summaryrefslogtreecommitdiff
path: root/drivers/ram/k3-j721e/lpddr4.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/ram/k3-j721e/lpddr4.c')
-rw-r--r--drivers/ram/k3-j721e/lpddr4.c2119
1 files changed, 2119 insertions, 0 deletions
diff --git a/drivers/ram/k3-j721e/lpddr4.c b/drivers/ram/k3-j721e/lpddr4.c
new file mode 100644
index 0000000000..2c3892d8d7
--- /dev/null
+++ b/drivers/ram/k3-j721e/lpddr4.c
@@ -0,0 +1,2119 @@
+// SPDX-License-Identifier: BSD-3-Clause
+/******************************************************************************
+ * Copyright (C) 2012-2018 Cadence Design Systems, Inc.
+ * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
+ *
+ * lpddr4.c
+ *
+ *****************************************************************************
+ */
+#include "cps_drv_lpddr4.h"
+#include "lpddr4_ctl_regs.h"
+#include "lpddr4_if.h"
+#include "lpddr4_private.h"
+#include "lpddr4_sanity.h"
+#include "lpddr4_structs_if.h"
+
+#define LPDDR4_CUSTOM_TIMEOUT_DELAY 100000000U
+
+/**
+ * Internal Function:Poll for status of interrupt received by the Controller.
+ * @param[in] pD Driver state info specific to this instance.
+ * @param[in] irqBit Interrupt status bit to be checked.
+ * @param[in] delay time delay.
+ * @return CDN_EOK on success (Interrupt status high).
+ * @return EIO on poll time out.
+ * @return EINVAL checking status was not successful.
+ */
+static uint32_t lpddr4_pollctlirq(const lpddr4_privatedata * pd,
+ lpddr4_ctlinterrupt irqbit, uint32_t delay)
+{
+
+ uint32_t result = 0U;
+ uint32_t timeout = 0U;
+ bool irqstatus = false;
+
+ /* Loop until irqStatus found to be 1 or if value of 'result' !=CDN_EOK */
+ do {
+ if (++timeout == delay) {
+ result = EIO;
+ break;
+ }
+ /* cps_delayns(10000000U); */
+ result = lpddr4_checkctlinterrupt(pd, irqbit, &irqstatus);
+ } while ((irqstatus == false) && (result == (uint32_t) CDN_EOK));
+
+ return result;
+}
+
+/**
+ * Internal Function:Poll for status of interrupt received by the PHY Independent Module.
+ * @param[in] pD Driver state info specific to this instance.
+ * @param[in] irqBit Interrupt status bit to be checked.
+ * @param[in] delay time delay.
+ * @return CDN_EOK on success (Interrupt status high).
+ * @return EIO on poll time out.
+ * @return EINVAL checking status was not successful.
+ */
+static uint32_t lpddr4_pollphyindepirq(const lpddr4_privatedata * pd,
+ lpddr4_phyindepinterrupt irqbit,
+ uint32_t delay)
+{
+
+ uint32_t result = 0U;
+ uint32_t timeout = 0U;
+ bool irqstatus = false;
+
+ /* Loop until irqStatus found to be 1 or if value of 'result' !=CDN_EOK */
+ do {
+ if (++timeout == delay) {
+ result = EIO;
+ break;
+ }
+ /* cps_delayns(10000000U); */
+ result = lpddr4_checkphyindepinterrupt(pd, irqbit, &irqstatus);
+ } while ((irqstatus == false) && (result == (uint32_t) CDN_EOK));
+
+ return result;
+}
+
+/**
+ * Internal Function:Trigger function to poll and Ack IRQs
+ * @param[in] pD Driver state info specific to this instance.
+ * @return CDN_EOK on success (Interrupt status high).
+ * @return EIO on poll time out.
+ * @return EINVAL checking status was not successful.
+ */
+static uint32_t lpddr4_pollandackirq(const lpddr4_privatedata * pd)
+{
+ uint32_t result = 0U;
+
+ /* Wait for PhyIndependent module to finish up ctl init sequence */
+ result =
+ lpddr4_pollphyindepirq(pd, LPDDR4_PHY_INDEP_INIT_DONE_BIT,
+ LPDDR4_CUSTOM_TIMEOUT_DELAY);
+
+ /* Ack to clear the PhyIndependent interrupt bit */
+ if (result == (uint32_t) CDN_EOK) {
+ result =
+ lpddr4_ackphyindepinterrupt(pd,
+ LPDDR4_PHY_INDEP_INIT_DONE_BIT);
+ }
+ /* Wait for the CTL end of initialization */
+ if (result == (uint32_t) CDN_EOK) {
+ result =
+ lpddr4_pollctlirq(pd, LPDDR4_MC_INIT_DONE,
+ LPDDR4_CUSTOM_TIMEOUT_DELAY);
+ }
+ /* Ack to clear the Ctl interrupt bit */
+ if (result == (uint32_t) CDN_EOK) {
+ result = lpddr4_ackctlinterrupt(pd, LPDDR4_MC_INIT_DONE);
+ }
+ return result;
+}
+
+/**
+ * Internal Function: Controller start sequence.
+ * @param[in] pD Driver state info specific to this instance.
+ * @return CDN_EOK on success.
+ * @return EINVAL starting controller was not successful.
+ */
+static uint32_t lpddr4_startsequencecontroller(const lpddr4_privatedata * pd)
+{
+ uint32_t result = 0U;
+ uint32_t regval = 0U;
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ lpddr4_infotype infotype;
+
+ /* Set the PI_start to initiate leveling procedure */
+ regval =
+ CPS_FLD_SET(LPDDR4__PI_START__FLD,
+ CPS_REG_READ(&(ctlregbase->LPDDR4__PI_START__REG)));
+ CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_START__REG)), regval);
+
+ /* Set the Ctl_start */
+ regval =
+ CPS_FLD_SET(LPDDR4__START__FLD,
+ CPS_REG_READ(&(ctlregbase->LPDDR4__START__REG)));
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__START__REG), regval);
+
+ if (pd->infohandler != NULL) {
+ /* If a handler is registered, call it with the relevant information type */
+ infotype = LPDDR4_DRV_SOC_PLL_UPDATE;
+ pd->infohandler(pd, infotype);
+ }
+
+ result = lpddr4_pollandackirq(pd);
+
+ return result;
+}
+
+/**
+ * Internal Function: To add the offset to given address.
+ * @param[in] addr Address to which the offset has to be added.
+ * @param[in] regOffset The offset
+ * @return regAddr The address value after the summation.
+ */
+static volatile uint32_t *lpddr4_addoffset(volatile uint32_t * addr,
+ uint32_t regoffset)
+{
+
+ volatile uint32_t *local_addr = addr;
+ /* Declaring as array to add the offset value. */
+ volatile uint32_t *regaddr = &local_addr[regoffset];
+ return regaddr;
+}
+
+/**
+ * Checks configuration object.
+ * @param[in] config Driver/hardware configuration required.
+ * @param[out] configSize Size of memory allocations required.
+ * @return CDN_EOK on success (requirements structure filled).
+ * @return ENOTSUP if configuration cannot be supported due to driver/hardware constraints.
+ */
+uint32_t lpddr4_probe(const lpddr4_config * config, uint16_t * configsize)
+{
+ uint32_t result;
+
+ result = (uint32_t) (lpddr4_probesf(config, configsize));
+ if (result == (uint32_t) CDN_EOK) {
+ *configsize = (uint16_t) (sizeof(lpddr4_privatedata));
+ }
+ return result;
+}
+
+/**
+ * Init function to be called after LPDDR4_probe() to set up the driver configuration.
+ * Memory should be allocated for drv_data (using the size determined using LPDDR4_probe) before
+ * calling this API, init_settings should be initialized with base addresses for PHY Independent Module,
+ * Controller and PHY before calling this function.
+ * If callbacks are required for interrupt handling, these should also be configured in init_settings.
+ * @param[in] pD Driver state info specific to this instance.
+ * @param[in] cfg Specifies driver/hardware configuration.
+ * @return CDN_EOK on success
+ * @return EINVAL if illegal/inconsistent values in cfg.
+ * @return ENOTSUP if hardware has an inconsistent configuration or doesn't support feature(s)
+ * required by 'config' parameters.
+ */
+uint32_t lpddr4_init(lpddr4_privatedata * pd, const lpddr4_config * cfg)
+{
+ uint32_t result = 0U;
+ uint16_t productid = 0U;
+ uint32_t version[2] = { 0, 0 };
+
+ result = lpddr4_initsf(pd, cfg);
+ if (result == (uint32_t) CDN_EOK) {
+ /* Validate Magic number */
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) cfg->ctlbase;
+ productid = (uint16_t) (CPS_FLD_READ(LPDDR4__CONTROLLER_ID__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__CONTROLLER_ID__REG))));
+ version[0] =
+ (uint32_t) (CPS_FLD_READ
+ (LPDDR4__CONTROLLER_VERSION_0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__CONTROLLER_VERSION_0__REG))));
+ version[1] =
+ (uint32_t) (CPS_FLD_READ
+ (LPDDR4__CONTROLLER_VERSION_1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__CONTROLLER_VERSION_1__REG))));
+ if ((productid == PRODUCT_ID) && (version[0] == VERSION_0)
+ && (version[1] == VERSION_1)) {
+ /* Populating configuration data to pD */
+ pd->ctlbase = ctlregbase;
+ pd->infohandler =
+ (lpddr4_infocallback) cfg->infohandler;
+ pd->ctlinterrupthandler =
+ (lpddr4_ctlcallback) cfg->ctlinterrupthandler;
+ pd->phyindepinterrupthandler =
+ (lpddr4_phyindepcallback) cfg->
+ phyindepinterrupthandler;
+ } else {
+ /* Magic number validation failed - Driver doesn't support given IP version */
+ result = (uint32_t) EOPNOTSUPP;
+ }
+ }
+ return result;
+}
+
+/**
+ * Start the driver.
+ * @param[in] pD Driver state info specific to this instance.
+ */
+uint32_t lpddr4_start(const lpddr4_privatedata * pd)
+{
+ uint32_t result = 0U;
+ uint32_t regval = 0U;
+
+ result = lpddr4_startsf(pd);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Enable PI as the initiator for DRAM */
+ regval =
+ CPS_FLD_SET(LPDDR4__PI_INIT_LVL_EN__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__PI_INIT_LVL_EN__REG)));
+ regval = CPS_FLD_SET(LPDDR4__PI_NORMAL_LVL_SEQ__FLD, regval);
+ CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)),
+ regval);
+
+ /* Start PI init sequence. */
+ result = lpddr4_startsequencecontroller(pd);
+ }
+ return result;
+}
+
+/**
+ * Read a register from the controller, PHY or PHY Independent Module
+ * @param[in] pD Driver state info specific to this instance.
+ * @param[in] cpp Indicates whether controller, PHY or PHY Independent Module register
+ * @param[in] regOffset Register offset
+ * @param[out] regValue Register value read
+ * @return CDN_EOK on success.
+ * @return EINVAL if regOffset if out of range or regValue is NULL
+ */
+uint32_t lpddr4_readreg(const lpddr4_privatedata * pd, lpddr4_regblock cpp,
+ uint32_t regoffset, uint32_t * regvalue)
+{
+ uint32_t result = 0U;
+
+ result = lpddr4_readregsf(pd, cpp, regvalue);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ if (cpp == LPDDR4_CTL_REGS) {
+ if (regoffset >= LPDDR4_CTL_REG_COUNT) {
+ /* Return if user provider invalid register number */
+ result = EINVAL;
+ } else {
+ *regvalue =
+ CPS_REG_READ(lpddr4_addoffset
+ (&(ctlregbase->DENALI_CTL_0),
+ regoffset));
+ }
+ } else if (cpp == LPDDR4_PHY_REGS) {
+ if (regoffset >= LPDDR4_PHY_REG_COUNT) {
+ /* Return if user provider invalid register number */
+ result = EINVAL;
+ } else {
+ *regvalue =
+ CPS_REG_READ(lpddr4_addoffset
+ (&(ctlregbase->DENALI_PHY_0),
+ regoffset));
+ }
+
+ } else {
+ if (regoffset >= LPDDR4_PHY_INDEP_REG_COUNT) {
+ /* Return if user provider invalid register number */
+ result = EINVAL;
+ } else {
+ *regvalue =
+ CPS_REG_READ(lpddr4_addoffset
+ (&(ctlregbase->DENALI_PI_0),
+ regoffset));
+ }
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_writereg(const lpddr4_privatedata * pd, lpddr4_regblock cpp,
+ uint32_t regoffset, uint32_t regvalue)
+{
+ uint32_t result = 0U;
+
+ result = lpddr4_writeregsf(pd, cpp);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ if (cpp == LPDDR4_CTL_REGS) {
+ if (regoffset >= LPDDR4_CTL_REG_COUNT) {
+ /* Return if user provider invalid register number */
+ result = EINVAL;
+ } else {
+ CPS_REG_WRITE(lpddr4_addoffset
+ (&(ctlregbase->DENALI_CTL_0),
+ regoffset), regvalue);
+ }
+ } else if (cpp == LPDDR4_PHY_REGS) {
+ if (regoffset >= LPDDR4_PHY_REG_COUNT) {
+ /* Return if user provider invalid register number */
+ result = EINVAL;
+ } else {
+ CPS_REG_WRITE(lpddr4_addoffset
+ (&(ctlregbase->DENALI_PHY_0),
+ regoffset), regvalue);
+ }
+ } else {
+ if (regoffset >= LPDDR4_PHY_INDEP_REG_COUNT) {
+ /* Return if user provider invalid register number */
+ result = EINVAL;
+ } else {
+ CPS_REG_WRITE(lpddr4_addoffset
+ (&(ctlregbase->DENALI_PI_0),
+ regoffset), regvalue);
+ }
+ }
+ }
+
+ return result;
+}
+
+static uint32_t lpddr4_checkmmrreaderror(const lpddr4_privatedata * pd,
+ uint64_t * mmrvalue,
+ uint8_t * mrrstatus)
+{
+
+ uint64_t lowerdata;
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ uint32_t result = (uint32_t) CDN_EOK;
+
+ /* Check if mode register read error interrupt occurred */
+ if (lpddr4_pollctlirq(pd, LPDDR4_MRR_ERROR, 100) == 0U) {
+ /* Mode register read error interrupt, read MRR status register and return. */
+ *mrrstatus =
+ (uint8_t) CPS_FLD_READ(LPDDR4__MRR_ERROR_STATUS__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__MRR_ERROR_STATUS__REG)));
+ *mmrvalue = 0;
+ result = EIO;
+ } else {
+ *mrrstatus = 0;
+ /* Mode register read was successful, read DATA */
+ lowerdata =
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__PERIPHERAL_MRR_DATA_0__REG));
+ *mmrvalue =
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__PERIPHERAL_MRR_DATA_1__REG));
+ *mmrvalue = (uint64_t) ((*mmrvalue << WORD_SHIFT) | lowerdata);
+ /* Acknowledge MR_READ_DONE interrupt to clear it */
+ result = lpddr4_ackctlinterrupt(pd, LPDDR4_MR_READ_DONE);
+ }
+ return result;
+}
+
+uint32_t lpddr4_getmmrregister(const lpddr4_privatedata * pd,
+ uint32_t readmoderegval, uint64_t * mmrvalue,
+ uint8_t * mmrstatus)
+{
+
+ uint32_t result = 0U;
+ uint32_t tdelay = 1000U;
+ uint32_t regval = 0U;
+
+ result = lpddr4_getmmrregistersf(pd, mmrvalue, mmrstatus);
+ if (result == (uint32_t) CDN_EOK) {
+
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Populate the calculated value to the register */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__READ_MODEREG__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__READ_MODEREG__REG)),
+ readmoderegval);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__READ_MODEREG__REG), regval);
+
+ /* Wait until the Read is done */
+ result = lpddr4_pollctlirq(pd, LPDDR4_MR_READ_DONE, tdelay);
+ }
+ if (result == (uint32_t) CDN_EOK) {
+ result = lpddr4_checkmmrreaderror(pd, mmrvalue, mmrstatus);
+ }
+ return result;
+}
+
+static uint32_t lpddr4_writemmrregister(const lpddr4_privatedata * pd,
+ uint32_t writemoderegval)
+{
+
+ uint32_t result = (uint32_t) CDN_EOK;
+ uint32_t tdelay = 1000U;
+ uint32_t regval = 0U;
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Populate the calculated value to the register */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__WRITE_MODEREG__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__WRITE_MODEREG__REG)),
+ writemoderegval);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG), regval);
+
+ result = lpddr4_pollctlirq(pd, LPDDR4_MR_WRITE_DONE, tdelay);
+
+ return result;
+}
+
+uint32_t lpddr4_setmmrregister(const lpddr4_privatedata * pd,
+ uint32_t writemoderegval, uint8_t * mrwstatus)
+{
+ uint32_t result = 0U;
+
+ result = lpddr4_setmmrregistersf(pd, mrwstatus);
+ if (result == (uint32_t) CDN_EOK) {
+
+ /* Function call to trigger Mode register write */
+ result = lpddr4_writemmrregister(pd, writemoderegval);
+
+ if (result == (uint32_t) CDN_EOK) {
+ result =
+ lpddr4_ackctlinterrupt(pd, LPDDR4_MR_WRITE_DONE);
+ }
+ /* Read the status of mode register write */
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase =
+ (lpddr4_ctlregs *) pd->ctlbase;
+ *mrwstatus =
+ (uint8_t) CPS_FLD_READ(LPDDR4__MRW_STATUS__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__MRW_STATUS__REG)));
+ if ((*mrwstatus) != 0U) {
+ result = EIO;
+ }
+ }
+ }
+
+ return result;
+}
+
+uint32_t lpddr4_writectlconfig(const lpddr4_privatedata * pd,
+ const lpddr4_reginitdata * regvalues)
+{
+ uint32_t result;
+ uint32_t regnum;
+
+ result = lpddr4_writectlconfigsf(pd, regvalues);
+ if (result == (uint32_t) CDN_EOK) {
+
+ /* Iterate through CTL register numbers. */
+ for (regnum = 0; regnum < LPDDR4_CTL_REG_COUNT; regnum++) {
+ /* Check if the user has requested update */
+ if (regvalues->updatectlreg[regnum]) {
+ result =
+ lpddr4_writereg(pd, LPDDR4_CTL_REGS, regnum,
+ (uint32_t) (regvalues->
+ denalictlreg
+ [regnum]));
+ }
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_writephyindepconfig(const lpddr4_privatedata * pd,
+ const lpddr4_reginitdata * regvalues)
+{
+ uint32_t result;
+ uint32_t regnum;
+
+ result = lpddr4_writephyindepconfigsf(pd, regvalues);
+ if (result == (uint32_t) CDN_EOK) {
+
+ /* Iterate through PHY Independent module register numbers. */
+ for (regnum = 0; regnum < LPDDR4_PHY_INDEP_REG_COUNT; regnum++) {
+ /* Check if the user has requested update */
+ if (regvalues->updatephyindepreg[regnum]) {
+ result =
+ lpddr4_writereg(pd, LPDDR4_PHY_INDEP_REGS,
+ regnum,
+ (uint32_t) (regvalues->
+ denaliphyindepreg
+ [regnum]));
+ }
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_writephyconfig(const lpddr4_privatedata * pd,
+ const lpddr4_reginitdata * regvalues)
+{
+ uint32_t result;
+ uint32_t regnum;
+
+ result = lpddr4_writephyconfigsf(pd, regvalues);
+ if (result == (uint32_t) CDN_EOK) {
+
+ /* Iterate through PHY register numbers. */
+ for (regnum = 0; regnum < LPDDR4_PHY_REG_COUNT; regnum++) {
+ /* Check if the user has requested update */
+ if (regvalues->updatephyreg[regnum]) {
+ result =
+ lpddr4_writereg(pd, LPDDR4_PHY_REGS, regnum,
+ (uint32_t) (regvalues->
+ denaliphyreg
+ [regnum]));
+ }
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_readctlconfig(const lpddr4_privatedata * pd,
+ lpddr4_reginitdata * regvalues)
+{
+ uint32_t result;
+ uint32_t regnum;
+ result = lpddr4_readctlconfigsf(pd, regvalues);
+ if (result == (uint32_t) CDN_EOK) {
+ /* Iterate through CTL register numbers. */
+ for (regnum = 0; regnum < LPDDR4_CTL_REG_COUNT; regnum++) {
+ /* Check if the user has requested read (updateCtlReg=1) */
+ if (regvalues->updatectlreg[regnum]) {
+ result =
+ lpddr4_readreg(pd, LPDDR4_CTL_REGS, regnum,
+ (uint32_t *) (&regvalues->
+ denalictlreg
+ [regnum]));
+ }
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_readphyindepconfig(const lpddr4_privatedata * pd,
+ lpddr4_reginitdata * regvalues)
+{
+ uint32_t result;
+ uint32_t regnum;
+
+ result = lpddr4_readphyindepconfigsf(pd, regvalues);
+ if (result == (uint32_t) CDN_EOK) {
+ /* Iterate through PHY Independent module register numbers. */
+ for (regnum = 0; regnum < LPDDR4_PHY_INDEP_REG_COUNT; regnum++) {
+ /* Check if the user has requested read (updateCtlReg=1) */
+ if (regvalues->updatephyindepreg[regnum]) {
+ result =
+ lpddr4_readreg(pd, LPDDR4_PHY_INDEP_REGS,
+ regnum,
+ (uint32_t *) (&regvalues->
+ denaliphyindepreg
+ [regnum]));
+ }
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_readphyconfig(const lpddr4_privatedata * pd,
+ lpddr4_reginitdata * regvalues)
+{
+ uint32_t result;
+ uint32_t regnum;
+
+ result = lpddr4_readphyconfigsf(pd, regvalues);
+ if (result == (uint32_t) CDN_EOK) {
+ /* Iterate through PHY register numbers. */
+ for (regnum = 0; regnum < LPDDR4_PHY_REG_COUNT; regnum++) {
+ /* Check if the user has requested read (updateCtlReg=1) */
+ if (regvalues->updatephyreg[regnum]) {
+ result =
+ lpddr4_readreg(pd, LPDDR4_PHY_REGS, regnum,
+ (uint32_t *) (&regvalues->
+ denaliphyreg
+ [regnum]));
+ }
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_getctlinterruptmask(const lpddr4_privatedata * pd,
+ uint64_t * mask)
+{
+ uint32_t result = 0U;
+ uint64_t lowermask = 0U;
+
+ result = lpddr4_getctlinterruptmasksf(pd, mask);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ /* Reading the lower mask register */
+ lowermask =
+ (uint64_t) (CPS_FLD_READ
+ (LPDDR4__INT_MASK_0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__INT_MASK_0__REG))));
+ /* Reading the upper mask register */
+ *mask =
+ (uint64_t) (CPS_FLD_READ
+ (LPDDR4__INT_MASK_1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__INT_MASK_1__REG))));
+ /* Concatenate both register informations */
+ *mask = (uint64_t) ((*mask << WORD_SHIFT) | lowermask);
+ }
+ return result;
+}
+
+uint32_t lpddr4_setctlinterruptmask(const lpddr4_privatedata * pd,
+ const uint64_t * mask)
+{
+ uint32_t result;
+ uint32_t regval = 0;
+ const uint64_t ui64one = 1ULL;
+ const uint32_t ui32irqcount = (uint32_t) LPDDR4_LOR_BITS + 1U;
+
+ result = lpddr4_setctlinterruptmasksf(pd, mask);
+ if ((result == (uint32_t) CDN_EOK) && (ui32irqcount < 64U)) {
+ /* Return if the user given value is higher than the field width */
+ if (*mask >= (ui64one << ui32irqcount)) {
+ result = EINVAL;
+ }
+ }
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Extracting the lower 32 bits and writing to lower mask register */
+ regval = (uint32_t) (*mask & WORD_MASK);
+ regval =
+ CPS_FLD_WRITE(LPDDR4__INT_MASK_0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__INT_MASK_0__REG)),
+ regval);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_0__REG), regval);
+
+ /* Extracting the upper 32 bits and writing to upper mask register */
+ regval = (uint32_t) ((*mask >> WORD_SHIFT) & WORD_MASK);
+ regval =
+ CPS_FLD_WRITE(LPDDR4__INT_MASK_1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__INT_MASK_1__REG)),
+ regval);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_1__REG), regval);
+ }
+ return result;
+}
+
+uint32_t lpddr4_checkctlinterrupt(const lpddr4_privatedata * pd,
+ lpddr4_ctlinterrupt intr, bool * irqstatus)
+{
+ uint32_t result;
+ uint32_t ctlirqstatus = 0;
+ uint32_t fieldshift = 0;
+
+ /* NOTE:This function assume irq status is mentioned in NOT more than 2 registers.
+ * Value of 'interrupt' should be less than 64 */
+ result = lpddr4_checkctlinterruptsf(pd, intr, irqstatus);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ if ((uint32_t) intr >= WORD_SHIFT) {
+ ctlirqstatus =
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__INT_STATUS_1__REG));
+ /* Reduce the shift value as we are considering upper register */
+ fieldshift = (uint32_t) intr - ((uint32_t) WORD_SHIFT);
+ } else {
+ ctlirqstatus =
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__INT_STATUS_0__REG));
+ /* The shift value remains same for lower interrupt register */
+ fieldshift = (uint32_t) intr;
+ }
+
+ /* MISRA compliance (Shifting operation) check */
+ if (fieldshift < WORD_SHIFT) {
+ if (((ctlirqstatus >> fieldshift) & BIT_MASK) > 0U) {
+ *irqstatus = true;
+ } else {
+ *irqstatus = false;
+ }
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_ackctlinterrupt(const lpddr4_privatedata * pd,
+ lpddr4_ctlinterrupt intr)
+{
+ uint32_t result = 0;
+ uint32_t regval = 0;
+ uint32_t localinterrupt = (uint32_t) intr;
+
+ /* NOTE:This function assume irq status is mentioned in NOT more than 2 registers.
+ * Value of 'interrupt' should be less than 64 */
+ result = lpddr4_ackctlinterruptsf(pd, intr);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Check if the requested bit is in upper register */
+ if (localinterrupt > WORD_SHIFT) {
+ localinterrupt =
+ (localinterrupt - (uint32_t) WORD_SHIFT);
+ regval = ((uint32_t) BIT_MASK << localinterrupt);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_1__REG),
+ regval);
+ } else {
+ regval = ((uint32_t) BIT_MASK << localinterrupt);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_0__REG),
+ regval);
+ }
+ }
+
+ return result;
+}
+
+uint32_t lpddr4_getphyindepinterruptmask(const lpddr4_privatedata * pd,
+ uint32_t * mask)
+{
+ uint32_t result;
+
+ result = lpddr4_getphyindepinterruptmsf(pd, mask);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ /* Reading mask register */
+ *mask =
+ CPS_FLD_READ(LPDDR4__PI_INT_MASK__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__PI_INT_MASK__REG)));
+ }
+ return result;
+}
+
+uint32_t lpddr4_setphyindepinterruptmask(const lpddr4_privatedata * pd,
+ const uint32_t * mask)
+{
+ uint32_t result;
+ uint32_t regval = 0;
+ const uint32_t ui32irqcount =
+ (uint32_t) LPDDR4_PHY_INDEP_DLL_LOCK_STATE_CHANGE_BIT + 1U;
+
+ result = lpddr4_setphyindepinterruptmsf(pd, mask);
+ if ((result == (uint32_t) CDN_EOK) && (ui32irqcount < WORD_SHIFT)) {
+ /* Return if the user given value is higher than the field width */
+ if (*mask >= (1U << ui32irqcount)) {
+ result = EINVAL;
+ }
+ }
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Writing to the user requested interrupt mask */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__PI_INT_MASK__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__PI_INT_MASK__REG)),
+ *mask);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_MASK__REG), regval);
+ }
+ return result;
+}
+
+uint32_t lpddr4_checkphyindepinterrupt(const lpddr4_privatedata * pd,
+ lpddr4_phyindepinterrupt intr,
+ bool * irqstatus)
+{
+ uint32_t result = 0;
+ uint32_t phyindepirqstatus = 0;
+
+ result = lpddr4_checkphyindepinterrupsf(pd, intr, irqstatus);
+ /* Confirming that the value of interrupt is less than register width */
+ if ((result == (uint32_t) CDN_EOK) && ((uint32_t) intr < WORD_SHIFT)) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Reading the requested bit to check interrupt status */
+ phyindepirqstatus =
+ CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_STATUS__REG));
+ *irqstatus =
+ (((phyindepirqstatus >> (uint32_t) intr) & BIT_MASK) > 0U);
+ }
+ return result;
+}
+
+uint32_t lpddr4_ackphyindepinterrupt(const lpddr4_privatedata * pd,
+ lpddr4_phyindepinterrupt intr)
+{
+ uint32_t result = 0U;
+ uint32_t regval = 0U;
+ uint32_t ui32shiftinterrupt = (uint32_t) intr;
+
+ result = lpddr4_ackphyindepinterruptsf(pd, intr);
+ /* Confirming that the value of interrupt is less than register width */
+ if ((result == (uint32_t) CDN_EOK) && (ui32shiftinterrupt < WORD_SHIFT)) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Write 1 to the requested bit to ACk the interrupt */
+ regval = ((uint32_t) BIT_MASK << ui32shiftinterrupt);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_ACK__REG), regval);
+ }
+
+ return result;
+}
+
+/* Check for caTrainingError */
+static void lpddr4_checkcatrainingerror(lpddr4_ctlregs * ctlregbase,
+ lpddr4_debuginfo * debuginfo,
+ bool * errfoundptr)
+{
+
+ uint32_t regval;
+ uint32_t errbitmask = 0U;
+ uint32_t snum;
+ volatile uint32_t *regaddress;
+
+ regaddress =
+ (volatile uint32_t
+ *)(&(ctlregbase->LPDDR4__PHY_ADR_CALVL_OBS1_0__REG));
+ errbitmask = (CA_TRAIN_RL) | (NIBBLE_MASK);
+ /* PHY_ADR_CALVL_OBS1[4] – Right found
+ PHY_ADR_CALVL_OBS1[5] – left found
+ both the above fields should be high and below field should be zero.
+ PHY_ADR_CALVL_OBS1[3:0] – calvl_state
+ */
+ for (snum = 0U; snum < ASLICE_NUM; snum++) {
+ regval = CPS_REG_READ(regaddress);
+ if ((regval & errbitmask) != CA_TRAIN_RL) {
+ debuginfo->catraingerror = true;
+ *errfoundptr = true;
+ }
+ regaddress =
+ lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
+ }
+}
+
+/* Check for wrLvlError */
+static void lpddr4_checkwrlvlerror(lpddr4_ctlregs * ctlregbase,
+ lpddr4_debuginfo * debuginfo,
+ bool * errfoundptr)
+{
+
+ uint32_t regval;
+ uint32_t errbitmask = 0U;
+ uint32_t snum;
+ volatile uint32_t *regaddress;
+
+ regaddress =
+ (volatile uint32_t
+ *)(&(ctlregbase->LPDDR4__PHY_WRLVL_ERROR_OBS_0__REG));
+ /* PHY_WRLVL_ERROR_OBS_X[1:0] should be zero */
+ errbitmask = (BIT_MASK << 1) | (BIT_MASK);
+ for (snum = 0U; snum < DSLICE_NUM; snum++) {
+ regval = CPS_REG_READ(regaddress);
+ if ((regval & errbitmask) != 0U) {
+ debuginfo->wrlvlerror = true;
+ *errfoundptr = true;
+ }
+ regaddress =
+ lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
+ }
+}
+
+/* Check for GateLvlError */
+static void lpddr4_checkgatelvlerror(lpddr4_ctlregs * ctlregbase,
+ lpddr4_debuginfo * debuginfo,
+ bool * errfoundptr)
+{
+
+ uint32_t regval;
+ uint32_t errbitmask = 0U;
+ uint32_t snum;
+ volatile uint32_t *regaddress;
+
+ regaddress =
+ (volatile uint32_t
+ *)(&(ctlregbase->LPDDR4__PHY_GTLVL_STATUS_OBS_0__REG));
+ /* PHY_GTLVL_STATUS_OBS[6] – gate_level min error
+ * PHY_GTLVL_STATUS_OBS[7] – gate_level max error
+ * All the above bit fields should be zero */
+ errbitmask = GATE_LVL_ERROR_FIELDS;
+ for (snum = 0U; snum < DSLICE_NUM; snum++) {
+ regval = CPS_REG_READ(regaddress);
+ if ((regval & errbitmask) != 0U) {
+ debuginfo->gatelvlerror = true;
+ *errfoundptr = true;
+ }
+ regaddress =
+ lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
+ }
+}
+
+/* Check for ReadLvlError */
+static void lpddr4_checkreadlvlerror(lpddr4_ctlregs * ctlregbase,
+ lpddr4_debuginfo * debuginfo,
+ bool * errfoundptr)
+{
+
+ uint32_t regval;
+ uint32_t errbitmask = 0U;
+ uint32_t snum;
+ volatile uint32_t *regaddress;
+
+ regaddress =
+ (volatile uint32_t
+ *)(&(ctlregbase->LPDDR4__PHY_RDLVL_STATUS_OBS_0__REG));
+ /* PHY_RDLVL_STATUS_OBS[23:16] – failed bits : should be zero.
+ PHY_RDLVL_STATUS_OBS[31:28] – rdlvl_state : should be zero */
+ errbitmask = READ_LVL_ERROR_FIELDS;
+ for (snum = 0U; snum < DSLICE_NUM; snum++) {
+ regval = CPS_REG_READ(regaddress);
+ if ((regval & errbitmask) != 0U) {
+ debuginfo->readlvlerror = true;
+ *errfoundptr = true;
+ }
+ regaddress =
+ lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
+ }
+}
+
+/* Check for DqTrainingError */
+static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs * ctlregbase,
+ lpddr4_debuginfo * debuginfo,
+ bool * errfoundptr)
+{
+
+ uint32_t regval;
+ uint32_t errbitmask = 0U;
+ uint32_t snum;
+ volatile uint32_t *regaddress;
+
+ regaddress =
+ (volatile uint32_t
+ *)(&(ctlregbase->LPDDR4__PHY_WDQLVL_STATUS_OBS_0__REG));
+ /* PHY_WDQLVL_STATUS_OBS[26:18] should all be zero. */
+ errbitmask = DQ_LVL_STATUS;
+ for (snum = 0U; snum < DSLICE_NUM; snum++) {
+ regval = CPS_REG_READ(regaddress);
+ if ((regval & errbitmask) != 0U) {
+ debuginfo->dqtrainingerror = true;
+ *errfoundptr = true;
+ }
+ regaddress =
+ lpddr4_addoffset(regaddress, (uint32_t) SLICE_WIDTH);
+ }
+}
+
+/**
+ * Internal Function:For checking errors in training/levelling sequence.
+ * @param[in] pD Driver state info specific to this instance.
+ * @param[in] debugInfo pointer to debug information.
+ * @param[out] errFoundPtr pointer to return if error found.
+ * @return CDN_EOK on success (Interrupt status high).
+ * @return EINVAL checking or unmasking was not successful.
+ */
+static bool lpddr4_checklvlerrors(const lpddr4_privatedata * pd,
+ lpddr4_debuginfo * debuginfo, bool errfound)
+{
+
+ bool localerrfound = errfound;
+
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ if (localerrfound == false) {
+ /* Check for ca training error */
+ lpddr4_checkcatrainingerror(ctlregbase, debuginfo,
+ &localerrfound);
+ }
+
+ if (localerrfound == false) {
+ /* Check for Write leveling error */
+ lpddr4_checkwrlvlerror(ctlregbase, debuginfo, &localerrfound);
+ }
+
+ if (localerrfound == false) {
+ /* Check for Gate leveling error */
+ lpddr4_checkgatelvlerror(ctlregbase, debuginfo, &localerrfound);
+ }
+
+ if (localerrfound == false) {
+ /* Check for Read leveling error */
+ lpddr4_checkreadlvlerror(ctlregbase, debuginfo, &localerrfound);
+ }
+
+ if (localerrfound == false) {
+ /* Check for DQ training error */
+ lpddr4_checkdqtrainingerror(ctlregbase, debuginfo,
+ &localerrfound);
+ }
+ return localerrfound;
+}
+
+static bool lpddr4_seterror(volatile uint32_t * reg, uint32_t errbitmask,
+ bool * errfoundptr, const uint32_t errorinfobits)
+{
+
+ uint32_t regval = 0U;
+
+ /* Read the respective observation register */
+ regval = CPS_REG_READ(reg);
+ /* Compare the error bit values */
+ if ((regval & errbitmask) != errorinfobits) {
+ *errfoundptr = true;
+ }
+ return *errfoundptr;
+}
+
+static void lpddr4_seterrors(lpddr4_ctlregs * ctlregbase,
+ lpddr4_debuginfo * debuginfo, bool * errfoundptr)
+{
+
+ uint32_t errbitmask = (BIT_MASK << 0x1U) | (BIT_MASK);
+ /* Check PLL observation registers for PLL lock errors */
+
+ debuginfo->pllerror =
+ lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_0__REG),
+ errbitmask, errfoundptr, PLL_READY);
+ if (*errfoundptr == false) {
+ debuginfo->pllerror =
+ lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_1__REG),
+ errbitmask, errfoundptr, PLL_READY);
+ }
+
+ /* Check for IO Calibration errors */
+ if (*errfoundptr == false) {
+ debuginfo->iocaliberror =
+ lpddr4_seterror(&
+ (ctlregbase->
+ LPDDR4__PHY_CAL_RESULT_OBS_0__REG),
+ IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE);
+ }
+ if (*errfoundptr == false) {
+ debuginfo->iocaliberror =
+ lpddr4_seterror(&
+ (ctlregbase->
+ LPDDR4__PHY_CAL_RESULT2_OBS_0__REG),
+ IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE);
+ }
+ if (*errfoundptr == false) {
+ debuginfo->iocaliberror =
+ lpddr4_seterror(&
+ (ctlregbase->
+ LPDDR4__PHY_CAL_RESULT3_OBS_0__REG),
+ IO_CALIB_FIELD, errfoundptr,
+ IO_CALIB_STATE);
+ }
+}
+
+static void lpddr4_setphysnapsettings(lpddr4_ctlregs * ctlregbase,
+ const bool errorfound)
+{
+
+ uint32_t snum = 0U;
+ volatile uint32_t *regaddress;
+ uint32_t regval = 0U;
+
+ /* Setting SC_PHY_SNAP_OBS_REGS_x to get a snapshot */
+ if (errorfound == false) {
+ regaddress =
+ (volatile uint32_t
+ *)(&(ctlregbase->LPDDR4__SC_PHY_SNAP_OBS_REGS_0__REG));
+ /* Iterate through each PHY Data Slice */
+ for (snum = 0U; snum < DSLICE_NUM; snum++) {
+ regval =
+ CPS_FLD_SET(LPDDR4__SC_PHY_SNAP_OBS_REGS_0__FLD,
+ CPS_REG_READ(regaddress));
+ CPS_REG_WRITE(regaddress, regval);
+ regaddress =
+ lpddr4_addoffset(regaddress,
+ (uint32_t) SLICE_WIDTH);
+ }
+ }
+}
+
+static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs * ctlregbase,
+ const bool errorfound)
+{
+
+ uint32_t snum = 0U;
+ volatile uint32_t *regaddress;
+ uint32_t regval = 0U;
+
+ /* Setting SC_PHY ADR_SNAP_OBS_REGS_x to get a snapshot */
+ if (errorfound == false) {
+ regaddress =
+ (volatile uint32_t
+ *)(&(ctlregbase->LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__REG));
+ /* Iterate through each PHY Address Slice */
+ for (snum = 0U; snum < ASLICE_NUM; snum++) {
+ regval =
+ CPS_FLD_SET(LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__FLD,
+ CPS_REG_READ(regaddress));
+ CPS_REG_WRITE(regaddress, regval);
+ regaddress =
+ lpddr4_addoffset(regaddress,
+ (uint32_t) SLICE_WIDTH);
+ }
+ }
+}
+
+static void lpddr4_setsettings(lpddr4_ctlregs * ctlregbase,
+ const bool errorfound)
+{
+
+ /* Calling functions to enable snap shots of OBS registers */
+ lpddr4_setphysnapsettings(ctlregbase, errorfound);
+ lpddr4_setphyadrsnapsettings(ctlregbase, errorfound);
+}
+
+static void lpddr4_setrxoffseterror(lpddr4_ctlregs * ctlregbase,
+ lpddr4_debuginfo * debuginfo,
+ bool * errorfound)
+{
+
+ volatile uint32_t *regaddress;
+ uint32_t snum = 0U;
+ uint32_t errbitmask = 0U;
+ uint32_t regval = 0U;
+
+ /* Check for rxOffsetError */
+ if (*errorfound == false) {
+ regaddress =
+ (volatile uint32_t
+ *)(&(ctlregbase->LPDDR4__PHY_RX_CAL_LOCK_OBS_0__REG));
+ errbitmask = (RX_CAL_DONE) | (NIBBLE_MASK);
+ /* PHY_RX_CAL_LOCK_OBS_x[4] – RX_CAL_DONE : should be high
+ phy_rx_cal_lock_obs_x[3:0] – RX_CAL_STATE : should be zero. */
+ for (snum = 0U; snum < DSLICE_NUM; snum++) {
+ regval =
+ CPS_FLD_READ(LPDDR4__PHY_RX_CAL_LOCK_OBS_0__FLD,
+ CPS_REG_READ(regaddress));
+ if ((regval & errbitmask) != RX_CAL_DONE) {
+ debuginfo->rxoffseterror = true;
+ *errorfound = true;
+ }
+ regaddress =
+ lpddr4_addoffset(regaddress,
+ (uint32_t) SLICE_WIDTH);
+ }
+ }
+}
+
+uint32_t lpddr4_getdebuginitinfo(const lpddr4_privatedata * pd,
+ lpddr4_debuginfo * debuginfo)
+{
+
+ uint32_t result = 0U;
+ bool errorfound = false;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_getdebuginitinfosf(pd, debuginfo);
+ if (result == (uint32_t) CDN_EOK) {
+
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ lpddr4_seterrors(ctlregbase, debuginfo, &errorfound);
+ /* Function to setup Snap for OBS registers */
+ lpddr4_setsettings(ctlregbase, errorfound);
+ /* Function to check for Rx offset error */
+ lpddr4_setrxoffseterror(ctlregbase, debuginfo, &errorfound);
+ /* Function Check various levelling errors */
+ errorfound = lpddr4_checklvlerrors(pd, debuginfo, errorfound);
+ }
+
+ if (errorfound == true) {
+ result = (uint32_t) EPROTO;
+ }
+
+ return result;
+}
+
+static void readpdwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
+{
+
+ /* Read the appropriate register, based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_PD_WAKEUP_F0__REG)));
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_PD_WAKEUP_F1__REG)));
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_PD_WAKEUP_F2__REG)));
+ }
+}
+
+static void readsrshortwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
+{
+
+ /* Read the appropriate register, based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)));
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)));
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)));
+ }
+}
+
+static void readsrlongwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
+{
+
+ /* Read the appropriate register, based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)));
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)));
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)));
+ }
+}
+
+static void readsrlonggatewakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
+{
+
+ /* Read the appropriate register, based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)));
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)));
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)));
+ }
+}
+
+static void readsrdpshortwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
+{
+
+ /* Read the appropriate register, based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)));
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)));
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)));
+ }
+}
+
+static void readsrdplongwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase, uint32_t * cycles)
+{
+
+ /* Read the appropriate register, based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)));
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)));
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ *cycles =
+ CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)));
+ }
+}
+
+static void readsrdplonggatewakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase,
+ uint32_t * cycles)
+{
+
+ /* Read the appropriate register, based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ *cycles =
+ CPS_FLD_READ
+ (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)));
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ *cycles =
+ CPS_FLD_READ
+ (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)));
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ *cycles =
+ CPS_FLD_READ
+ (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)));
+ }
+
+}
+
+static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs * ctlregbase,
+ const lpddr4_lpiwakeupparam *
+ lpiwakeupparam,
+ const lpddr4_ctlfspnum * fspnum,
+ uint32_t * cycles)
+{
+
+ /* Iterate through each of the Wake up parameter type */
+ if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) {
+ /* Calling appropriate function for register read */
+ readpdwakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) {
+ readsrshortwakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) {
+ readsrlongwakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) {
+ readsrlonggatewakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) {
+ readsrdpshortwakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) {
+ readsrdplongwakeup(fspnum, ctlregbase, cycles);
+ } else {
+ /* Default function (sanity function already confirmed the variable value) */
+ readsrdplonggatewakeup(fspnum, ctlregbase, cycles);
+ }
+}
+
+uint32_t lpddr4_getlpiwakeuptime(const lpddr4_privatedata * pd,
+ const lpddr4_lpiwakeupparam * lpiwakeupparam,
+ const lpddr4_ctlfspnum * fspnum,
+ uint32_t * cycles)
+{
+
+ uint32_t result = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_getlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ lpddr4_readlpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum,
+ cycles);
+ }
+ return result;
+}
+
+static void writepdwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase, const uint32_t * cycles)
+{
+
+ uint32_t regval = 0U;
+ /* Write to appropriate register ,based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_PD_WAKEUP_F0__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG),
+ regval);
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_PD_WAKEUP_F1__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG),
+ regval);
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_PD_WAKEUP_F2__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG),
+ regval);
+ }
+}
+
+static void writesrshortwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase,
+ const uint32_t * cycles)
+{
+
+ uint32_t regval = 0U;
+ /* Write to appropriate register ,based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG),
+ regval);
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG),
+ regval);
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG),
+ regval);
+ }
+}
+
+static void writesrlongwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase,
+ const uint32_t * cycles)
+{
+
+ uint32_t regval = 0U;
+ /* Write to appropriate register ,based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG),
+ regval);
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG),
+ regval);
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG),
+ regval);
+ }
+}
+
+static void writesrlonggatewakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase,
+ const uint32_t * cycles)
+{
+
+ uint32_t regval = 0U;
+ /* Write to appropriate register ,based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG),
+ regval);
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG),
+ regval);
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG),
+ regval);
+ }
+}
+
+static void writesrdpshortwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase,
+ const uint32_t * cycles)
+{
+
+ uint32_t regval = 0U;
+ /* Write to appropriate register ,based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG), regval);
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG), regval);
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG), regval);
+ }
+}
+
+static void writesrdplongwakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase,
+ const uint32_t * cycles)
+{
+
+ uint32_t regval = 0U;
+ /* Write to appropriate register ,based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG), regval);
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG), regval);
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG), regval);
+ }
+}
+
+static void writesrdplonggatewakeup(const lpddr4_ctlfspnum * fspnum,
+ lpddr4_ctlregs * ctlregbase,
+ const uint32_t * cycles)
+{
+
+ uint32_t regval = 0U;
+ /* Write to appropriate register ,based on user given frequency. */
+ if (*fspnum == LPDDR4_FSP_0) {
+ regval =
+ CPS_FLD_WRITE
+ (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG),
+ regval);
+ } else if (*fspnum == LPDDR4_FSP_1) {
+ regval =
+ CPS_FLD_WRITE
+ (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG),
+ regval);
+ } else {
+ /* Default register (sanity function already confirmed the variable value) */
+ regval =
+ CPS_FLD_WRITE
+ (LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)),
+ *cycles);
+ CPS_REG_WRITE(&
+ (ctlregbase->
+ LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG),
+ regval);
+ }
+}
+
+static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs * ctlregbase,
+ const lpddr4_lpiwakeupparam *
+ lpiwakeupparam,
+ const lpddr4_ctlfspnum * fspnum,
+ const uint32_t * cycles)
+{
+
+ /* Iterate through each of the Wake up parameter type */
+ if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) {
+ /* Calling appropriate function for register write */
+ writepdwakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) {
+ writesrshortwakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) {
+ writesrlongwakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) {
+ writesrlonggatewakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) {
+ writesrdpshortwakeup(fspnum, ctlregbase, cycles);
+ } else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) {
+ writesrdplongwakeup(fspnum, ctlregbase, cycles);
+ } else {
+ /* Default function (sanity function already confirmed the variable value) */
+ writesrdplonggatewakeup(fspnum, ctlregbase, cycles);
+ }
+}
+
+uint32_t lpddr4_setlpiwakeuptime(const lpddr4_privatedata * pd,
+ const lpddr4_lpiwakeupparam * lpiwakeupparam,
+ const lpddr4_ctlfspnum * fspnum,
+ const uint32_t * cycles)
+{
+ uint32_t result = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_setlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles);
+ if (result == (uint32_t) CDN_EOK) {
+ /* Return if the user given value is higher than the field width */
+ if (*cycles > NIBBLE_MASK) {
+ result = EINVAL;
+ }
+ }
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ lpddr4_writelpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum,
+ cycles);
+ }
+ return result;
+}
+
+uint32_t lpddr4_geteccenable(const lpddr4_privatedata * pd,
+ lpddr4_eccenable * eccparam)
+{
+ uint32_t result = 0U;
+ uint32_t fldval = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_geteccenablesf(pd, eccparam);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Reading the ECC_Enable field from the register. */
+ fldval =
+ CPS_FLD_READ(LPDDR4__ECC_ENABLE__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__ECC_ENABLE__REG)));
+ switch (fldval) {
+ case 3:
+ *eccparam = LPDDR4_ECC_ERR_DETECT_CORRECT;
+ break;
+ case 2:
+ *eccparam = LPDDR4_ECC_ERR_DETECT;
+ break;
+ case 1:
+ *eccparam = LPDDR4_ECC_ENABLED;
+ break;
+ default:
+ /* Default ECC (Sanity function already confirmed the value to be in expected range.) */
+ *eccparam = LPDDR4_ECC_DISABLED;
+ break;
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_seteccenable(const lpddr4_privatedata * pd,
+ const lpddr4_eccenable * eccparam)
+{
+
+ uint32_t result = 0U;
+ uint32_t regval = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_seteccenablesf(pd, eccparam);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Updating the ECC_Enable field based on the user given value. */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__ECC_ENABLE__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__ECC_ENABLE__REG)),
+ *eccparam);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__ECC_ENABLE__REG), regval);
+ }
+ return result;
+}
+
+uint32_t lpddr4_getreducmode(const lpddr4_privatedata * pd,
+ lpddr4_reducmode * mode)
+{
+ uint32_t result = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_getreducmodesf(pd, mode);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ /* Read the value of reduc parameter. */
+ if (CPS_FLD_READ
+ (LPDDR4__REDUC__FLD,
+ CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG))) == 0U) {
+ *mode = LPDDR4_REDUC_ON;
+ } else {
+ *mode = LPDDR4_REDUC_OFF;
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_setreducmode(const lpddr4_privatedata * pd,
+ const lpddr4_reducmode * mode)
+{
+ uint32_t result = 0U;
+ uint32_t regval = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_setreducmodesf(pd, mode);
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ /* Setting to enable Half data path. */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__REDUC__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__REDUC__REG)), *mode);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__REDUC__REG), regval);
+ }
+ return result;
+}
+
+uint32_t lpddr4_getdbireadmode(const lpddr4_privatedata * pd, bool * on_off)
+{
+
+ uint32_t result = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_getdbireadmodesf(pd, on_off);
+
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ /* Reading the field value from the register. */
+ if (CPS_FLD_READ
+ (LPDDR4__RD_DBI_EN__FLD,
+ CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG))) ==
+ 0U) {
+ *on_off = false;
+ } else {
+ *on_off = true;
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_getdbiwritemode(const lpddr4_privatedata * pd, bool * on_off)
+{
+
+ uint32_t result = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_getdbireadmodesf(pd, on_off);
+
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ /* Reading the field value from the register. */
+ if (CPS_FLD_READ
+ (LPDDR4__WR_DBI_EN__FLD,
+ CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG))) ==
+ 0U) {
+ *on_off = false;
+ } else {
+ *on_off = true;
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_setdbimode(const lpddr4_privatedata * pd,
+ const lpddr4_dbimode * mode)
+{
+
+ uint32_t result = 0U;
+ uint32_t regval = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_setdbimodesf(pd, mode);
+
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Updating the appropriate field value based on the user given mode */
+ if (*mode == LPDDR4_DBI_RD_ON) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__RD_DBI_EN__REG)),
+ 1U);
+ } else if (*mode == LPDDR4_DBI_RD_OFF) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__RD_DBI_EN__REG)),
+ 0U);
+ } else if (*mode == LPDDR4_DBI_WR_ON) {
+ regval =
+ CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__WR_DBI_EN__REG)),
+ 1U);
+ } else {
+ /* Default field (Sanity function already confirmed the value to be in expected range.) */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__WR_DBI_EN__REG)),
+ 0U);
+ }
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__RD_DBI_EN__REG), regval);
+ }
+ return result;
+}
+
+uint32_t lpddr4_getrefreshrate(const lpddr4_privatedata * pd,
+ const lpddr4_ctlfspnum * fspnum,
+ uint32_t * cycles)
+{
+ uint32_t result = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_getrefreshratesf(pd, fspnum, cycles);
+
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Selecting the appropriate register for the user requested Frequency */
+ switch (*fspnum) {
+ case LPDDR4_FSP_2:
+ *cycles =
+ CPS_FLD_READ(LPDDR4__TREF_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__TREF_F2__REG)));
+ break;
+ case LPDDR4_FSP_1:
+ *cycles =
+ CPS_FLD_READ(LPDDR4__TREF_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__TREF_F1__REG)));
+ break;
+ default:
+ /* FSP_0 is considered as the default (sanity check already confirmed it as valid FSP) */
+ *cycles =
+ CPS_FLD_READ(LPDDR4__TREF_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__TREF_F0__REG)));
+ break;
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_setrefreshrate(const lpddr4_privatedata * pd,
+ const lpddr4_ctlfspnum * fspnum,
+ const uint32_t * cycles)
+{
+ uint32_t result = 0U;
+ uint32_t regval = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_setrefreshratesf(pd, fspnum, cycles);
+
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+
+ /* Selecting the appropriate register for the user requested Frequency */
+ switch (*fspnum) {
+ case LPDDR4_FSP_2:
+ regval =
+ CPS_FLD_WRITE(LPDDR4__TREF_F2__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__TREF_F2__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F2__REG),
+ regval);
+ break;
+ case LPDDR4_FSP_1:
+ regval =
+ CPS_FLD_WRITE(LPDDR4__TREF_F1__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__TREF_F1__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F1__REG),
+ regval);
+ break;
+ default:
+ /* FSP_0 is considered as the default (sanity check already confirmed it as valid FSP) */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__TREF_F0__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__TREF_F0__REG)),
+ *cycles);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F0__REG),
+ regval);
+ break;
+ }
+ }
+ return result;
+}
+
+uint32_t lpddr4_refreshperchipselect(const lpddr4_privatedata * pd,
+ const uint32_t trefinterval)
+{
+ uint32_t result = 0U;
+ uint32_t regval = 0U;
+
+ /* Calling Sanity Function to verify the input variables */
+ result = lpddr4_refreshperchipselectsf(pd);
+
+ if (result == (uint32_t) CDN_EOK) {
+ lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *) pd->ctlbase;
+ /* Setting tref_interval parameter to enable/disable Refresh per chip select. */
+ regval =
+ CPS_FLD_WRITE(LPDDR4__TREF_INTERVAL__FLD,
+ CPS_REG_READ(&
+ (ctlregbase->
+ LPDDR4__TREF_INTERVAL__REG)),
+ trefinterval);
+ CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG),
+ regval);
+ }
+ return result;
+}