menu "Boot timing"

config BOOTSTAGE
	bool "Boot timing and reporting"
	help
	  Enable recording of boot time while booting. To use it, insert
	  calls to bootstage_mark() with a suitable BOOTSTAGE_ID from
	  bootstage.h. Only a single entry is recorded for each ID. You can
	  give the entry a name with bootstage_mark_name(). You can also
	  record elapsed time in a particular stage using bootstage_start()
	  before starting and bootstage_accum() when finished. Bootstage will
	  add up all the accumulated time and report it.

	  Normally, IDs are defined in bootstage.h but a small number of
	  additional 'user' IDs can be used by passing BOOTSTAGE_ID_ALLOC
	  as the ID.

	  Calls to show_boot_progress() will also result in log entries but
	  these will not have names.

config SPL_BOOTSTAGE
	bool "Boot timing and reported in SPL"
	depends on BOOTSTAGE
	help
	  Enable recording of boot time in SPL. To make this visible to U-Boot
	  proper, enable BOOTSTAGE_STASH as well. This will stash the timing
	  information when SPL finishes and load it when U-Boot proper starts
	  up.

config BOOTSTAGE_REPORT
	bool "Display a detailed boot timing report before booting the OS"
	depends on BOOTSTAGE
	help
	  Enable output of a boot time report just before the OS is booted.
	  This shows how long it took U-Boot to go through each stage of the
	  boot process. The report looks something like this:

		Timer summary in microseconds:
		       Mark    Elapsed  Stage
			  0          0  reset
		  3,575,678  3,575,678  board_init_f start
		  3,575,695         17  arch_cpu_init A9
		  3,575,777         82  arch_cpu_init done
		  3,659,598     83,821  board_init_r start
		  3,910,375    250,777  main_loop
		 29,916,167 26,005,792  bootm_start
		 30,361,327    445,160  start_kernel

config BOOTSTAGE_USER_COUNT
	int "Number of boot ID numbers available for user use"
	default 20
	help
	  This is the number of available user bootstage records.
	  Each time you call bootstage_mark(BOOTSTAGE_ID_ALLOC, ...)
	  a new ID will be allocated from this stash. If you exceed
	  the limit, recording will stop.

config BOOTSTAGE_RECORD_COUNT
	int "Number of boot stage records to store"
	default 30
	help
	  This is the size of the bootstage record list and is the maximum
	  number of bootstage records that can be recorded.

config BOOTSTAGE_FDT
	bool "Store boot timing information in the OS device tree"
	depends on BOOTSTAGE
	help
	  Stash the bootstage information in the FDT. A root 'bootstage'
	  node is created with each bootstage id as a child. Each child
	  has a 'name' property and either 'mark' containing the
	  mark time in microseconds, or 'accum' containing the
	  accumulated time for that bootstage id in microseconds.
	  For example:

		bootstage {
			154 {
				name = "board_init_f";
				mark = <3575678>;
			};
			170 {
				name = "lcd";
				accum = <33482>;
			};
		};

	  Code in the Linux kernel can find this in /proc/devicetree.

config BOOTSTAGE_STASH
	bool "Stash the boot timing information in memory before booting OS"
	depends on BOOTSTAGE
	help
	  Some OSes do not support device tree. Bootstage can instead write
	  the boot timing information in a binary format at a given address.
	  This happens through a call to bootstage_stash(), typically in
	  the CPU's cleanup_before_linux() function. You can use the
	  'bootstage stash' and 'bootstage unstash' commands to do this on
	  the command line.

config BOOTSTAGE_STASH_ADDR
	hex "Address to stash boot timing information"
	default 0
	help
	  Provide an address which will not be overwritten by the OS when it
	  starts, so that it can read this information when ready.

config BOOTSTAGE_STASH_SIZE
	hex "Size of boot timing stash region"
	default 0x1000
	help
	  This should be large enough to hold the bootstage stash. A value of
	  4096 (4KiB) is normally plenty.

endmenu

menu "Boot media"

config NOR_BOOT
	bool "Support for booting from NOR flash"
	depends on NOR
	help
	  Enabling this will make a U-Boot binary that is capable of being
	  booted via NOR.  In this case we will enable certain pinmux early
	  as the ROM only partially sets up pinmux.  We also default to using
	  NOR for environment.

config NAND_BOOT
	bool "Support for booting from NAND flash"
	default n
	help
	  Enabling this will make a U-Boot binary that is capable of being
	  booted via NAND flash. This is not a must, some SoCs need this,
	  some not.

config ONENAND_BOOT
	bool "Support for booting from ONENAND"
	default n
	help
	  Enabling this will make a U-Boot binary that is capable of being
	  booted via ONENAND. This is not a must, some SoCs need this,
	  some not.

config QSPI_BOOT
	bool "Support for booting from QSPI flash"
	default n
	help
	  Enabling this will make a U-Boot binary that is capable of being
	  booted via QSPI flash. This is not a must, some SoCs need this,
	  some not.

config SATA_BOOT
	bool "Support for booting from SATA"
	default n
	help
	  Enabling this will make a U-Boot binary that is capable of being
	  booted via SATA. This is not a must, some SoCs need this,
	  some not.

config SD_BOOT
	bool "Support for booting from SD/EMMC"
	default n
	help
	  Enabling this will make a U-Boot binary that is capable of being
	  booted via SD/EMMC. This is not a must, some SoCs need this,
	  some not.

config SPI_BOOT
	bool "Support for booting from SPI flash"
	default n
	help
	  Enabling this will make a U-Boot binary that is capable of being
	  booted via SPI flash. This is not a must, some SoCs need this,
	  some not.

endmenu

menu "Environment"

if ARCH_SUNXI

choice
	prompt "Environment Device"
	default ENV_IS_IN_MMC if ARCH_SUNXI

config ENV_IS_IN_MMC
	bool "Environment in an MMC device"
	depends on CMD_MMC
	help
	  Define this if you have an MMC device which you want to use for the
	  environment.

config ENV_IS_IN_NAND
	bool "Environment in a NAND device"
	depends on CMD_NAND
	help
	  Define this if you have a NAND device which you want to use for the
	  environment.

config ENV_IS_IN_UBI
	bool "Environment in a UBI volume"
	depends on CMD_UBI
	depends on CMD_MTDPARTS
	help
	  Define this if you have a UBI volume which you want to use for the
	  environment.

config ENV_IS_NOWHERE
	bool "Environment is not stored"
	help
	  Define this if you don't want to or can't have an environment stored
	  on a storage medium

endchoice

config ENV_OFFSET
	hex "Environment Offset"
	depends on !ENV_IS_IN_UBI
	depends on !ENV_IS_NOWHERE
	default 0x88000 if ARCH_SUNXI
	help
	  Offset from the start of the device (or partition)

config ENV_SIZE
	hex "Environment Size"
	depends on !ENV_IS_NOWHERE
	default 0x20000 if ARCH_SUNXI
	help
	  Size of the environment storage area

config ENV_UBI_PART
	string "UBI partition name"
	depends on ENV_IS_IN_UBI
	help
	  MTD partition containing the UBI device

config ENV_UBI_VOLUME
	string "UBI volume name"
	depends on ENV_IS_IN_UBI
	help
	  Name of the volume that you want to store the environment in.

endif

endmenu

config BOOTDELAY
	int "delay in seconds before automatically booting"
	default 2
	depends on AUTOBOOT
	help
	  Delay before automatically running bootcmd;
	  set to 0 to autoboot with no delay, but you can stop it by key input.
	  set to -1 to disable autoboot.
	  set to -2 to autoboot with no delay and not check for abort

	  See doc/README.autoboot for details.

menu "Console"

config MENU
	bool
	help
	  This is the library functionality to provide a text-based menu of
	  choices for the user to make choices with.

config CONSOLE_RECORD
	bool "Console recording"
	help
	  This provides a way to record console output (and provide console
	  input) through circular buffers. This is mostly useful for testing.
	  Console output is recorded even when the console is silent.
	  To enable console recording, call console_record_reset_enable()
	  from your code.

config CONSOLE_RECORD_OUT_SIZE
	hex "Output buffer size"
	depends on CONSOLE_RECORD
	default 0x400 if CONSOLE_RECORD
	help
	  Set the size of the console output buffer. When this fills up, no
	  more data will be recorded until some is removed. The buffer is
	  allocated immediately after the malloc() region is ready.

config CONSOLE_RECORD_IN_SIZE
	hex "Input buffer size"
	depends on CONSOLE_RECORD
	default 0x100 if CONSOLE_RECORD
	help
	  Set the size of the console input buffer. When this contains data,
	  tstc() and getc() will use this in preference to real device input.
	  The buffer is allocated immediately after the malloc() region is
	  ready.

config IDENT_STRING
	string "Board specific string to be added to uboot version string"
	help
	  This options adds the board specific name to u-boot version.

config SILENT_CONSOLE
	bool "Support a silent console"
	help
	  This option allows the console to be silenced, meaning that no
	  output will appear on the console devices. This is controlled by
	  setting the environment vaariable 'silent' to a non-empty value.
	  Note this also silences the console when booting Linux.

	  When the console is set up, the variable is checked, and the
	  GD_FLG_SILENT flag is set. Changing the environment variable later
	  will update the flag.

config SILENT_U_BOOT_ONLY
	bool "Only silence the U-Boot console"
	depends on SILENT_CONSOLE
	help
	  Normally when the U-Boot console is silenced, Linux's console is
	  also silenced (assuming the board boots into Linux). This option
	  allows the linux console to operate normally, even if U-Boot's
	  is silenced.

config SILENT_CONSOLE_UPDATE_ON_SET
	bool "Changes to the 'silent' environment variable update immediately"
	depends on SILENT_CONSOLE
	default y if SILENT_CONSOLE
	help
	  When the 'silent' environment variable is changed, update the
	  console silence flag immediately. This allows 'setenv' to be used
	  to silence or un-silence the console.

	  The effect is that any change to the variable will affect the
	  GD_FLG_SILENT flag.

config SILENT_CONSOLE_UPDATE_ON_RELOC
	bool "Allow flags to take effect on relocation"
	depends on SILENT_CONSOLE
	help
	  In some cases the environment is not available until relocation
	  (e.g. NAND). This option makes the value of the 'silent'
	  environment variable take effect at relocation.

config PRE_CONSOLE_BUFFER
	bool "Buffer characters before the console is available"
	help
	  Prior to the console being initialised (i.e. serial UART
	  initialised etc) all console output is silently discarded.
	  Defining CONFIG_PRE_CONSOLE_BUFFER will cause U-Boot to
	  buffer any console messages prior to the console being
	  initialised to a buffer. The buffer is a circular buffer, so
	  if it overflows, earlier output is discarded.

	  Note that this is not currently supported in SPL. It would be
	  useful to be able to share the pre-console buffer with SPL.

config PRE_CON_BUF_SZ
	int "Sets the size of the pre-console buffer"
	depends on PRE_CONSOLE_BUFFER
	default 4096
	help
	  The size of the pre-console buffer affects how much console output
	  can be held before it overflows and starts discarding earlier
	  output. Normally there is very little output at this early stage,
	  unless debugging is enabled, so allow enough for ~10 lines of
	  text.

	  This is a useful feature if you are using a video console and
	  want to see the full boot output on the console. Without this
	  option only the post-relocation output will be displayed.

config PRE_CON_BUF_ADDR
	hex "Address of the pre-console buffer"
	depends on PRE_CONSOLE_BUFFER
	default 0x2f000000 if ARCH_SUNXI && MACH_SUN9I
	default 0x4f000000 if ARCH_SUNXI && !MACH_SUN9I
	help
	  This sets the start address of the pre-console buffer. This must
	  be in available memory and is accessed before relocation and
	  possibly before DRAM is set up. Therefore choose an address
	  carefully.

	  We should consider removing this option and allocating the memory
	  in board_init_f_init_reserve() instead.

config CONSOLE_MUX
	bool "Enable console multiplexing"
	default y if DM_VIDEO || VIDEO || LCD
	help
	  This allows multiple devices to be used for each console 'file'.
	  For example, stdout can be set to go to serial and video.
	  Similarly, stdin can be set to come from serial and keyboard.
	  Input can be provided from either source. Console multiplexing
	  adds a small amount of size to U-Boot.  Changes to the environment
	  variables stdout, stdin and stderr will take effect immediately.

config SYS_CONSOLE_IS_IN_ENV
	bool "Select console devices from the environment"
	default y if CONSOLE_MUX
	help
	  This allows multiple input/output devices to be set at boot time.
	  For example, if stdout is set to "serial,video" then output will
	  be sent to both the serial and video devices on boot. The
	  environment variables can be updated after boot to change the
	  input/output devices.

config SYS_CONSOLE_OVERWRITE_ROUTINE
	bool "Allow board control over console overwriting"
	help
	  If this is enabled, and the board-specific function
	  overwrite_console() returns 1, the stdin, stderr and stdout are
	  switched to the serial port, else the settings in the environment
	  are used. If this is not enabled, the console will not be switched
	  to serial.

config SYS_CONSOLE_ENV_OVERWRITE
	bool "Update environment variables during console init"
	help
	  The console environment variables (stdout, stdin, stderr) can be
	  used to determine the correct console devices on start-up. This
	  option writes the console devices to these variables on console
	  start-up (after relocation). This causes the environment to be
	  updated to match the console devices actually chosen.

config SYS_CONSOLE_INFO_QUIET
	bool "Don't display the console devices on boot"
	help
	  Normally U-Boot displays the current settings for stdout, stdin
	  and stderr on boot when the post-relocation console is set up.
	  Enable this option to supress this output. It can be obtained by
	  calling stdio_print_current_devices() from board code.

config SYS_STDIO_DEREGISTER
	bool "Allow deregistering stdio devices"
	default y if USB_KEYBOARD
	help
	  Generally there is no need to deregister stdio devices since they
	  are never deactivated. But if a stdio device is used which can be
	  removed (for example a USB keyboard) then this option can be
	  enabled to ensure this is handled correctly.

endmenu

config DTB_RESELECT
	bool "Support swapping dtbs at a later point in boot"
	depends on FIT_EMBED
	help
	  It is possible during initial boot you may need to use a generic
	  dtb until you can fully determine the board your running on. This
	  config allows boards to implement a function at a later point
	  during boot to switch to the "correct" dtb.

config FIT_EMBED
	bool "Support a FIT image embedded in the U-boot image"
	help
	  This option provides hooks to allow U-boot to parse an
	  appended FIT image and enable board specific code to then select
	  the correct DTB to be used.

config DEFAULT_FDT_FILE
	string "Default fdt file"
	help
	  This option is used to set the default fdt file to boot OS.

config VERSION_VARIABLE
	bool "add U-Boot environment variable vers"
	default n
	help
	  If this variable is defined, an environment variable
	  named "ver" is created by U-Boot showing the U-Boot
	  version as printed by the "version" command.
	  Any change to this variable will be reverted at the
	  next reset.

config BOARD_LATE_INIT
	bool
	help
	  Sometimes board require some initialization code that might
	  require once the actual init done, example saving board specific env,
	  boot-modes etc. which eventually done at late.

	  So this config enable the late init code with the help of board_late_init
	  function which should defined on respective boards.

config DISPLAY_CPUINFO
	bool "Display information about the CPU during start up"
	default y if ARM || NIOS2 || X86 || XTENSA
	help
	  Display information about the CPU that U-Boot is running on
	  when U-Boot starts up. The function print_cpuinfo() is called
	  to do this.

config DISPLAY_BOARDINFO
	bool "Display information about the board during start up"
	default y if ARM || M68K || MIPS || PPC || SANDBOX || XTENSA
	help
	  Display information about the board that U-Boot is running on
	  when U-Boot starts up. The board function checkboard() is called
	  to do this.

menu "Start-up hooks"

config ARCH_EARLY_INIT_R
	bool "Call arch-specific init soon after relocation"
	default y if X86
	help
	  With this option U-Boot will call arch_early_init_r() soon after
	  relocation. Driver model is running by this point, and the cache
	  is on. Note that board_early_init_r() is called first, if
	  enabled. This can be used to set up architecture-specific devices.

config ARCH_MISC_INIT
	bool "Call arch-specific init after relocation, when console is ready"
	help
	  With this option U-Boot will call arch_misc_init() after
	  relocation to allow miscellaneous arch-dependent initialisation
	  to be performed. This function should be defined by the board
	  and will be called after the console is set up, after relocaiton.

config BOARD_EARLY_INIT_F
	bool "Call board-specific init before relocation"
	default y if X86
	help
	  Some boards need to perform initialisation as soon as possible
	  after boot. With this option, U-Boot calls board_early_init_f()
	  after driver model is ready in the pre-relocation init sequence.
	  Note that the normal serial console is not yet set up, but the
	  debug UART will be available if enabled.

endmenu

menu "Security support"

config HASH
	bool # "Support hashing API (SHA1, SHA256, etc.)"
	help
	  This provides a way to hash data in memory using various supported
	  algorithms (such as SHA1, MD5, CRC32). The API is defined in hash.h
	  and the algorithms it supports are defined in common/hash.c. See
	  also CMD_HASH for command-line access.

endmenu

source "common/spl/Kconfig"