/* * Copyright (c) 2009, Sun Microsystems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of Sun Microsystems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1986-1991 by Sun Microsystems Inc. */ /* * svc_dg.c, Server side for connectionless RPC. * * Does some caching in the hopes of achieving execute-at-most-once semantics. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rpc_com.h" #include "debug.h" #define su_data(xprt) ((struct svc_dg_data *)((xprt)->xp_p2)) #define rpc_buffer(xprt) ((xprt)->xp_p1) #ifndef MAX #define MAX(a, b) (((a) > (b)) ? (a) : (b)) #endif static void svc_dg_ops(SVCXPRT *); static enum xprt_stat svc_dg_stat(SVCXPRT *); static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *); static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *); static void svc_dg_destroy(SVCXPRT *); static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); static void cache_set(SVCXPRT *, size_t); int svc_dg_enablecache(SVCXPRT *, u_int); static void svc_dg_enable_pktinfo(int, const struct __rpc_sockinfo *); static int svc_dg_valid_pktinfo(struct msghdr *); /* * Usage: * xprt = svc_dg_create(sock, sendsize, recvsize); * Does other connectionless specific initializations. * Once *xprt is initialized, it is registered. * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable * system defaults are chosen. * The routines returns NULL if a problem occurred. */ static const char svc_dg_str[] = "svc_dg_create: %s"; static const char svc_dg_err1[] = "could not get transport information"; static const char svc_dg_err2[] = " transport does not support data transfer"; static const char __no_mem_str[] = "out of memory"; SVCXPRT * svc_dg_create(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { SVCXPRT *xprt; SVCXPRT_EXT *ext = NULL; struct svc_dg_data *su = NULL; struct __rpc_sockinfo si; struct sockaddr_storage ss; socklen_t slen; if (!__rpc_fd2sockinfo(fd, &si)) { warnx(svc_dg_str, svc_dg_err1); return (NULL); } /* * Find the receive and the send size */ sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); if ((sendsize == 0) || (recvsize == 0)) { warnx(svc_dg_str, svc_dg_err2); return (NULL); } xprt = mem_alloc(sizeof (SVCXPRT)); if (xprt == NULL) goto freedata; memset(xprt, 0, sizeof (SVCXPRT)); ext = mem_alloc(sizeof (*ext)); if (ext == NULL) goto freedata; memset(ext, 0, sizeof (*ext)); su = mem_alloc(sizeof (*su)); if (su == NULL) goto freedata; su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL) goto freedata; xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, XDR_DECODE); su->su_cache = NULL; xprt->xp_fd = fd; xprt->xp_p2 = su; xprt->xp_p3 = ext; xprt->xp_verf.oa_base = su->su_verfbody; svc_dg_ops(xprt); xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); slen = sizeof ss; if (getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) goto freedata; __rpc_set_netbuf(&xprt->xp_ltaddr, &ss, slen); /* Enable reception of IP*_PKTINFO control msgs */ svc_dg_enable_pktinfo(fd, &si); xprt_register(xprt); return (xprt); freedata: (void) warnx(svc_dg_str, __no_mem_str); if (xprt) { if (su) (void) mem_free(su, sizeof (*su)); if (ext) (void) mem_free(ext, sizeof (*ext)); (void) mem_free(xprt, sizeof (SVCXPRT)); } return (NULL); } /*ARGSUSED*/ static enum xprt_stat svc_dg_stat(xprt) SVCXPRT *xprt; { return (XPRT_IDLE); } static bool_t svc_dg_recv(xprt, msg) SVCXPRT *xprt; struct rpc_msg *msg; { struct svc_dg_data *su = su_data(xprt); XDR *xdrs = &(su->su_xdrs); char *reply; struct sockaddr_storage ss; struct msghdr *mesgp; struct iovec iov; size_t replylen; ssize_t rlen; again: iov.iov_base = rpc_buffer(xprt); iov.iov_len = su->su_iosz; mesgp = &su->su_msghdr; memset(mesgp, 0, sizeof(*mesgp)); mesgp->msg_iov = &iov; mesgp->msg_iovlen = 1; mesgp->msg_name = (struct sockaddr *)(void *) &ss; mesgp->msg_namelen = sizeof (struct sockaddr_storage); mesgp->msg_control = su->su_cmsg; mesgp->msg_controllen = sizeof(su->su_cmsg); rlen = recvmsg(xprt->xp_fd, mesgp, 0); if (rlen == -1 && errno == EINTR) goto again; if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) return (FALSE); __rpc_set_netbuf(&xprt->xp_rtaddr, &ss, mesgp->msg_namelen); /* Check whether there's an IP_PKTINFO or IP6_PKTINFO control message. * If yes, preserve it for svc_dg_reply; otherwise just zap any cmsgs */ if (!svc_dg_valid_pktinfo(mesgp)) { mesgp->msg_control = NULL; mesgp->msg_controllen = 0; } __xprt_set_raddr(xprt, &ss); xdrs->x_op = XDR_DECODE; XDR_SETPOS(xdrs, 0); if (! xdr_callmsg(xdrs, msg)) { return (FALSE); } su->su_xid = msg->rm_xid; if (su->su_cache != NULL) { if (cache_get(xprt, msg, &reply, &replylen)) { iov.iov_base = reply; iov.iov_len = replylen; (void) sendmsg(xprt->xp_fd, mesgp, 0); return (FALSE); } } return (TRUE); } static bool_t svc_dg_reply(xprt, msg) SVCXPRT *xprt; struct rpc_msg *msg; { struct svc_dg_data *su = su_data(xprt); XDR *xdrs = &(su->su_xdrs); bool_t stat = FALSE; size_t slen; xdrproc_t xdr_results; caddr_t xdr_location; bool_t has_args; if (msg->rm_reply.rp_stat == MSG_ACCEPTED && msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { has_args = TRUE; xdr_results = msg->acpted_rply.ar_results.proc; xdr_location = msg->acpted_rply.ar_results.where; msg->acpted_rply.ar_results.proc = (xdrproc_t)xdr_void; msg->acpted_rply.ar_results.where = NULL; } else has_args = FALSE; xdrs->x_op = XDR_ENCODE; XDR_SETPOS(xdrs, 0); msg->rm_xid = su->su_xid; if (xdr_replymsg(xdrs, msg) && (!has_args || SVCAUTH_WRAP(&SVC_XP_AUTH(xprt), xdrs, xdr_results, xdr_location))) { struct msghdr *msg = &su->su_msghdr; struct iovec iov; iov.iov_base = rpc_buffer(xprt); iov.iov_len = slen = XDR_GETPOS(xdrs); msg->msg_iov = &iov; msg->msg_iovlen = 1; msg->msg_name = (struct sockaddr *)(void *) xprt->xp_rtaddr.buf; msg->msg_namelen = xprt->xp_rtaddr.len; /* cmsg already set in svc_dg_recv */ if (sendmsg(xprt->xp_fd, msg, 0) == (ssize_t) slen) { stat = TRUE; if (su->su_cache) cache_set(xprt, slen); } } return (stat); } static bool_t svc_dg_getargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; void *args_ptr; { if (!SVCAUTH_UNWRAP(&SVC_XP_AUTH(xprt), &(su_data(xprt)->su_xdrs), xdr_args, args_ptr)) { return FALSE; } return TRUE; } static bool_t svc_dg_freeargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; void *args_ptr; { XDR *xdrs = &(su_data(xprt)->su_xdrs); xdrs->x_op = XDR_FREE; return (*xdr_args)(xdrs, args_ptr); } static void svc_dg_destroy(xprt) SVCXPRT *xprt; { SVCXPRT_EXT *ext = SVCEXT(xprt); struct svc_dg_data *su = su_data(xprt); xprt_unregister(xprt); if (xprt->xp_fd != -1) (void)close(xprt->xp_fd); XDR_DESTROY(&(su->su_xdrs)); (void) mem_free(rpc_buffer(xprt), su->su_iosz); (void) mem_free(su, sizeof (*su)); (void) mem_free(ext, sizeof (*ext)); if (xprt->xp_rtaddr.buf) (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); if (xprt->xp_ltaddr.buf) (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); if (xprt->xp_tp) (void) free(xprt->xp_tp); if (xprt->xp_netid) (void) free(xprt->xp_netid); (void) mem_free(xprt, sizeof (SVCXPRT)); } static bool_t /*ARGSUSED*/ svc_dg_control(xprt, rq, in) SVCXPRT *xprt; const u_int rq; void *in; { return (FALSE); } static void svc_dg_ops(xprt) SVCXPRT *xprt; { static struct xp_ops ops; static struct xp_ops2 ops2; extern mutex_t ops_lock; /* VARIABLES PROTECTED BY ops_lock: ops */ mutex_lock(&ops_lock); if (ops.xp_recv == NULL) { ops.xp_recv = svc_dg_recv; ops.xp_stat = svc_dg_stat; ops.xp_getargs = svc_dg_getargs; ops.xp_reply = svc_dg_reply; ops.xp_freeargs = svc_dg_freeargs; ops.xp_destroy = svc_dg_destroy; ops2.xp_control = svc_dg_control; } xprt->xp_ops = &ops; xprt->xp_ops2 = &ops2; mutex_unlock(&ops_lock); } /* The CACHING COMPONENT */ /* * Could have been a separate file, but some part of it depends upon the * private structure of the client handle. * * Fifo cache for cl server * Copies pointers to reply buffers into fifo cache * Buffers are sent again if retransmissions are detected. */ #define SPARSENESS 4 /* 75% sparse */ #define ALLOC(type, size) \ (type *) mem_alloc((sizeof (type) * (size))) #define MEMZERO(addr, type, size) \ (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) #define FREE(addr, type, size) \ mem_free((addr), (sizeof (type) * (size))) /* * An entry in the cache */ typedef struct cache_node *cache_ptr; struct cache_node { /* * Index into cache is xid, proc, vers, prog and address */ u_int32_t cache_xid; rpcproc_t cache_proc; rpcvers_t cache_vers; rpcprog_t cache_prog; struct netbuf cache_addr; /* * The cached reply and length */ char *cache_reply; size_t cache_replylen; /* * Next node on the list, if there is a collision */ cache_ptr cache_next; }; /* * The entire cache */ struct cl_cache { u_int uc_size; /* size of cache */ cache_ptr *uc_entries; /* hash table of entries in cache */ cache_ptr *uc_fifo; /* fifo list of entries in cache */ u_int uc_nextvictim; /* points to next victim in fifo list */ rpcprog_t uc_prog; /* saved program number */ rpcvers_t uc_vers; /* saved version number */ rpcproc_t uc_proc; /* saved procedure number */ }; /* * the hashing function */ #define CACHE_LOC(transp, xid) \ (xid % (SPARSENESS * ((struct cl_cache *) \ su_data(transp)->su_cache)->uc_size)) extern mutex_t dupreq_lock; /* * Enable use of the cache. Returns 1 on success, 0 on failure. * Note: there is no disable. */ static const char cache_enable_str[] = "svc_enablecache: %s %s"; static const char alloc_err[] = "could not allocate cache "; static const char enable_err[] = "cache already enabled"; int svc_dg_enablecache(transp, size) SVCXPRT *transp; u_int size; { struct svc_dg_data *su = su_data(transp); struct cl_cache *uc; mutex_lock(&dupreq_lock); if (su->su_cache != NULL) { (void) warnx(cache_enable_str, enable_err, " "); mutex_unlock(&dupreq_lock); return (0); } uc = ALLOC(struct cl_cache, 1); if (uc == NULL) { warnx(cache_enable_str, alloc_err, " "); mutex_unlock(&dupreq_lock); return (0); } uc->uc_size = size; uc->uc_nextvictim = 0; uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); if (uc->uc_entries == NULL) { warnx(cache_enable_str, alloc_err, "data"); FREE(uc, struct cl_cache, 1); mutex_unlock(&dupreq_lock); return (0); } MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); uc->uc_fifo = ALLOC(cache_ptr, size); if (uc->uc_fifo == NULL) { warnx(cache_enable_str, alloc_err, "fifo"); FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); FREE(uc, struct cl_cache, 1); mutex_unlock(&dupreq_lock); return (0); } MEMZERO(uc->uc_fifo, cache_ptr, size); su->su_cache = (char *)(void *)uc; mutex_unlock(&dupreq_lock); return (1); } /* * Set an entry in the cache. It assumes that the uc entry is set from * the earlier call to cache_get() for the same procedure. This will always * happen because cache_get() is calle by svc_dg_recv and cache_set() is called * by svc_dg_reply(). All this hoopla because the right RPC parameters are * not available at svc_dg_reply time. */ static const char cache_set_str[] = "cache_set: %s"; static const char cache_set_err1[] = "victim not found"; static const char cache_set_err2[] = "victim alloc failed"; static const char cache_set_err3[] = "could not allocate new rpc buffer"; static void cache_set(xprt, replylen) SVCXPRT *xprt; size_t replylen; { cache_ptr victim; cache_ptr *vicp; struct svc_dg_data *su = su_data(xprt); struct cl_cache *uc = (struct cl_cache *) su->su_cache; u_int loc; char *newbuf; struct netconfig *nconf; char *uaddr; mutex_lock(&dupreq_lock); /* * Find space for the new entry, either by * reusing an old entry, or by mallocing a new one */ victim = uc->uc_fifo[uc->uc_nextvictim]; if (victim != NULL) { loc = CACHE_LOC(xprt, victim->cache_xid); for (vicp = &uc->uc_entries[loc]; *vicp != NULL && *vicp != victim; vicp = &(*vicp)->cache_next) ; if (*vicp == NULL) { warnx(cache_set_str, cache_set_err1); mutex_unlock(&dupreq_lock); return; } *vicp = victim->cache_next; /* remove from cache */ newbuf = victim->cache_reply; } else { victim = ALLOC(struct cache_node, 1); if (victim == NULL) { warnx(cache_set_str, cache_set_err2); mutex_unlock(&dupreq_lock); return; } newbuf = mem_alloc(su->su_iosz); if (newbuf == NULL) { warnx(cache_set_str, cache_set_err3); FREE(victim, struct cache_node, 1); mutex_unlock(&dupreq_lock); return; } } /* * Store it away */ if (libtirpc_debug_level > 3) { if ((nconf = getnetconfigent(xprt->xp_netid))) { uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); freenetconfigent(nconf); LIBTIRPC_DEBUG(4, ("cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", su->su_xid, uc->uc_prog, uc->uc_vers, uc->uc_proc, uaddr)); free(uaddr); } } victim->cache_replylen = replylen; victim->cache_reply = rpc_buffer(xprt); rpc_buffer(xprt) = newbuf; xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz, XDR_ENCODE); victim->cache_xid = su->su_xid; victim->cache_proc = uc->uc_proc; victim->cache_vers = uc->uc_vers; victim->cache_prog = uc->uc_prog; victim->cache_addr = xprt->xp_rtaddr; victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, (size_t)xprt->xp_rtaddr.len); loc = CACHE_LOC(xprt, victim->cache_xid); victim->cache_next = uc->uc_entries[loc]; uc->uc_entries[loc] = victim; uc->uc_fifo[uc->uc_nextvictim++] = victim; uc->uc_nextvictim %= uc->uc_size; mutex_unlock(&dupreq_lock); } /* * Try to get an entry from the cache * return 1 if found, 0 if not found and set the stage for cache_set() */ static int cache_get(xprt, msg, replyp, replylenp) SVCXPRT *xprt; struct rpc_msg *msg; char **replyp; size_t *replylenp; { u_int loc; cache_ptr ent; struct svc_dg_data *su = su_data(xprt); struct cl_cache *uc = (struct cl_cache *) su->su_cache; struct netconfig *nconf; char *uaddr; mutex_lock(&dupreq_lock); loc = CACHE_LOC(xprt, su->su_xid); for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { if (ent->cache_xid == su->su_xid && ent->cache_proc == msg->rm_call.cb_proc && ent->cache_vers == msg->rm_call.cb_vers && ent->cache_prog == msg->rm_call.cb_prog && ent->cache_addr.len == xprt->xp_rtaddr.len && (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len) == 0)) { if (libtirpc_debug_level > 3) { if ((nconf = getnetconfigent(xprt->xp_netid))) { uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); freenetconfigent(nconf); LIBTIRPC_DEBUG(4, ("cache entry found for xid=%x prog=%d" "vers=%d proc=%d for rmtaddr=%s\n", su->su_xid, msg->rm_call.cb_prog, msg->rm_call.cb_vers, msg->rm_call.cb_proc, uaddr)); free(uaddr); } } *replyp = ent->cache_reply; *replylenp = ent->cache_replylen; mutex_unlock(&dupreq_lock); return (1); } } /* * Failed to find entry * Remember a few things so we can do a set later */ uc->uc_proc = msg->rm_call.cb_proc; uc->uc_vers = msg->rm_call.cb_vers; uc->uc_prog = msg->rm_call.cb_prog; mutex_unlock(&dupreq_lock); return (0); } /* * Enable reception of PKTINFO control messages */ void svc_dg_enable_pktinfo(int fd, const struct __rpc_sockinfo *si) { int val = 1; switch (si->si_af) { case AF_INET: (void) setsockopt(fd, SOL_IP, IP_PKTINFO, &val, sizeof(val)); break; #ifdef INET6 case AF_INET6: (void) setsockopt(fd, SOL_IPV6, IPV6_RECVPKTINFO, &val, sizeof(val)); break; #endif } } /* * When given a control message received from the socket * layer, check whether it contains valid PKTINFO data matching * the address family of the peer address. */ int svc_dg_valid_pktinfo(struct msghdr *msg) { struct cmsghdr *cmsg; if (!msg->msg_name) return 0; if (msg->msg_flags & MSG_CTRUNC) return 0; cmsg = CMSG_FIRSTHDR(msg); if (cmsg == NULL || CMSG_NXTHDR(msg, cmsg) != NULL) return 0; switch (((struct sockaddr *) msg->msg_name)->sa_family) { case AF_INET: if (cmsg->cmsg_level != SOL_IP || cmsg->cmsg_type != IP_PKTINFO || cmsg->cmsg_len < CMSG_LEN(sizeof (struct in_pktinfo))) { return 0; } else { struct in_pktinfo *pkti; pkti = (struct in_pktinfo *) CMSG_DATA (cmsg); pkti->ipi_ifindex = 0; } break; #ifdef INET6 case AF_INET6: if (cmsg->cmsg_level != SOL_IPV6 || cmsg->cmsg_type != IPV6_PKTINFO || cmsg->cmsg_len < CMSG_LEN(sizeof (struct in6_pktinfo))) { return 0; } else { struct in6_pktinfo *pkti; pkti = (struct in6_pktinfo *) CMSG_DATA (cmsg); pkti->ipi6_ifindex = 0; } break; #endif default: return 0; } return 1; }