", PRIVACY" : "" ); #define MAX_MCS_INDEX 76 /* * Indices are: * * the MCS index (0-76); * * 0 for 20 MHz, 1 for 40 MHz; * * 0 for a long guard interval, 1 for a short guard interval. */ static const float ieee80211_float_htrates[MAX_MCS_INDEX+1][2][2] = { /* MCS 0 */ { /* 20 Mhz */ { 6.5, /* SGI */ 7.2, }, /* 40 Mhz */ { 13.5, /* SGI */ 15.0, }, }, /* MCS 1 */ { /* 20 Mhz */ { 13.0, /* SGI */ 14.4, }, /* 40 Mhz */ { 27.0, /* SGI */ 30.0, }, }, /* MCS 2 */ { /* 20 Mhz */ { 19.5, /* SGI */ 21.7, }, /* 40 Mhz */ { 40.5, /* SGI */ 45.0, }, }, /* MCS 3 */ { /* 20 Mhz */ { 26.0, /* SGI */ 28.9, }, /* 40 Mhz */ { 54.0, /* SGI */ 60.0, }, }, /* MCS 4 */ { /* 20 Mhz */ { 39.0, /* SGI */ 43.3, }, /* 40 Mhz */ { 81.0, /* SGI */ 90.0, }, }, /* MCS 5 */ { /* 20 Mhz */ { 52.0, /* SGI */ 57.8, }, /* 40 Mhz */ { 108.0, /* SGI */ 120.0, }, }, /* MCS 6 */ { /* 20 Mhz */ { 58.5, /* SGI */ 65.0, }, /* 40 Mhz */ { 121.5, /* SGI */ 135.0, }, }, /* MCS 7 */ { /* 20 Mhz */ { 65.0, /* SGI */ 72.2, }, /* 40 Mhz */ { 135.0, /* SGI */ 150.0, }, }, /* MCS 8 */ { /* 20 Mhz */ { 13.0, /* SGI */ 14.4, }, /* 40 Mhz */ { 27.0, /* SGI */ 30.0, }, }, /* MCS 9 */ { /* 20 Mhz */ { 26.0, /* SGI */ 28.9, }, /* 40 Mhz */ { 54.0, /* SGI */ 60.0, }, }, /* MCS 10 */ { /* 20 Mhz */ { 39.0, /* SGI */ 43.3, }, /* 40 Mhz */ { 81.0, /* SGI */ 90.0, }, }, /* MCS 11 */ { /* 20 Mhz */ { 52.0, /* SGI */ 57.8, }, /* 40 Mhz */ { 108.0, /* SGI */ 120.0, }, }, /* MCS 12 */ { /* 20 Mhz */ { 78.0, /* SGI */ 86.7, }, /* 40 Mhz */ { 162.0, /* SGI */ 180.0, }, }, /* MCS 13 */ { /* 20 Mhz */ { 104.0, /* SGI */ 115.6, }, /* 40 Mhz */ { 216.0, /* SGI */ 240.0, }, }, /* MCS 14 */ { /* 20 Mhz */ { 117.0, /* SGI */ 130.0, }, /* 40 Mhz */ { 243.0, /* SGI */ 270.0, }, }, /* MCS 15 */ { /* 20 Mhz */ { 130.0, /* SGI */ 144.4, }, /* 40 Mhz */ { 270.0, /* SGI */ 300.0, }, }, /* MCS 16 */ { /* 20 Mhz */ { 19.5, /* SGI */ 21.7, }, /* 40 Mhz */ { 40.5, /* SGI */ 45.0, }, }, /* MCS 17 */ { /* 20 Mhz */ { 39.0, /* SGI */ 43.3, }, /* 40 Mhz */ { 81.0, /* SGI */ 90.0, }, }, /* MCS 18 */ { /* 20 Mhz */ { 58.5, /* SGI */ 65.0, }, /* 40 Mhz */ { 121.5, /* SGI */ 135.0, }, }, /* MCS 19 */ { /* 20 Mhz */ { 78.0, /* SGI */ 86.7, }, /* 40 Mhz */ { 162.0, /* SGI */ 180.0, }, }, /* MCS 20 */ { /* 20 Mhz */ { 117.0, /* SGI */ 130.0, }, /* 40 Mhz */ { 243.0, /* SGI */ 270.0, }, }, /* MCS 21 */ { /* 20 Mhz */ { 156.0, /* SGI */ 173.3, }, /* 40 Mhz */ { 324.0, /* SGI */ 360.0, }, }, /* MCS 22 */ { /* 20 Mhz */ { 175.5, /* SGI */ 195.0, }, /* 40 Mhz */ { 364.5, /* SGI */ 405.0, }, }, /* MCS 23 */ { /* 20 Mhz */ { 195.0, /* SGI */ 216.7, }, /* 40 Mhz */ { 405.0, /* SGI */ 450.0, }, }, /* MCS 24 */ { /* 20 Mhz */ { 26.0, /* SGI */ 28.9, }, /* 40 Mhz */ { 54.0, /* SGI */ 60.0, }, }, /* MCS 25 */ { /* 20 Mhz */ { 52.0, /* SGI */ 57.8, }, /* 40 Mhz */ { 108.0, /* SGI */ 120.0, }, }, /* MCS 26 */ { /* 20 Mhz */ { 78.0, /* SGI */ 86.7, }, /* 40 Mhz */ { 162.0, /* SGI */ 180.0, }, }, /* MCS 27 */ { /* 20 Mhz */ { 104.0, /* SGI */ 115.6, }, /* 40 Mhz */ { 216.0, /* SGI */ 240.0, }, }, /* MCS 28 */ { /* 20 Mhz */ { 156.0, /* SGI */ 173.3, }, /* 40 Mhz */ { 324.0, /* SGI */ 360.0, }, }, /* MCS 29 */ { /* 20 Mhz */ { 208.0, /* SGI */ 231.1, }, /* 40 Mhz */ { 432.0, /* SGI */ 480.0, }, }, /* MCS 30 */ { /* 20 Mhz */ { 234.0, /* SGI */ 260.0, }, /* 40 Mhz */ { 486.0, /* SGI */ 540.0, }, }, /* MCS 31 */ { /* 20 Mhz */ { 260.0, /* SGI */ 288.9, }, /* 40 Mhz */ { 540.0, /* SGI */ 600.0, }, }, /* MCS 32 */ { /* 20 Mhz */ { 0.0, /* SGI */ 0.0, }, /* not valid */ /* 40 Mhz */ { 6.0, /* SGI */ 6.7, }, }, /* MCS 33 */ { /* 20 Mhz */ { 39.0, /* SGI */ 43.3, }, /* 40 Mhz */ { 81.0, /* SGI */ 90.0, }, }, /* MCS 34 */ { /* 20 Mhz */ { 52.0, /* SGI */ 57.8, }, /* 40 Mhz */ { 108.0, /* SGI */ 120.0, }, }, /* MCS 35 */ { /* 20 Mhz */ { 65.0, /* SGI */ 72.2, }, /* 40 Mhz */ { 135.0, /* SGI */ 150.0, }, }, /* MCS 36 */ { /* 20 Mhz */ { 58.5, /* SGI */ 65.0, }, /* 40 Mhz */ { 121.5, /* SGI */ 135.0, }, }, /* MCS 37 */ { /* 20 Mhz */ { 78.0, /* SGI */ 86.7, }, /* 40 Mhz */ { 162.0, /* SGI */ 180.0, }, }, /* MCS 38 */ { /* 20 Mhz */ { 97.5, /* SGI */ 108.3, }, /* 40 Mhz */ { 202.5, /* SGI */ 225.0, }, }, /* MCS 39 */ { /* 20 Mhz */ { 52.0, /* SGI */ 57.8, }, /* 40 Mhz */ { 108.0, /* SGI */ 120.0, }, }, /* MCS 40 */ { /* 20 Mhz */ { 65.0, /* SGI */ 72.2, }, /* 40 Mhz */ { 135.0, /* SGI */ 150.0, }, }, /* MCS 41 */ { /* 20 Mhz */ { 65.0, /* SGI */ 72.2, }, /* 40 Mhz */ { 135.0, /* SGI */ 150.0, }, }, /* MCS 42 */ { /* 20 Mhz */ { 78.0, /* SGI */ 86.7, }, /* 40 Mhz */ { 162.0, /* SGI */ 180.0, }, }, /* MCS 43 */ { /* 20 Mhz */ { 91.0, /* SGI */ 101.1, }, /* 40 Mhz */ { 189.0, /* SGI */ 210.0, }, }, /* MCS 44 */ { /* 20 Mhz */ { 91.0, /* SGI */ 101.1, }, /* 40 Mhz */ { 189.0, /* SGI */ 210.0, }, }, /* MCS 45 */ { /* 20 Mhz */ { 104.0, /* SGI */ 115.6, }, /* 40 Mhz */ { 216.0, /* SGI */ 240.0, }, }, /* MCS 46 */ { /* 20 Mhz */ { 78.0, /* SGI */ 86.7, }, /* 40 Mhz */ { 162.0, /* SGI */ 180.0, }, }, /* MCS 47 */ { /* 20 Mhz */ { 97.5, /* SGI */ 108.3, }, /* 40 Mhz */ { 202.5, /* SGI */ 225.0, }, }, /* MCS 48 */ { /* 20 Mhz */ { 97.5, /* SGI */ 108.3, }, /* 40 Mhz */ { 202.5, /* SGI */ 225.0, }, }, /* MCS 49 */ { /* 20 Mhz */ { 117.0, /* SGI */ 130.0, }, /* 40 Mhz */ { 243.0, /* SGI */ 270.0, }, }, /* MCS 50 */ { /* 20 Mhz */ { 136.5, /* SGI */ 151.7, }, /* 40 Mhz */ { 283.5, /* SGI */ 315.0, }, }, /* MCS 51 */ { /* 20 Mhz */ { 136.5, /* SGI */ 151.7, }, /* 40 Mhz */ { 283.5, /* SGI */ 315.0, }, }, /* MCS 52 */ { /* 20 Mhz */ { 156.0, /* SGI */ 173.3, }, /* 40 Mhz */ { 324.0, /* SGI */ 360.0, }, }, /* MCS 53 */ { /* 20 Mhz */ { 65.0, /* SGI */ 72.2, }, /* 40 Mhz */ { 135.0, /* SGI */ 150.0, }, }, /* MCS 54 */ { /* 20 Mhz */ { 78.0, /* SGI */ 86.7, }, /* 40 Mhz */ { 162.0, /* SGI */ 180.0, }, }, /* MCS 55 */ { /* 20 Mhz */ { 91.0, /* SGI */ 101.1, }, /* 40 Mhz */ { 189.0, /* SGI */ 210.0, }, }, /* MCS 56 */ { /* 20 Mhz */ { 78.0, /* SGI */ 86.7, }, /* 40 Mhz */ { 162.0, /* SGI */ 180.0, }, }, /* MCS 57 */ { /* 20 Mhz */ { 91.0, /* SGI */ 101.1, }, /* 40 Mhz */ { 189.0, /* SGI */ 210.0, }, }, /* MCS 58 */ { /* 20 Mhz */ { 104.0, /* SGI */ 115.6, }, /* 40 Mhz */ { 216.0, /* SGI */ 240.0, }, }, /* MCS 59 */ { /* 20 Mhz */ { 117.0, /* SGI */ 130.0, }, /* 40 Mhz */ { 243.0, /* SGI */ 270.0, }, }, /* MCS 60 */ { /* 20 Mhz */ { 104.0, /* SGI */ 115.6, }, /* 40 Mhz */ { 216.0, /* SGI */ 240.0, }, }, /* MCS 61 */ { /* 20 Mhz */ { 117.0, /* SGI */ 130.0, }, /* 40 Mhz */ { 243.0, /* SGI */ 270.0, }, }, /* MCS 62 */ { /* 20 Mhz */ { 130.0, /* SGI */ 144.4, }, /* 40 Mhz */ { 270.0, /* SGI */ 300.0, }, }, /* MCS 63 */ { /* 20 Mhz */ { 130.0, /* SGI */ 144.4, }, /* 40 Mhz */ { 270.0, /* SGI */ 300.0, }, }, /* MCS 64 */ { /* 20 Mhz */ { 143.0, /* SGI */ 158.9, }, /* 40 Mhz */ { 297.0, /* SGI */ 330.0, }, }, /* MCS 65 */ { /* 20 Mhz */ { 97.5, /* SGI */ 108.3, }, /* 40 Mhz */ { 202.5, /* SGI */ 225.0, }, }, /* MCS 66 */ { /* 20 Mhz */ { 117.0, /* SGI */ 130.0, }, /* 40 Mhz */ { 243.0, /* SGI */ 270.0, }, }, /* MCS 67 */ { /* 20 Mhz */ { 136.5, /* SGI */ 151.7, }, /* 40 Mhz */ { 283.5, /* SGI */ 315.0, }, }, /* MCS 68 */ { /* 20 Mhz */ { 117.0, /* SGI */ 130.0, }, /* 40 Mhz */ { 243.0, /* SGI */ 270.0, }, }, /* MCS 69 */ { /* 20 Mhz */ { 136.5, /* SGI */ 151.7, }, /* 40 Mhz */ { 283.5, /* SGI */ 315.0, }, }, /* MCS 70 */ { /* 20 Mhz */ { 156.0, /* SGI */ 173.3, }, /* 40 Mhz */ { 324.0, /* SGI */ 360.0, }, }, /* MCS 71 */ { /* 20 Mhz */ { 175.5, /* SGI */ 195.0, }, /* 40 Mhz */ { 364.5, /* SGI */ 405.0, }, }, /* MCS 72 */ { /* 20 Mhz */ { 156.0, /* SGI */ 173.3, }, /* 40 Mhz */ { 324.0, /* SGI */ 360.0, }, }, /* MCS 73 */ { /* 20 Mhz */ { 175.5, /* SGI */ 195.0, }, /* 40 Mhz */ { 364.5, /* SGI */ 405.0, }, }, /* MCS 74 */ { /* 20 Mhz */ { 195.0, /* SGI */ 216.7, }, /* 40 Mhz */ { 405.0, /* SGI */ 450.0, }, }, /* MCS 75 */ { /* 20 Mhz */ { 195.0, /* SGI */ 216.7, }, /* 40 Mhz */ { 405.0, /* SGI */ 450.0, }, }, /* MCS 76 */ { /* 20 Mhz */ { 214.5, /* SGI */ 238.3, }, /* 40 Mhz */ { 445.5, /* SGI */ 495.0, }, }, }; static const char *auth_alg_text[]={"Open System","Shared Key","EAP"}; #define NUM_AUTH_ALGS (sizeof auth_alg_text / sizeof auth_alg_text[0]) static const char *status_text[] = { "Successful", /* 0 */ "Unspecified failure", /* 1 */ "Reserved", /* 2 */ "Reserved", /* 3 */ "Reserved", /* 4 */ "Reserved", /* 5 */ "Reserved", /* 6 */ "Reserved", /* 7 */ "Reserved", /* 8 */ "Reserved", /* 9 */ "Cannot Support all requested capabilities in the Capability " "Information field", /* 10 */ "Reassociation denied due to inability to confirm that association " "exists", /* 11 */ "Association denied due to reason outside the scope of the " "standard", /* 12 */ "Responding station does not support the specified authentication " "algorithm ", /* 13 */ "Received an Authentication frame with authentication transaction " "sequence number out of expected sequence", /* 14 */ "Authentication rejected because of challenge failure", /* 15 */ "Authentication rejected due to timeout waiting for next frame in " "sequence", /* 16 */ "Association denied because AP is unable to handle additional" "associated stations", /* 17 */ "Association denied due to requesting station not supporting all of " "the data rates in BSSBasicRateSet parameter", /* 18 */ "Association denied due to requesting station not supporting " "short preamble operation", /* 19 */ "Association denied due to requesting station not supporting " "PBCC encoding", /* 20 */ "Association denied due to requesting station not supporting " "channel agility", /* 21 */ "Association request rejected because Spectrum Management " "capability is required", /* 22 */ "Association request rejected because the information in the " "Power Capability element is unacceptable", /* 23 */ "Association request rejected because the information in the " "Supported Channels element is unacceptable", /* 24 */ "Association denied due to requesting station not supporting " "short slot operation", /* 25 */ "Association denied due to requesting station not supporting " "DSSS-OFDM operation", /* 26 */ "Association denied because the requested STA does not support HT " "features", /* 27 */ "Reserved", /* 28 */ "Association denied because the requested STA does not support " "the PCO transition time required by the AP", /* 29 */ "Reserved", /* 30 */ "Reserved", /* 31 */ "Unspecified, QoS-related failure", /* 32 */ "Association denied due to QAP having insufficient bandwidth " "to handle another QSTA", /* 33 */ "Association denied due to excessive frame loss rates and/or " "poor conditions on current operating channel", /* 34 */ "Association (with QBSS) denied due to requesting station not " "supporting the QoS facility", /* 35 */ "Association denied due to requesting station not supporting " "Block Ack", /* 36 */ "The request has been declined", /* 37 */ "The request has not been successful as one or more parameters " "have invalid values", /* 38 */ "The TS has not been created because the request cannot be honored. " "However, a suggested TSPEC is provided so that the initiating QSTA" "may attempt to set another TS with the suggested changes to the " "TSPEC", /* 39 */ "Invalid Information Element", /* 40 */ "Group Cipher is not valid", /* 41 */ "Pairwise Cipher is not valid", /* 42 */ "AKMP is not valid", /* 43 */ "Unsupported RSN IE version", /* 44 */ "Invalid RSN IE Capabilities", /* 45 */ "Cipher suite is rejected per security policy", /* 46 */ "The TS has not been created. However, the HC may be capable of " "creating a TS, in response to a request, after the time indicated " "in the TS Delay element", /* 47 */ "Direct Link is not allowed in the BSS by policy", /* 48 */ "Destination STA is not present within this QBSS.", /* 49 */ "The Destination STA is not a QSTA.", /* 50 */ }; #define NUM_STATUSES (sizeof status_text / sizeof status_text[0]) static const char *reason_text[] = { "Reserved", /* 0 */ "Unspecified reason", /* 1 */ "Previous authentication no longer valid", /* 2 */ "Deauthenticated because sending station is leaving (or has left) " "IBSS or ESS", /* 3 */ "Disassociated due to inactivity", /* 4 */ "Disassociated because AP is unable to handle all currently " " associated stations", /* 5 */ "Class 2 frame received from nonauthenticated station", /* 6 */ "Class 3 frame received from nonassociated station", /* 7 */ "Disassociated because sending station is leaving " "(or has left) BSS", /* 8 */ "Station requesting (re)association is not authenticated with " "responding station", /* 9 */ "Disassociated because the information in the Power Capability " "element is unacceptable", /* 10 */ "Disassociated because the information in the SupportedChannels " "element is unacceptable", /* 11 */ "Invalid Information Element", /* 12 */ "Reserved", /* 13 */ "Michael MIC failure", /* 14 */ "4-Way Handshake timeout", /* 15 */ "Group key update timeout", /* 16 */ "Information element in 4-Way Handshake different from (Re)Association" "Request/Probe Response/Beacon", /* 17 */ "Group Cipher is not valid", /* 18 */ "AKMP is not valid", /* 20 */ "Unsupported RSN IE version", /* 21 */ "Invalid RSN IE Capabilities", /* 22 */ "IEEE 802.1X Authentication failed", /* 23 */ "Cipher suite is rejected per security policy", /* 24 */ "Reserved", /* 25 */ "Reserved", /* 26 */ "Reserved", /* 27 */ "Reserved", /* 28 */ "Reserved", /* 29 */ "Reserved", /* 30 */ "TS deleted because QoS AP lacks sufficient bandwidth for this " "QoS STA due to a change in BSS service characteristics or " "operational mode (e.g. an HT BSS change from 40 MHz channel " "to 20 MHz channel)", /* 31 */ "Disassociated for unspecified, QoS-related reason", /* 32 */ "Disassociated because QoS AP lacks sufficient bandwidth for this " "QoS STA", /* 33 */ "Disassociated because of excessive number of frames that need to be " "acknowledged, but are not acknowledged for AP transmissions " "and/or poor channel conditions", /* 34 */ "Disassociated because STA is transmitting outside the limits " "of its TXOPs", /* 35 */ "Requested from peer STA as the STA is leaving the BSS " "(or resetting)", /* 36 */ "Requested from peer STA as it does not want to use the " "mechanism", /* 37 */ "Requested from peer STA as the STA received frames using the " "mechanism for which a set up is required", /* 38 */ "Requested from peer STA due to time out", /* 39 */ "Reserved", /* 40 */ "Reserved", /* 41 */ "Reserved", /* 42 */ "Reserved", /* 43 */ "Reserved", /* 44 */ "Peer STA does not support the requested cipher suite", /* 45 */ "Association denied due to requesting STA not supporting HT " "features", /* 46 */ }; #define NUM_REASONS (sizeof reason_text / sizeof reason_text[0]) static int wep_print(const u_char *p) { u_int32_t iv; if (!TTEST2(*p, IEEE802_11_IV_LEN + IEEE802_11_KID_LEN)) return 0; iv = EXTRACT_LE_32BITS(p); printf("Data IV:%3x Pad %x KeyID %x", IV_IV(iv), IV_PAD(iv), IV_KEYID(iv)); return 1; } static int parse_elements(struct mgmt_body_t *pbody, const u_char *p, int offset, u_int length) { u_int elementlen; struct ssid_t ssid; struct challenge_t challenge; struct rates_t rates; struct ds_t ds; struct cf_t cf; struct tim_t tim; /* * We haven't seen any elements yet. */ pbody->challenge_present = 0; pbody->ssid_present = 0; pbody->rates_present = 0; pbody->ds_present = 0; pbody->cf_present = 0; pbody->tim_present = 0; while (length != 0) { if (!TTEST2(*(p + offset), 1)) return 0; if (length < 1) return 0; switch (*(p + offset)) { case E_SSID: if (!TTEST2(*(p + offset), 2)) return 0; if (length < 2) return 0; memcpy(&ssid, p + offset, 2); offset += 2; length -= 2; if (ssid.length != 0) { if (ssid.length > sizeof(ssid.ssid) - 1) return 0; if (!TTEST2(*(p + offset), ssid.length)) return 0; if (length < ssid.length) return 0; memcpy(&ssid.ssid, p + offset, ssid.length); offset += ssid.length; length -= ssid.length; } ssid.ssid[ssid.length] = '\0'; /* * Present and not truncated. * * If we haven't already seen an SSID IE, * copy this one, otherwise ignore this one, * so we later report the first one we saw. */ if (!pbody->ssid_present) { pbody->ssid = ssid; pbody->ssid_present = 1; } break; case E_CHALLENGE: if (!TTEST2(*(p + offset), 2)) return 0; if (length < 2) return 0; memcpy(&challenge, p + offset, 2); offset += 2; length -= 2; if (challenge.length != 0) { if (challenge.length > sizeof(challenge.text) - 1) return 0; if (!TTEST2(*(p + offset), challenge.length)) return 0; if (length < challenge.length) return 0; memcpy(&challenge.text, p + offset, challenge.length); offset += challenge.length; length -= challenge.length; } challenge.text[challenge.length] = '\0'; /* * Present and not truncated. * * If we haven't already seen a challenge IE, * copy this one, otherwise ignore this one, * so we later report the first one we saw. */ if (!pbody->challenge_present) { pbody->challenge = challenge; pbody->challenge_present = 1; } break; case E_RATES: if (!TTEST2(*(p + offset), 2)) return 0; if (length < 2) return 0; memcpy(&rates, p + offset, 2); offset += 2; length -= 2; if (rates.length != 0) { if (rates.length > sizeof rates.rate) return 0; if (!TTEST2(*(p + offset), rates.length)) return 0; if (length < rates.length) return 0; memcpy(&rates.rate, p + offset, rates.length); offset += rates.length; length -= rates.length; } /* * Present and not truncated. * * If we haven't already seen a rates IE, * copy this one if it's not zero-length, * otherwise ignore this one, so we later * report the first one we saw. * * We ignore zero-length rates IEs as some * devices seem to put a zero-length rates * IE, followed by an SSID IE, followed by * a non-zero-length rates IE into frames, * even though IEEE Std 802.11-2007 doesn't * seem to indicate that a zero-length rates * IE is valid. */ if (!pbody->rates_present && rates.length != 0) { pbody->rates = rates; pbody->rates_present = 1; } break; case E_DS: if (!TTEST2(*(p + offset), 3)) return 0; if (length < 3) return 0; memcpy(&ds, p + offset, 3); offset += 3; length -= 3; /* * Present and not truncated. * * If we haven't already seen a DS IE, * copy this one, otherwise ignore this one, * so we later report the first one we saw. */ if (!pbody->ds_present) { pbody->ds = ds; pbody->ds_present = 1; } break; case E_CF: if (!TTEST2(*(p + offset), 8)) return 0; if (length < 8) return 0; memcpy(&cf, p + offset, 8); offset += 8; length -= 8; /* * Present and not truncated. * * If we haven't already seen a CF IE, * copy this one, otherwise ignore this one, * so we later report the first one we saw. */ if (!pbody->cf_present) { pbody->cf = cf; pbody->cf_present = 1; } break; case E_TIM: if (!TTEST2(*(p + offset), 2)) return 0; if (length < 2) return 0; memcpy(&tim, p + offset, 2); offset += 2; length -= 2; if (!TTEST2(*(p + offset), 3)) return 0; if (length < 3) return 0; memcpy(&tim.count, p + offset, 3); offset += 3; length -= 3; if (tim.length <= 3) break; if (tim.length - 3 > (int)sizeof tim.bitmap) return 0; if (!TTEST2(*(p + offset), tim.length - 3)) return 0; if (length < (u_int)(tim.length - 3)) return 0; memcpy(tim.bitmap, p + (tim.length - 3), (tim.length - 3)); offset += tim.length - 3; length -= tim.length - 3; /* * Present and not truncated. * * If we haven't already seen a TIM IE, * copy this one, otherwise ignore this one, * so we later report the first one we saw. */ if (!pbody->tim_present) { pbody->tim = tim; pbody->tim_present = 1; } break; default: #if 0 printf("(1) unhandled element_id (%d) ", *(p + offset)); #endif if (!TTEST2(*(p + offset), 2)) return 0; if (length < 2) return 0; elementlen = *(p + offset + 1); if (!TTEST2(*(p + offset + 2), elementlen)) return 0; if (length < elementlen + 2) return 0; offset += elementlen + 2; length -= elementlen + 2; break; } } /* No problems found. */ return 1; } /********************************************************************************* * Print Handle functions for the management frame types *********************************************************************************/ static int handle_beacon(const u_char *p, u_int length) { struct mgmt_body_t pbody; int offset = 0; int ret; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN + IEEE802_11_CAPINFO_LEN)) return 0; if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN + IEEE802_11_CAPINFO_LEN) return 0; memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN); offset += IEEE802_11_TSTAMP_LEN; length -= IEEE802_11_TSTAMP_LEN; pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_BCNINT_LEN; length -= IEEE802_11_BCNINT_LEN; pbody.capability_info = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_CAPINFO_LEN; length -= IEEE802_11_CAPINFO_LEN; ret = parse_elements(&pbody, p, offset, length); PRINT_SSID(pbody); PRINT_RATES(pbody); printf(" %s", CAPABILITY_ESS(pbody.capability_info) ? "ESS" : "IBSS"); PRINT_DS_CHANNEL(pbody); return ret; } static int handle_assoc_request(const u_char *p, u_int length) { struct mgmt_body_t pbody; int offset = 0; int ret; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN)) return 0; if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN) return 0; pbody.capability_info = EXTRACT_LE_16BITS(p); offset += IEEE802_11_CAPINFO_LEN; length -= IEEE802_11_CAPINFO_LEN; pbody.listen_interval = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_LISTENINT_LEN; length -= IEEE802_11_LISTENINT_LEN; ret = parse_elements(&pbody, p, offset, length); PRINT_SSID(pbody); PRINT_RATES(pbody); return ret; } static int handle_assoc_response(const u_char *p, u_int length) { struct mgmt_body_t pbody; int offset = 0; int ret; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN + IEEE802_11_AID_LEN)) return 0; if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_STATUS_LEN + IEEE802_11_AID_LEN) return 0; pbody.capability_info = EXTRACT_LE_16BITS(p); offset += IEEE802_11_CAPINFO_LEN; length -= IEEE802_11_CAPINFO_LEN; pbody.status_code = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_STATUS_LEN; length -= IEEE802_11_STATUS_LEN; pbody.aid = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_AID_LEN; length -= IEEE802_11_AID_LEN; ret = parse_elements(&pbody, p, offset, length); printf(" AID(%x) :%s: %s", ((u_int16_t)(pbody.aid << 2 )) >> 2 , CAPABILITY_PRIVACY(pbody.capability_info) ? " PRIVACY " : "", (pbody.status_code < NUM_STATUSES ? status_text[pbody.status_code] : "n/a")); return ret; } static int handle_reassoc_request(const u_char *p, u_int length) { struct mgmt_body_t pbody; int offset = 0; int ret; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN + IEEE802_11_AP_LEN)) return 0; if (length < IEEE802_11_CAPINFO_LEN + IEEE802_11_LISTENINT_LEN + IEEE802_11_AP_LEN) return 0; pbody.capability_info = EXTRACT_LE_16BITS(p); offset += IEEE802_11_CAPINFO_LEN; length -= IEEE802_11_CAPINFO_LEN; pbody.listen_interval = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_LISTENINT_LEN; length -= IEEE802_11_LISTENINT_LEN; memcpy(&pbody.ap, p+offset, IEEE802_11_AP_LEN); offset += IEEE802_11_AP_LEN; length -= IEEE802_11_AP_LEN; ret = parse_elements(&pbody, p, offset, length); PRINT_SSID(pbody); printf(" AP : %s", etheraddr_string( pbody.ap )); return ret; } static int handle_reassoc_response(const u_char *p, u_int length) { /* Same as a Association Reponse */ return handle_assoc_response(p, length); } static int handle_probe_request(const u_char *p, u_int length) { struct mgmt_body_t pbody; int offset = 0; int ret; memset(&pbody, 0, sizeof(pbody)); ret = parse_elements(&pbody, p, offset, length); PRINT_SSID(pbody); PRINT_RATES(pbody); return ret; } static int handle_probe_response(const u_char *p, u_int length) { struct mgmt_body_t pbody; int offset = 0; int ret; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN + IEEE802_11_CAPINFO_LEN)) return 0; if (length < IEEE802_11_TSTAMP_LEN + IEEE802_11_BCNINT_LEN + IEEE802_11_CAPINFO_LEN) return 0; memcpy(&pbody.timestamp, p, IEEE802_11_TSTAMP_LEN); offset += IEEE802_11_TSTAMP_LEN; length -= IEEE802_11_TSTAMP_LEN; pbody.beacon_interval = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_BCNINT_LEN; length -= IEEE802_11_BCNINT_LEN; pbody.capability_info = EXTRACT_LE_16BITS(p+offset); offset += IEEE802_11_CAPINFO_LEN; length -= IEEE802_11_CAPINFO_LEN; ret = parse_elements(&pbody, p, offset, length); PRINT_SSID(pbody); PRINT_RATES(pbody); PRINT_DS_CHANNEL(pbody); return ret; } static int handle_atim(void) { /* the frame body for ATIM is null. */ return 1; } static int handle_disassoc(const u_char *p, u_int length) { struct mgmt_body_t pbody; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_REASON_LEN)) return 0; if (length < IEEE802_11_REASON_LEN) return 0; pbody.reason_code = EXTRACT_LE_16BITS(p); printf(": %s", (pbody.reason_code < NUM_REASONS) ? reason_text[pbody.reason_code] : "Reserved" ); return 1; } static int handle_auth(const u_char *p, u_int length) { struct mgmt_body_t pbody; int offset = 0; int ret; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, 6)) return 0; if (length < 6) return 0; pbody.auth_alg = EXTRACT_LE_16BITS(p); offset += 2; length -= 2; pbody.auth_trans_seq_num = EXTRACT_LE_16BITS(p + offset); offset += 2; length -= 2; pbody.status_code = EXTRACT_LE_16BITS(p + offset); offset += 2; length -= 2; ret = parse_elements(&pbody, p, offset, length); if ((pbody.auth_alg == 1) && ((pbody.auth_trans_seq_num == 2) || (pbody.auth_trans_seq_num == 3))) { printf(" (%s)-%x [Challenge Text] %s", (pbody.auth_alg < NUM_AUTH_ALGS) ? auth_alg_text[pbody.auth_alg] : "Reserved", pbody.auth_trans_seq_num, ((pbody.auth_trans_seq_num % 2) ? ((pbody.status_code < NUM_STATUSES) ? status_text[pbody.status_code] : "n/a") : "")); return ret; } printf(" (%s)-%x: %s", (pbody.auth_alg < NUM_AUTH_ALGS) ? auth_alg_text[pbody.auth_alg] : "Reserved", pbody.auth_trans_seq_num, (pbody.auth_trans_seq_num % 2) ? ((pbody.status_code < NUM_STATUSES) ? status_text[pbody.status_code] : "n/a") : ""); return ret; } static int handle_deauth(const struct mgmt_header_t *pmh, const u_char *p, u_int length) { struct mgmt_body_t pbody; const char *reason = NULL; memset(&pbody, 0, sizeof(pbody)); if (!TTEST2(*p, IEEE802_11_REASON_LEN)) return 0; if (length < IEEE802_11_REASON_LEN) return 0; pbody.reason_code = EXTRACT_LE_16BITS(p); reason = (pbody.reason_code < NUM_REASONS) ? reason_text[pbody.reason_code] : "Reserved"; if (eflag) { printf(": %s", reason); } else { printf(" (%s): %s", etheraddr_string(pmh->sa), reason); } return 1; } #define PRINT_HT_ACTION(v) (\ (v) == 0 ? printf("TxChWidth") : \ (v) == 1 ? printf("MIMOPwrSave") : \ printf("Act#%d", (v)) \ ) #define PRINT_BA_ACTION(v) (\ (v) == 0 ? printf("ADDBA Request") : \ (v) == 1 ? printf("ADDBA Response") : \ (v) == 2 ? printf("DELBA") : \ printf("Act#%d", (v)) \ ) #define PRINT_MESHLINK_ACTION(v) (\ (v) == 0 ? printf("Request") : \ (v) == 1 ? printf("Report") : \ printf("Act#%d", (v)) \ ) #define PRINT_MESHPEERING_ACTION(v) (\ (v) == 0 ? printf("Open") : \ (v) == 1 ? printf("Confirm") : \ (v) == 2 ? printf("Close") : \ printf("Act#%d", (v)) \ ) #define PRINT_MESHPATH_ACTION(v) (\ (v) == 0 ? printf("Request") : \ (v) == 1 ? printf("Report") : \ (v) == 2 ? printf("Error") : \ (v) == 3 ? printf("RootAnnouncement") : \ printf("Act#%d", (v)) \ ) #define PRINT_MESH_ACTION(v) (\ (v) == 0 ? printf("MeshLink") : \ (v) == 1 ? printf("HWMP") : \ (v) == 2 ? printf("Gate Announcement") : \ (v) == 3 ? printf("Congestion Control") : \ (v) == 4 ? printf("MCCA Setup Request") : \ (v) == 5 ? printf("MCCA Setup Reply") : \ (v) == 6 ? printf("MCCA Advertisement Request") : \ (v) == 7 ? printf("MCCA Advertisement") : \ (v) == 8 ? printf("MCCA Teardown") : \ (v) == 9 ? printf("TBTT Adjustment Request") : \ (v) == 10 ? printf("TBTT Adjustment Response") : \ printf("Act#%d", (v)) \ ) #define PRINT_MULTIHOP_ACTION(v) (\ (v) == 0 ? printf("Proxy Update") : \ (v) == 1 ? printf("Proxy Update Confirmation") : \ printf("Act#%d", (v)) \ ) #define PRINT_SELFPROT_ACTION(v) (\ (v) == 1 ? printf("Peering Open") : \ (v) == 2 ? printf("Peering Confirm") : \ (v) == 3 ? printf("Peering Close") : \ (v) == 4 ? printf("Group Key Inform") : \ (v) == 5 ? printf("Group Key Acknowledge") : \ printf("Act#%d", (v)) \ ) static int handle_action(const struct mgmt_header_t *pmh, const u_char *p, u_int length) { if (!TTEST2(*p, 2)) return 0; if (length < 2) return 0; if (eflag) { printf(": "); } else { printf(" (%s): ", etheraddr_string(pmh->sa)); } switch (p[0]) { case 0: printf("Spectrum Management Act#%d", p[1]); break; case 1: printf("QoS Act#%d", p[1]); break; case 2: printf("DLS Act#%d", p[1]); break; case 3: printf("BA "); PRINT_BA_ACTION(p[1]); break; case 7: printf("HT "); PRINT_HT_ACTION(p[1]); break; case 13: printf("MeshAction "); PRINT_MESH_ACTION(p[1]); break; case 14: printf("MultiohopAction "); PRINT_MULTIHOP_ACTION(p[1]); break; case 15: printf("SelfprotectAction "); PRINT_SELFPROT_ACTION(p[1]); break; case 127: printf("Vendor Act#%d", p[1]); break; default: printf("Reserved(%d) Act#%d", p[0], p[1]); break; } return 1; } /********************************************************************************* * Print Body funcs *********************************************************************************/ static int mgmt_body_print(u_int16_t fc, const struct mgmt_header_t *pmh, const u_char *p, u_int length) { switch (FC_SUBTYPE(fc)) { case ST_ASSOC_REQUEST: printf("Assoc Request"); return handle_assoc_request(p, length); case ST_ASSOC_RESPONSE: printf("Assoc Response"); return handle_assoc_response(p, length); case ST_REASSOC_REQUEST: printf("ReAssoc Request"); return handle_reassoc_request(p, length); case ST_REASSOC_RESPONSE: printf("ReAssoc Response"); return handle_reassoc_response(p, length); case ST_PROBE_REQUEST: printf("Probe Request"); return handle_probe_request(p, length); case ST_PROBE_RESPONSE: printf("Probe Response"); return handle_probe_response(p, length); case ST_BEACON: printf("Beacon"); return handle_beacon(p, length); case ST_ATIM: printf("ATIM"); return handle_atim(); case ST_DISASSOC: printf("Disassociation"); return handle_disassoc(p, length); case ST_AUTH: printf("Authentication"); if (!TTEST2(*p, 3)) return 0; if ((p[0] == 0 ) && (p[1] == 0) && (p[2] == 0)) { printf("Authentication (Shared-Key)-3 "); return wep_print(p); } return handle_auth(p, length); case ST_DEAUTH: printf("DeAuthentication"); return handle_deauth(pmh, p, length); break; case ST_ACTION: printf("Action"); return handle_action(pmh, p, length); break; default: printf("Unhandled Management subtype(%x)", FC_SUBTYPE(fc)); return 1; } } /********************************************************************************* * Handles printing all the control frame types *********************************************************************************/ static int ctrl_body_print(u_int16_t fc, const u_char *p) { switch (FC_SUBTYPE(fc)) { case CTRL_CONTROL_WRAPPER: printf("Control Wrapper"); /* XXX - requires special handling */ break; case CTRL_BAR: printf("BAR"); if (!TTEST2(*p, CTRL_BAR_HDRLEN)) return 0; if (!eflag) printf(" RA:%s TA:%s CTL(%x) SEQ(%u) ", etheraddr_string(((const struct ctrl_bar_t *)p)->ra), etheraddr_string(((const struct ctrl_bar_t *)p)->ta), EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->ctl)), EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->seq))); break; case CTRL_BA: printf("BA"); if (!TTEST2(*p, CTRL_BA_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_ba_t *)p)->ra)); break; case CTRL_PS_POLL: printf("Power Save-Poll"); if (!TTEST2(*p, CTRL_PS_POLL_HDRLEN)) return 0; printf(" AID(%x)", EXTRACT_LE_16BITS(&(((const struct ctrl_ps_poll_t *)p)->aid))); break; case CTRL_RTS: printf("Request-To-Send"); if (!TTEST2(*p, CTRL_RTS_HDRLEN)) return 0; if (!eflag) printf(" TA:%s ", etheraddr_string(((const struct ctrl_rts_t *)p)->ta)); break; case CTRL_CTS: printf("Clear-To-Send"); if (!TTEST2(*p, CTRL_CTS_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_cts_t *)p)->ra)); break; case CTRL_ACK: printf("Acknowledgment"); if (!TTEST2(*p, CTRL_ACK_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_ack_t *)p)->ra)); break; case CTRL_CF_END: printf("CF-End"); if (!TTEST2(*p, CTRL_END_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_end_t *)p)->ra)); break; case CTRL_END_ACK: printf("CF-End+CF-Ack"); if (!TTEST2(*p, CTRL_END_ACK_HDRLEN)) return 0; if (!eflag) printf(" RA:%s ", etheraddr_string(((const struct ctrl_end_ack_t *)p)->ra)); break; default: printf("Unknown Ctrl Subtype"); } return 1; } /* * Print Header funcs */ /* * Data Frame - Address field contents * * To Ds | From DS | Addr 1 | Addr 2 | Addr 3 | Addr 4 * 0 | 0 | DA | SA | BSSID | n/a * 0 | 1 | DA | BSSID | SA | n/a * 1 | 0 | BSSID | SA | DA | n/a * 1 | 1 | RA | TA | DA | SA */ static void data_header_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp, const u_int8_t **dstp) { u_int subtype = FC_SUBTYPE(fc); if (DATA_FRAME_IS_CF_ACK(subtype) || DATA_FRAME_IS_CF_POLL(subtype) || DATA_FRAME_IS_QOS(subtype)) { printf("CF "); if (DATA_FRAME_IS_CF_ACK(subtype)) { if (DATA_FRAME_IS_CF_POLL(subtype)) printf("Ack/Poll"); else printf("Ack"); } else { if (DATA_FRAME_IS_CF_POLL(subtype)) printf("Poll"); } if (DATA_FRAME_IS_QOS(subtype)) printf("+QoS"); printf(" "); } #define ADDR1 (p + 4) #define ADDR2 (p + 10) #define ADDR3 (p + 16) #define ADDR4 (p + 24) if (!FC_TO_DS(fc) && !FC_FROM_DS(fc)) { if (srcp != NULL) *srcp = ADDR2; if (dstp != NULL) *dstp = ADDR1; if (!eflag) return; printf("DA:%s SA:%s BSSID:%s ", etheraddr_string(ADDR1), etheraddr_string(ADDR2), etheraddr_string(ADDR3)); } else if (!FC_TO_DS(fc) && FC_FROM_DS(fc)) { if (srcp != NULL) *srcp = ADDR3; if (dstp != NULL) *dstp = ADDR1; if (!eflag) return; printf("DA:%s BSSID:%s SA:%s ", etheraddr_string(ADDR1), etheraddr_string(ADDR2), etheraddr_string(ADDR3)); } else if (FC_TO_DS(fc) && !FC_FROM_DS(fc)) { if (srcp != NULL) *srcp = ADDR2; if (dstp != NULL) *dstp = ADDR3; if (!eflag) return; printf("BSSID:%s SA:%s DA:%s ", etheraddr_string(ADDR1), etheraddr_string(ADDR2), etheraddr_string(ADDR3)); } else if (FC_TO_DS(fc) && FC_FROM_DS(fc)) { if (srcp != NULL) *srcp = ADDR4; if (dstp != NULL) *dstp = ADDR3; if (!eflag) return; printf("RA:%s TA:%s DA:%s SA:%s ", etheraddr_string(ADDR1), etheraddr_string(ADDR2), etheraddr_string(ADDR3), etheraddr_string(ADDR4)); } #undef ADDR1 #undef ADDR2 #undef ADDR3 #undef ADDR4 } static void mgmt_header_print(const u_char *p, const u_int8_t **srcp, const u_int8_t **dstp) { const struct mgmt_header_t *hp = (const struct mgmt_header_t *) p; if (srcp != NULL) *srcp = hp->sa; if (dstp != NULL) *dstp = hp->da; if (!eflag) return; printf("BSSID:%s DA:%s SA:%s ", etheraddr_string((hp)->bssid), etheraddr_string((hp)->da), etheraddr_string((hp)->sa)); } static void ctrl_header_print(u_int16_t fc, const u_char *p, const u_int8_t **srcp, const u_int8_t **dstp) { if (srcp != NULL) *srcp = NULL; if (dstp != NULL) *dstp = NULL; if (!eflag) return; switch (FC_SUBTYPE(fc)) { case CTRL_BAR: printf(" RA:%s TA:%s CTL(%x) SEQ(%u) ", etheraddr_string(((const struct ctrl_bar_t *)p)->ra), etheraddr_string(((const struct ctrl_bar_t *)p)->ta), EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->ctl)), EXTRACT_LE_16BITS(&(((const struct ctrl_bar_t *)p)->seq))); break; case CTRL_BA: printf("RA:%s ", etheraddr_string(((const struct ctrl_ba_t *)p)->ra)); break; case CTRL_PS_POLL: printf("BSSID:%s TA:%s ", etheraddr_string(((const struct ctrl_ps_poll_t *)p)->bssid), etheraddr_string(((const struct ctrl_ps_poll_t *)p)->ta)); break; case CTRL_RTS: printf("RA:%s TA:%s ", etheraddr_string(((const struct ctrl_rts_t *)p)->ra), etheraddr_string(((const struct ctrl_rts_t *)p)->ta)); break; case CTRL_CTS: printf("RA:%s ", etheraddr_string(((const struct ctrl_cts_t *)p)->ra)); break; case CTRL_ACK: printf("RA:%s ", etheraddr_string(((const struct ctrl_ack_t *)p)->ra)); break; case CTRL_CF_END: printf("RA:%s BSSID:%s ", etheraddr_string(((const struct ctrl_end_t *)p)->ra), etheraddr_string(((const struct ctrl_end_t *)p)->bssid)); break; case CTRL_END_ACK: printf("RA:%s BSSID:%s ", etheraddr_string(((const struct ctrl_end_ack_t *)p)->ra), etheraddr_string(((const struct ctrl_end_ack_t *)p)->bssid)); break; default: printf("(H) Unknown Ctrl Subtype"); break; } } static int extract_header_length(u_int16_t fc) { int len; switch (FC_TYPE(fc)) { case T_MGMT: return MGMT_HDRLEN; case T_CTRL: switch (FC_SUBTYPE(fc)) { case CTRL_BAR: return CTRL_BAR_HDRLEN; case CTRL_PS_POLL: return CTRL_PS_POLL_HDRLEN; case CTRL_RTS: return CTRL_RTS_HDRLEN; case CTRL_CTS: return CTRL_CTS_HDRLEN; case CTRL_ACK: return CTRL_ACK_HDRLEN; case CTRL_CF_END: return CTRL_END_HDRLEN; case CTRL_END_ACK: return CTRL_END_ACK_HDRLEN; default: return 0; } case T_DATA: len = (FC_TO_DS(fc) && FC_FROM_DS(fc)) ? 30 : 24; if (DATA_FRAME_IS_QOS(FC_SUBTYPE(fc))) len += 2; return len; default: printf("unknown IEEE802.11 frame type (%d)", FC_TYPE(fc)); return 0; } } static int extract_mesh_header_length(const u_char *p) { return (p[0] &~ 3) ? 0 : 6*(1 + (p[0] & 3)); } /* * Print the 802.11 MAC header if eflag is set, and set "*srcp" and "*dstp" * to point to the source and destination MAC addresses in any case if * "srcp" and "dstp" aren't null. */ static void ieee_802_11_hdr_print(u_int16_t fc, const u_char *p, u_int hdrlen, u_int meshdrlen, const u_int8_t **srcp, const u_int8_t **dstp) { if (vflag) { if (FC_MORE_DATA(fc)) printf("More Data "); if (FC_MORE_FLAG(fc)) printf("More Fragments "); if (FC_POWER_MGMT(fc)) printf("Pwr Mgmt "); if (FC_RETRY(fc)) printf("Retry "); if (FC_ORDER(fc)) printf("Strictly Ordered "); if (FC_WEP(fc)) printf("WEP Encrypted "); if (FC_TYPE(fc) != T_CTRL || FC_SUBTYPE(fc) != CTRL_PS_POLL) printf("%dus ", EXTRACT_LE_16BITS( &((const struct mgmt_header_t *)p)->duration)); } if (meshdrlen != 0) { const struct meshcntl_t *mc = (const struct meshcntl_t *)&p[hdrlen - meshdrlen]; int ae = mc->flags & 3; printf("MeshData (AE %d TTL %u seq %u", ae, mc->ttl, EXTRACT_LE_32BITS(mc->seq)); if (ae > 0) printf(" A4:%s", etheraddr_string(mc->addr4)); if (ae > 1) printf(" A5:%s", etheraddr_string(mc->addr5)); if (ae > 2) printf(" A6:%s", etheraddr_string(mc->addr6)); printf(") "); } switch (FC_TYPE(fc)) { case T_MGMT: mgmt_header_print(p, srcp, dstp); break; case T_CTRL: ctrl_header_print(fc, p, srcp, dstp); break; case T_DATA: data_header_print(fc, p, srcp, dstp); break; default: printf("(header) unknown IEEE802.11 frame type (%d)", FC_TYPE(fc)); *srcp = NULL; *dstp = NULL; break; } } #ifndef roundup2 #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */ #endif static u_int ieee802_11_print(const u_char *p, u_int length, u_int orig_caplen, int pad, u_int fcslen) { u_int16_t fc; u_int caplen, hdrlen, meshdrlen; const u_int8_t *src, *dst; u_short extracted_ethertype; caplen = orig_caplen; /* Remove FCS, if present */ if (length < fcslen) { printf("%s", tstr); return caplen; } length -= fcslen; if (caplen > length) { /* Amount of FCS in actual packet data, if any */ fcslen = caplen - length; caplen -= fcslen; snapend -= fcslen; } if (caplen < IEEE802_11_FC_LEN) { printf("%s", tstr); return orig_caplen; } fc = EXTRACT_LE_16BITS(p); hdrlen = extract_header_length(fc); if (pad) hdrlen = roundup2(hdrlen, 4); if (Hflag && FC_TYPE(fc) == T_DATA && DATA_FRAME_IS_QOS(FC_SUBTYPE(fc))) { meshdrlen = extract_mesh_header_length(p+hdrlen); hdrlen += meshdrlen; } else meshdrlen = 0; if (caplen < hdrlen) { printf("%s", tstr); return hdrlen; } ieee_802_11_hdr_print(fc, p, hdrlen, meshdrlen, &src, &dst); /* * Go past the 802.11 header. */ length -= hdrlen; caplen -= hdrlen; p += hdrlen; switch (FC_TYPE(fc)) { case T_MGMT: if (!mgmt_body_print(fc, (const struct mgmt_header_t *)(p - hdrlen), p, length)) { printf("%s", tstr); return hdrlen; } break; case T_CTRL: if (!ctrl_body_print(fc, p - hdrlen)) { printf("%s", tstr); return hdrlen; } break; case T_DATA: if (DATA_FRAME_IS_NULL(FC_SUBTYPE(fc))) return hdrlen; /* no-data frame */ /* There may be a problem w/ AP not having this bit set */ if (FC_WEP(fc)) { if (!wep_print(p)) { printf("%s", tstr); return hdrlen; } } else if (llc_print(gndo, p, length, caplen, dst, src, &extracted_ethertype) == 0) { /* * Some kinds of LLC packet we cannot * handle intelligently */ if (!eflag) ieee_802_11_hdr_print(fc, p - hdrlen, hdrlen, meshdrlen, NULL, NULL); if (extracted_ethertype) printf("(LLC %s) ", etherproto_string( htons(extracted_ethertype))); if (!suppress_default_print) default_print(p, caplen); } break; default: printf("unknown 802.11 frame type (%d)", FC_TYPE(fc)); break; } return hdrlen; } /* * This is the top level routine of the printer. 'p' points * to the 802.11 header of the packet, 'h->ts' is the timestamp, * 'h->len' is the length of the packet off the wire, and 'h->caplen' * is the number of bytes actually captured. */ u_int ieee802_11_if_print(const struct pcap_pkthdr *h, const u_char *p) { return ieee802_11_print(p, h->len, h->caplen, 0, 0); } #define IEEE80211_CHAN_FHSS \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK) #define IEEE80211_CHAN_A \ (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM) #define IEEE80211_CHAN_B \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK) #define IEEE80211_CHAN_PUREG \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM) #define IEEE80211_CHAN_G \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN) #define IS_CHAN_FHSS(flags) \ ((flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS) #define IS_CHAN_A(flags) \ ((flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) #define IS_CHAN_B(flags) \ ((flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) #define IS_CHAN_PUREG(flags) \ ((flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG) #define IS_CHAN_G(flags) \ ((flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) #define IS_CHAN_ANYG(flags) \ (IS_CHAN_PUREG(flags) || IS_CHAN_G(flags)) static void print_chaninfo(int freq, int flags) { printf("%u MHz", freq); if (IS_CHAN_FHSS(flags)) printf(" FHSS"); if (IS_CHAN_A(flags)) { if (flags & IEEE80211_CHAN_HALF) printf(" 11a/10Mhz"); else if (flags & IEEE80211_CHAN_QUARTER) printf(" 11a/5Mhz"); else printf(" 11a"); } if (IS_CHAN_ANYG(flags)) { if (flags & IEEE80211_CHAN_HALF) printf(" 11g/10Mhz"); else if (flags & IEEE80211_CHAN_QUARTER) printf(" 11g/5Mhz"); else printf(" 11g"); } else if (IS_CHAN_B(flags)) printf(" 11b"); if (flags & IEEE80211_CHAN_TURBO) printf(" Turbo"); if (flags & IEEE80211_CHAN_HT20) printf(" ht/20"); else if (flags & IEEE80211_CHAN_HT40D) printf(" ht/40-"); else if (flags & IEEE80211_CHAN_HT40U) printf(" ht/40+"); printf(" "); } static int print_radiotap_field(struct cpack_state *s, u_int32_t bit, u_int8_t *flags, struct radiotap_state *state, u_int32_t presentflags) { union { int8_t i8; u_int8_t u8; int16_t i16; u_int16_t u16; u_int32_t u32; u_int64_t u64; } u, u2, u3, u4; int rc; switch (bit) { case IEEE80211_RADIOTAP_FLAGS: rc = cpack_uint8(s, &u.u8); if (rc != 0) break; *flags = u.u8; break; case IEEE80211_RADIOTAP_RATE: rc = cpack_uint8(s, &u.u8); if (rc != 0) break; /* Save state rate */ state->rate = u.u8; break; case IEEE80211_RADIOTAP_DB_ANTSIGNAL: case IEEE80211_RADIOTAP_DB_ANTNOISE: case IEEE80211_RADIOTAP_ANTENNA: rc = cpack_uint8(s, &u.u8); break; case IEEE80211_RADIOTAP_DBM_ANTSIGNAL: case IEEE80211_RADIOTAP_DBM_ANTNOISE: rc = cpack_int8(s, &u.i8); break; case IEEE80211_RADIOTAP_CHANNEL: rc = cpack_uint16(s, &u.u16); if (rc != 0) break; rc = cpack_uint16(s, &u2.u16); break; case IEEE80211_RADIOTAP_FHSS: case IEEE80211_RADIOTAP_LOCK_QUALITY: case IEEE80211_RADIOTAP_TX_ATTENUATION: case IEEE80211_RADIOTAP_RX_FLAGS: rc = cpack_uint16(s, &u.u16); break; case IEEE80211_RADIOTAP_DB_TX_ATTENUATION: rc = cpack_uint8(s, &u.u8); break; case IEEE80211_RADIOTAP_DBM_TX_POWER: rc = cpack_int8(s, &u.i8); break; case IEEE80211_RADIOTAP_TSFT: rc = cpack_uint64(s, &u.u64); break; case IEEE80211_RADIOTAP_XCHANNEL: rc = cpack_uint32(s, &u.u32); if (rc != 0) break; rc = cpack_uint16(s, &u2.u16); if (rc != 0) break; rc = cpack_uint8(s, &u3.u8); if (rc != 0) break; rc = cpack_uint8(s, &u4.u8); break; case IEEE80211_RADIOTAP_MCS: rc = cpack_uint8(s, &u.u8); if (rc != 0) break; rc = cpack_uint8(s, &u2.u8); if (rc != 0) break; rc = cpack_uint8(s, &u3.u8); break; case IEEE80211_RADIOTAP_VENDOR_NAMESPACE: { u_int8_t vns[3]; u_int16_t length; u_int8_t subspace; if ((cpack_align_and_reserve(s, 2)) == NULL) { rc = -1; break; } rc = cpack_uint8(s, &vns[0]); if (rc != 0) break; rc = cpack_uint8(s, &vns[1]); if (rc != 0) break; rc = cpack_uint8(s, &vns[2]); if (rc != 0) break; rc = cpack_uint8(s, &subspace); if (rc != 0) break; rc = cpack_uint16(s, &length); if (rc != 0) break; /* Skip up to length */ s->c_next += length; break; } default: /* this bit indicates a field whose * size we do not know, so we cannot * proceed. Just print the bit number. */ printf("[bit %u] ", bit); return -1; } if (rc != 0) { printf("%s", tstr); return rc; } /* Preserve the state present flags */ state->present = presentflags; switch (bit) { case IEEE80211_RADIOTAP_CHANNEL: /* * If CHANNEL and XCHANNEL are both present, skip * CHANNEL. */ if (presentflags & (1 << IEEE80211_RADIOTAP_XCHANNEL)) break; print_chaninfo(u.u16, u2.u16); break; case IEEE80211_RADIOTAP_FHSS: printf("fhset %d fhpat %d ", u.u16 & 0xff, (u.u16 >> 8) & 0xff); break; case IEEE80211_RADIOTAP_RATE: /* * XXX On FreeBSD rate & 0x80 means we have an MCS. On * Linux and AirPcap it does not. (What about * Mac OS X, NetBSD, OpenBSD, and DragonFly BSD?) * * This is an issue either for proprietary extensions * to 11a or 11g, which do exist, or for 11n * implementations that stuff a rate value into * this field, which also appear to exist. * * We currently handle that by assuming that * if the 0x80 bit is set *and* the remaining * bits have a value between 0 and 15 it's * an MCS value, otherwise it's a rate. If * there are cases where systems that use * "0x80 + MCS index" for MCS indices > 15, * or stuff a rate value here between 64 and * 71.5 Mb/s in here, we'll need a preference * setting. Such rates do exist, e.g. 11n * MCS 7 at 20 MHz with a long guard interval. */ if (u.u8 >= 0x80 && u.u8 <= 0x8f) { /* * XXX - we don't know the channel width * or guard interval length, so we can't * convert this to a data rate. * * If you want us to show a data rate, * use the MCS field, not the Rate field; * the MCS field includes not only the * MCS index, it also includes bandwidth * and guard interval information. * * XXX - can we get the channel width * from XChannel and the guard interval * information from Flags, at least on * FreeBSD? */ printf("MCS %u ", u.u8 & 0x7f); } else printf("%2.1f Mb/s ", .5*u.u8); break; case IEEE80211_RADIOTAP_DBM_ANTSIGNAL: printf("%ddB signal ", u.i8); break; case IEEE80211_RADIOTAP_DBM_ANTNOISE: printf("%ddB noise ", u.i8); break; case IEEE80211_RADIOTAP_DB_ANTSIGNAL: printf("%ddB signal ", u.u8); break; case IEEE80211_RADIOTAP_DB_ANTNOISE: printf("%ddB noise ", u.u8); break; case IEEE80211_RADIOTAP_LOCK_QUALITY: printf("%u sq ", u.u16); break; case IEEE80211_RADIOTAP_TX_ATTENUATION: printf("%d tx power ", -(int)u.u16); break; case IEEE80211_RADIOTAP_DB_TX_ATTENUATION: printf("%ddB tx power ", -(int)u.u8); break; case IEEE80211_RADIOTAP_DBM_TX_POWER: printf("%ddBm tx power ", u.i8); break; case IEEE80211_RADIOTAP_FLAGS: if (u.u8 & IEEE80211_RADIOTAP_F_CFP) printf("cfp "); if (u.u8 & IEEE80211_RADIOTAP_F_SHORTPRE) printf("short preamble "); if (u.u8 & IEEE80211_RADIOTAP_F_WEP) printf("wep "); if (u.u8 & IEEE80211_RADIOTAP_F_FRAG) printf("fragmented "); if (u.u8 & IEEE80211_RADIOTAP_F_BADFCS) printf("bad-fcs "); break; case IEEE80211_RADIOTAP_ANTENNA: printf("antenna %d ", u.u8); break; case IEEE80211_RADIOTAP_TSFT: printf("%" PRIu64 "us tsft ", u.u64); break; case IEEE80211_RADIOTAP_RX_FLAGS: /* Do nothing for now */ break; case IEEE80211_RADIOTAP_XCHANNEL: print_chaninfo(u2.u16, u.u32); break; case IEEE80211_RADIOTAP_MCS: { static const char *bandwidth[4] = { "20 MHz", "40 MHz", "20 MHz (L)", "20 MHz (U)" }; float htrate; if (u.u8 & IEEE80211_RADIOTAP_MCS_MCS_INDEX_KNOWN) { /* * We know the MCS index. */ if (u3.u8 <= MAX_MCS_INDEX) { /* * And it's in-range. */ if (u.u8 & (IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN|IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN)) { /* * And we know both the bandwidth and * the guard interval, so we can look * up the rate. */ htrate = ieee80211_float_htrates \ [u3.u8] \ [((u2.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK) == IEEE80211_RADIOTAP_MCS_BANDWIDTH_40 ? 1 : 0)] \ [((u2.u8 & IEEE80211_RADIOTAP_MCS_SHORT_GI) ? 1 : 0)]; } else { /* * We don't know both the bandwidth * and the guard interval, so we can * only report the MCS index. */ htrate = 0.0; } } else { /* * The MCS value is out of range. */ htrate = 0.0; } if (htrate != 0.0) { /* * We have the rate. * Print it. */ printf("%.1f Mb/s MCS %u ", htrate, u3.u8); } else { /* * We at least have the MCS index. * Print it. */ printf("MCS %u ", u3.u8); } } if (u.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_KNOWN) { printf("%s ", bandwidth[u2.u8 & IEEE80211_RADIOTAP_MCS_BANDWIDTH_MASK]); } if (u.u8 & IEEE80211_RADIOTAP_MCS_GUARD_INTERVAL_KNOWN) { printf("%s GI ", (u2.u8 & IEEE80211_RADIOTAP_MCS_SHORT_GI) ? "short" : "lon"); } if (u.u8 & IEEE80211_RADIOTAP_MCS_HT_FORMAT_KNOWN) { printf("%s ", (u2.u8 & IEEE80211_RADIOTAP_MCS_HT_GREENFIELD) ? "greenfield" : "mixed"); } if (u.u8 & IEEE80211_RADIOTAP_MCS_FEC_TYPE_KNOWN) { printf("%s FEC ", (u2.u8 & IEEE80211_RADIOTAP_MCS_FEC_LDPC) ? "LDPC" : "BCC"); } if (u.u8 & IEEE80211_RADIOTAP_MCS_STBC_KNOWN) { printf("RX-STBC%u ", (u2.u8 & IEEE80211_RADIOTAP_MCS_STBC_MASK) >> IEEE80211_RADIOTAP_MCS_STBC_SHIFT); } break; } } return 0; } static u_int ieee802_11_radio_print(const u_char *p, u_int length, u_int caplen) { #define BITNO_32(x) (((x) >> 16) ? 16 + BITNO_16((x) >> 16) : BITNO_16((x))) #define BITNO_16(x) (((x) >> 8) ? 8 + BITNO_8((x) >> 8) : BITNO_8((x))) #define BITNO_8(x) (((x) >> 4) ? 4 + BITNO_4((x) >> 4) : BITNO_4((x))) #define BITNO_4(x) (((x) >> 2) ? 2 + BITNO_2((x) >> 2) : BITNO_2((x))) #define BITNO_2(x) (((x) & 2) ? 1 : 0) #define BIT(n) (1U << n) #define IS_EXTENDED(__p) \ (EXTRACT_LE_32BITS(__p) & BIT(IEEE80211_RADIOTAP_EXT)) != 0 struct cpack_state cpacker; struct ieee80211_radiotap_header *hdr; u_int32_t present, next_present; u_int32_t presentflags = 0; u_int32_t *presentp, *last_presentp; enum ieee80211_radiotap_type bit; int bit0; u_int len; u_int8_t flags; int pad; u_int fcslen; struct radiotap_state state; if (caplen < sizeof(*hdr)) { printf("%s", tstr); return caplen; } hdr = (struct ieee80211_radiotap_header *)p; len = EXTRACT_LE_16BITS(&hdr->it_len); if (caplen < len) { printf("%s", tstr); return caplen; } cpack_init(&cpacker, (u_int8_t *)hdr, len); /* align against header start */ cpack_advance(&cpacker, sizeof(*hdr)); /* includes the 1st bitmap */ for (last_presentp = &hdr->it_present; IS_EXTENDED(last_presentp) && (u_char*)(last_presentp + 1) <= p + len; last_presentp++) cpack_advance(&cpacker, sizeof(hdr->it_present)); /* more bitmaps */ /* are there more bitmap extensions than bytes in header? */ if (IS_EXTENDED(last_presentp)) { printf("%s", tstr); return caplen; } /* Assume no flags */ flags = 0; /* Assume no Atheros padding between 802.11 header and body */ pad = 0; /* Assume no FCS at end of frame */ fcslen = 0; for (bit0 = 0, presentp = &hdr->it_present; presentp <= last_presentp; presentp++, bit0 += 32) { presentflags = EXTRACT_LE_32BITS(presentp); /* Clear state. */ memset(&state, 0, sizeof(state)); for (present = EXTRACT_LE_32BITS(presentp); present; present = next_present) { /* clear the least significant bit that is set */ next_present = present & (present - 1); /* extract the least significant bit that is set */ bit = (enum ieee80211_radiotap_type) (bit0 + BITNO_32(present ^ next_present)); if (print_radiotap_field(&cpacker, bit, &flags, &state, presentflags) != 0) goto out; } } out: if (flags & IEEE80211_RADIOTAP_F_DATAPAD) pad = 1; /* Atheros padding */ if (flags & IEEE80211_RADIOTAP_F_FCS) fcslen = 4; /* FCS at end of packet */ return len + ieee802_11_print(p + len, length - len, caplen - len, pad, fcslen); #undef BITNO_32 #undef BITNO_16 #undef BITNO_8 #undef BITNO_4 #undef BITNO_2 #undef BIT } static u_int ieee802_11_avs_radio_print(const u_char *p, u_int length, u_int caplen) { u_int32_t caphdr_len; if (caplen < 8) { printf("%s", tstr); return caplen; } caphdr_len = EXTRACT_32BITS(p + 4); if (caphdr_len < 8) { /* * Yow! The capture header length is claimed not * to be large enough to include even the version * cookie or capture header length! */ printf("%s", tstr); return caplen; } if (caplen < caphdr_len) { printf("%s", tstr); return caplen; } return caphdr_len + ieee802_11_print(p + caphdr_len, length - caphdr_len, caplen - caphdr_len, 0, 0); } #define PRISM_HDR_LEN 144 #define WLANCAP_MAGIC_COOKIE_BASE 0x80211000 #define WLANCAP_MAGIC_COOKIE_V1 0x80211001 #define WLANCAP_MAGIC_COOKIE_V2 0x80211002 /* * For DLT_PRISM_HEADER; like DLT_IEEE802_11, but with an extra header, * containing information such as radio information, which we * currently ignore. * * If, however, the packet begins with WLANCAP_MAGIC_COOKIE_V1 or * WLANCAP_MAGIC_COOKIE_V2, it's really DLT_IEEE802_11_RADIO_AVS * (currently, on Linux, there's no ARPHRD_ type for * DLT_IEEE802_11_RADIO_AVS, as there is a ARPHRD_IEEE80211_PRISM * for DLT_PRISM_HEADER, so ARPHRD_IEEE80211_PRISM is used for * the AVS header, and the first 4 bytes of the header are used to * indicate whether it's a Prism header or an AVS header). */ u_int prism_if_print(const struct pcap_pkthdr *h, const u_char *p) { u_int caplen = h->caplen; u_int length = h->len; u_int32_t msgcode; if (caplen < 4) { printf("%s", tstr); return caplen; } msgcode = EXTRACT_32BITS(p); if (msgcode == WLANCAP_MAGIC_COOKIE_V1 || msgcode == WLANCAP_MAGIC_COOKIE_V2) return ieee802_11_avs_radio_print(p, length, caplen); if (caplen < PRISM_HDR_LEN) { printf("%s", tstr); return caplen; } return PRISM_HDR_LEN + ieee802_11_print(p + PRISM_HDR_LEN, length - PRISM_HDR_LEN, caplen - PRISM_HDR_LEN, 0, 0); } /* * For DLT_IEEE802_11_RADIO; like DLT_IEEE802_11, but with an extra * header, containing information such as radio information. */ u_int ieee802_11_radio_if_print(const struct pcap_pkthdr *h, const u_char *p) { return ieee802_11_radio_print(p, h->len, h->caplen); } /* * For DLT_IEEE802_11_RADIO_AVS; like DLT_IEEE802_11, but with an * extra header, containing information such as radio information, * which we currently ignore. */ u_int ieee802_11_radio_avs_if_print(const struct pcap_pkthdr *h, const u_char *p) { return ieee802_11_avs_radio_print(p, h->len, h->caplen); }