/* * (C) Copyright 2007 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com * * Copyright 2010-2011 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include /* * Get cells len in bytes * if #NNNN-cells property is 2 then len is 8 * otherwise len is 4 */ static int get_cells_len(void *blob, char *nr_cells_name) { const fdt32_t *cell; cell = fdt_getprop(blob, 0, nr_cells_name, NULL); if (cell && fdt32_to_cpu(*cell) == 2) return 8; return 4; } /* * Write a 4 or 8 byte big endian cell */ static void write_cell(u8 *addr, u64 val, int size) { int shift = (size - 1) * 8; while (size-- > 0) { *addr++ = (val >> shift) & 0xff; shift -= 8; } } /** * fdt_getprop_u32_default_node - Return a node's property or a default * * @fdt: ptr to device tree * @off: offset of node * @cell: cell offset in property * @prop: property name * @dflt: default value if the property isn't found * * Convenience function to return a node's property or a default value if * the property doesn't exist. */ u32 fdt_getprop_u32_default_node(const void *fdt, int off, int cell, const char *prop, const u32 dflt) { const fdt32_t *val; int len; val = fdt_getprop(fdt, off, prop, &len); /* Check if property exists */ if (!val) return dflt; /* Check if property is long enough */ if (len < ((cell + 1) * sizeof(uint32_t))) return dflt; return fdt32_to_cpu(*val); } /** * fdt_getprop_u32_default - Find a node and return it's property or a default * * @fdt: ptr to device tree * @path: path of node * @prop: property name * @dflt: default value if the property isn't found * * Convenience function to find a node and return it's property or a * default value if it doesn't exist. */ u32 fdt_getprop_u32_default(const void *fdt, const char *path, const char *prop, const u32 dflt) { int off; off = fdt_path_offset(fdt, path); if (off < 0) return dflt; return fdt_getprop_u32_default_node(fdt, off, 0, prop, dflt); } /** * fdt_find_and_setprop: Find a node and set it's property * * @fdt: ptr to device tree * @node: path of node * @prop: property name * @val: ptr to new value * @len: length of new property value * @create: flag to create the property if it doesn't exist * * Convenience function to directly set a property given the path to the node. */ int fdt_find_and_setprop(void *fdt, const char *node, const char *prop, const void *val, int len, int create) { int nodeoff = fdt_path_offset(fdt, node); if (nodeoff < 0) return nodeoff; if ((!create) && (fdt_get_property(fdt, nodeoff, prop, NULL) == NULL)) return 0; /* create flag not set; so exit quietly */ return fdt_setprop(fdt, nodeoff, prop, val, len); } /** * fdt_find_or_add_subnode - find or possibly add a subnode of a given node * @fdt: pointer to the device tree blob * @parentoffset: structure block offset of a node * @name: name of the subnode to locate * * fdt_subnode_offset() finds a subnode of the node with a given name. * If the subnode does not exist, it will be created. */ static int fdt_find_or_add_subnode(void *fdt, int parentoffset, const char *name) { int offset; offset = fdt_subnode_offset(fdt, parentoffset, name); if (offset == -FDT_ERR_NOTFOUND) offset = fdt_add_subnode(fdt, parentoffset, name); if (offset < 0) printf("%s: %s: %s\n", __func__, name, fdt_strerror(offset)); return offset; } #ifdef CONFIG_OF_STDOUT_VIA_ALIAS #ifdef CONFIG_CONS_INDEX static void fdt_fill_multisername(char *sername, size_t maxlen) { const char *outname = stdio_devices[stdout]->name; if (strcmp(outname, "serial") > 0) strncpy(sername, outname, maxlen); /* eserial? */ if (strcmp(outname + 1, "serial") > 0) strncpy(sername, outname + 1, maxlen); } #endif static int fdt_fixup_stdout(void *fdt, int chosenoff) { int err = 0; #ifdef CONFIG_CONS_INDEX int node; char sername[9] = { 0 }; const char *path; fdt_fill_multisername(sername, sizeof(sername) - 1); if (!sername[0]) sprintf(sername, "serial%d", CONFIG_CONS_INDEX - 1); err = node = fdt_path_offset(fdt, "/aliases"); if (node >= 0) { int len; path = fdt_getprop(fdt, node, sername, &len); if (path) { char *p = malloc(len); err = -FDT_ERR_NOSPACE; if (p) { memcpy(p, path, len); err = fdt_setprop(fdt, chosenoff, "linux,stdout-path", p, len); free(p); } } else { err = len; } } #endif if (err < 0) printf("WARNING: could not set linux,stdout-path %s.\n", fdt_strerror(err)); return err; } #endif int fdt_initrd(void *fdt, ulong initrd_start, ulong initrd_end) { int nodeoffset, addr_cell_len; int err, j, total; fdt64_t tmp; uint64_t addr, size; /* find or create "/chosen" node. */ nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen"); if (nodeoffset < 0) return nodeoffset; /* just return if initrd_start/end aren't valid */ if ((initrd_start == 0) || (initrd_end == 0)) return 0; total = fdt_num_mem_rsv(fdt); /* * Look for an existing entry and update it. If we don't find * the entry, we will j be the next available slot. */ for (j = 0; j < total; j++) { err = fdt_get_mem_rsv(fdt, j, &addr, &size); if (addr == initrd_start) { fdt_del_mem_rsv(fdt, j); break; } } err = fdt_add_mem_rsv(fdt, initrd_start, initrd_end - initrd_start); if (err < 0) { printf("fdt_initrd: %s\n", fdt_strerror(err)); return err; } addr_cell_len = get_cells_len(fdt, "#address-cells"); write_cell((u8 *)&tmp, initrd_start, addr_cell_len); err = fdt_setprop(fdt, nodeoffset, "linux,initrd-start", &tmp, addr_cell_len); if (err < 0) { printf("WARNING: could not set linux,initrd-start %s.\n", fdt_strerror(err)); return err; } write_cell((u8 *)&tmp, initrd_end, addr_cell_len); err = fdt_setprop(fdt, nodeoffset, "linux,initrd-end", &tmp, addr_cell_len); if (err < 0) { printf("WARNING: could not set linux,initrd-end %s.\n", fdt_strerror(err)); return err; } return 0; } int fdt_chosen(void *fdt, int force) { int nodeoffset; int err; char *str; /* used to set string properties */ const char *path; err = fdt_check_header(fdt); if (err < 0) { printf("fdt_chosen: %s\n", fdt_strerror(err)); return err; } /* find or create "/chosen" node. */ nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen"); if (nodeoffset < 0) return nodeoffset; /* * Create /chosen properites that don't exist in the fdt. * If the property exists, update it only if the "force" parameter * is true. */ str = getenv("bootargs"); if (str != NULL) { path = fdt_getprop(fdt, nodeoffset, "bootargs", NULL); if ((path == NULL) || force) { err = fdt_setprop(fdt, nodeoffset, "bootargs", str, strlen(str)+1); if (err < 0) printf("WARNING: could not set bootargs %s.\n", fdt_strerror(err)); } } #ifdef CONFIG_OF_STDOUT_VIA_ALIAS path = fdt_getprop(fdt, nodeoffset, "linux,stdout-path", NULL); if ((path == NULL) || force) err = fdt_fixup_stdout(fdt, nodeoffset); #endif #ifdef OF_STDOUT_PATH path = fdt_getprop(fdt, nodeoffset, "linux,stdout-path", NULL); if ((path == NULL) || force) { err = fdt_setprop(fdt, nodeoffset, "linux,stdout-path", OF_STDOUT_PATH, strlen(OF_STDOUT_PATH)+1); if (err < 0) printf("WARNING: could not set linux,stdout-path %s.\n", fdt_strerror(err)); } #endif return err; } void do_fixup_by_path(void *fdt, const char *path, const char *prop, const void *val, int len, int create) { #if defined(DEBUG) int i; debug("Updating property '%s/%s' = ", path, prop); for (i = 0; i < len; i++) debug(" %.2x", *(u8*)(val+i)); debug("\n"); #endif int rc = fdt_find_and_setprop(fdt, path, prop, val, len, create); if (rc) printf("Unable to update property %s:%s, err=%s\n", path, prop, fdt_strerror(rc)); } void do_fixup_by_path_u32(void *fdt, const char *path, const char *prop, u32 val, int create) { fdt32_t tmp = cpu_to_fdt32(val); do_fixup_by_path(fdt, path, prop, &tmp, sizeof(tmp), create); } void do_fixup_by_prop(void *fdt, const char *pname, const void *pval, int plen, const char *prop, const void *val, int len, int create) { int off; #if defined(DEBUG) int i; debug("Updating property '%s' = ", prop); for (i = 0; i < len; i++) debug(" %.2x", *(u8*)(val+i)); debug("\n"); #endif off = fdt_node_offset_by_prop_value(fdt, -1, pname, pval, plen); while (off != -FDT_ERR_NOTFOUND) { if (create || (fdt_get_property(fdt, off, prop, NULL) != NULL)) fdt_setprop(fdt, off, prop, val, len); off = fdt_node_offset_by_prop_value(fdt, off, pname, pval, plen); } } void do_fixup_by_prop_u32(void *fdt, const char *pname, const void *pval, int plen, const char *prop, u32 val, int create) { fdt32_t tmp = cpu_to_fdt32(val); do_fixup_by_prop(fdt, pname, pval, plen, prop, &tmp, 4, create); } void do_fixup_by_compat(void *fdt, const char *compat, const char *prop, const void *val, int len, int create) { int off = -1; #if defined(DEBUG) int i; debug("Updating property '%s' = ", prop); for (i = 0; i < len; i++) debug(" %.2x", *(u8*)(val+i)); debug("\n"); #endif off = fdt_node_offset_by_compatible(fdt, -1, compat); while (off != -FDT_ERR_NOTFOUND) { if (create || (fdt_get_property(fdt, off, prop, NULL) != NULL)) fdt_setprop(fdt, off, prop, val, len); off = fdt_node_offset_by_compatible(fdt, off, compat); } } void do_fixup_by_compat_u32(void *fdt, const char *compat, const char *prop, u32 val, int create) { fdt32_t tmp = cpu_to_fdt32(val); do_fixup_by_compat(fdt, compat, prop, &tmp, 4, create); } #ifdef CONFIG_NR_DRAM_BANKS #define MEMORY_BANKS_MAX CONFIG_NR_DRAM_BANKS #else #define MEMORY_BANKS_MAX 4 #endif int fdt_fixup_memory_banks(void *blob, u64 start[], u64 size[], int banks) { int err, nodeoffset; int addr_cell_len, size_cell_len, len; u8 tmp[MEMORY_BANKS_MAX * 16]; /* Up to 64-bit address + 64-bit size */ int bank; if (banks > MEMORY_BANKS_MAX) { printf("%s: num banks %d exceeds hardcoded limit %d." " Recompile with higher MEMORY_BANKS_MAX?\n", __FUNCTION__, banks, MEMORY_BANKS_MAX); return -1; } err = fdt_check_header(blob); if (err < 0) { printf("%s: %s\n", __FUNCTION__, fdt_strerror(err)); return err; } /* find or create "/memory" node. */ nodeoffset = fdt_find_or_add_subnode(blob, 0, "memory"); if (nodeoffset < 0) return nodeoffset; err = fdt_setprop(blob, nodeoffset, "device_type", "memory", sizeof("memory")); if (err < 0) { printf("WARNING: could not set %s %s.\n", "device_type", fdt_strerror(err)); return err; } addr_cell_len = get_cells_len(blob, "#address-cells"); size_cell_len = get_cells_len(blob, "#size-cells"); for (bank = 0, len = 0; bank < banks; bank++) { write_cell(tmp + len, start[bank], addr_cell_len); len += addr_cell_len; write_cell(tmp + len, size[bank], size_cell_len); len += size_cell_len; } err = fdt_setprop(blob, nodeoffset, "reg", tmp, len); if (err < 0) { printf("WARNING: could not set %s %s.\n", "reg", fdt_strerror(err)); return err; } return 0; } int fdt_fixup_memory(void *blob, u64 start, u64 size) { return fdt_fixup_memory_banks(blob, &start, &size, 1); } void fdt_fixup_ethernet(void *fdt) { int node, i, j; char enet[16], *tmp, *end; char mac[16]; const char *path; unsigned char mac_addr[6]; node = fdt_path_offset(fdt, "/aliases"); if (node < 0) return; if (!getenv("ethaddr")) { if (getenv("usbethaddr")) { strcpy(mac, "usbethaddr"); } else { debug("No ethernet MAC Address defined\n"); return; } } else { strcpy(mac, "ethaddr"); } i = 0; while ((tmp = getenv(mac)) != NULL) { sprintf(enet, "ethernet%d", i); path = fdt_getprop(fdt, node, enet, NULL); if (!path) { debug("No alias for %s\n", enet); sprintf(mac, "eth%daddr", ++i); continue; } for (j = 0; j < 6; j++) { mac_addr[j] = tmp ? simple_strtoul(tmp, &end, 16) : 0; if (tmp) tmp = (*end) ? end+1 : end; } do_fixup_by_path(fdt, path, "mac-address", &mac_addr, 6, 0); do_fixup_by_path(fdt, path, "local-mac-address", &mac_addr, 6, 1); sprintf(mac, "eth%daddr", ++i); } } /* Resize the fdt to its actual size + a bit of padding */ int fdt_resize(void *blob) { int i; uint64_t addr, size; int total, ret; uint actualsize; if (!blob) return 0; total = fdt_num_mem_rsv(blob); for (i = 0; i < total; i++) { fdt_get_mem_rsv(blob, i, &addr, &size); if (addr == (uintptr_t)blob) { fdt_del_mem_rsv(blob, i); break; } } /* * Calculate the actual size of the fdt * plus the size needed for 5 fdt_add_mem_rsv, one * for the fdt itself and 4 for a possible initrd * ((initrd-start + initrd-end) * 2 (name & value)) */ actualsize = fdt_off_dt_strings(blob) + fdt_size_dt_strings(blob) + 5 * sizeof(struct fdt_reserve_entry); /* Make it so the fdt ends on a page boundary */ actualsize = ALIGN(actualsize + ((uintptr_t)blob & 0xfff), 0x1000); actualsize = actualsize - ((uintptr_t)blob & 0xfff); /* Change the fdt header to reflect the correct size */ fdt_set_totalsize(blob, actualsize); /* Add the new reservation */ ret = fdt_add_mem_rsv(blob, (uintptr_t)blob, actualsize); if (ret < 0) return ret; return actualsize; } #ifdef CONFIG_PCI #define CONFIG_SYS_PCI_NR_INBOUND_WIN 4 #define FDT_PCI_PREFETCH (0x40000000) #define FDT_PCI_MEM32 (0x02000000) #define FDT_PCI_IO (0x01000000) #define FDT_PCI_MEM64 (0x03000000) int fdt_pci_dma_ranges(void *blob, int phb_off, struct pci_controller *hose) { int addrcell, sizecell, len, r; u32 *dma_range; /* sized based on pci addr cells, size-cells, & address-cells */ u32 dma_ranges[(3 + 2 + 2) * CONFIG_SYS_PCI_NR_INBOUND_WIN]; addrcell = fdt_getprop_u32_default(blob, "/", "#address-cells", 1); sizecell = fdt_getprop_u32_default(blob, "/", "#size-cells", 1); dma_range = &dma_ranges[0]; for (r = 0; r < hose->region_count; r++) { u64 bus_start, phys_start, size; /* skip if !PCI_REGION_SYS_MEMORY */ if (!(hose->regions[r].flags & PCI_REGION_SYS_MEMORY)) continue; bus_start = (u64)hose->regions[r].bus_start; phys_start = (u64)hose->regions[r].phys_start; size = (u64)hose->regions[r].size; dma_range[0] = 0; if (size >= 0x100000000ull) dma_range[0] |= FDT_PCI_MEM64; else dma_range[0] |= FDT_PCI_MEM32; if (hose->regions[r].flags & PCI_REGION_PREFETCH) dma_range[0] |= FDT_PCI_PREFETCH; #ifdef CONFIG_SYS_PCI_64BIT dma_range[1] = bus_start >> 32; #else dma_range[1] = 0; #endif dma_range[2] = bus_start & 0xffffffff; if (addrcell == 2) { dma_range[3] = phys_start >> 32; dma_range[4] = phys_start & 0xffffffff; } else { dma_range[3] = phys_start & 0xffffffff; } if (sizecell == 2) { dma_range[3 + addrcell + 0] = size >> 32; dma_range[3 + addrcell + 1] = size & 0xffffffff; } else { dma_range[3 + addrcell + 0] = size & 0xffffffff; } dma_range += (3 + addrcell + sizecell); } len = dma_range - &dma_ranges[0]; if (len) fdt_setprop(blob, phb_off, "dma-ranges", &dma_ranges[0], len*4); return 0; } #endif #ifdef CONFIG_FDT_FIXUP_NOR_FLASH_SIZE /* * Provide a weak default function to return the flash bank size. * There might be multiple non-identical flash chips connected to one * chip-select, so we need to pass an index as well. */ u32 __flash_get_bank_size(int cs, int idx) { extern flash_info_t flash_info[]; /* * As default, a simple 1:1 mapping is provided. Boards with * a different mapping need to supply a board specific mapping * routine. */ return flash_info[cs].size; } u32 flash_get_bank_size(int cs, int idx) __attribute__((weak, alias("__flash_get_bank_size"))); /* * This function can be used to update the size in the "reg" property * of all NOR FLASH device nodes. This is necessary for boards with * non-fixed NOR FLASH sizes. */ int fdt_fixup_nor_flash_size(void *blob) { char compat[][16] = { "cfi-flash", "jedec-flash" }; int off; int len; struct fdt_property *prop; u32 *reg, *reg2; int i; for (i = 0; i < 2; i++) { off = fdt_node_offset_by_compatible(blob, -1, compat[i]); while (off != -FDT_ERR_NOTFOUND) { int idx; /* * Found one compatible node, so fixup the size * int its reg properties */ prop = fdt_get_property_w(blob, off, "reg", &len); if (prop) { int tuple_size = 3 * sizeof(reg); /* * There might be multiple reg-tuples, * so loop through them all */ reg = reg2 = (u32 *)&prop->data[0]; for (idx = 0; idx < (len / tuple_size); idx++) { /* * Update size in reg property */ reg[2] = flash_get_bank_size(reg[0], idx); /* * Point to next reg tuple */ reg += 3; } fdt_setprop(blob, off, "reg", reg2, len); } /* Move to next compatible node */ off = fdt_node_offset_by_compatible(blob, off, compat[i]); } } return 0; } #endif int fdt_increase_size(void *fdt, int add_len) { int newlen; newlen = fdt_totalsize(fdt) + add_len; /* Open in place with a new len */ return fdt_open_into(fdt, fdt, newlen); } #ifdef CONFIG_FDT_FIXUP_PARTITIONS #include #include struct reg_cell { unsigned int r0; unsigned int r1; }; int fdt_del_subnodes(const void *blob, int parent_offset) { int off, ndepth; int ret; for (ndepth = 0, off = fdt_next_node(blob, parent_offset, &ndepth); (off >= 0) && (ndepth > 0); off = fdt_next_node(blob, off, &ndepth)) { if (ndepth == 1) { debug("delete %s: offset: %x\n", fdt_get_name(blob, off, 0), off); ret = fdt_del_node((void *)blob, off); if (ret < 0) { printf("Can't delete node: %s\n", fdt_strerror(ret)); return ret; } else { ndepth = 0; off = parent_offset; } } } return 0; } int fdt_del_partitions(void *blob, int parent_offset) { const void *prop; int ndepth = 0; int off; int ret; off = fdt_next_node(blob, parent_offset, &ndepth); if (off > 0 && ndepth == 1) { prop = fdt_getprop(blob, off, "label", NULL); if (prop == NULL) { /* * Could not find label property, nand {}; node? * Check subnode, delete partitions there if any. */ return fdt_del_partitions(blob, off); } else { ret = fdt_del_subnodes(blob, parent_offset); if (ret < 0) { printf("Can't remove subnodes: %s\n", fdt_strerror(ret)); return ret; } } } return 0; } int fdt_node_set_part_info(void *blob, int parent_offset, struct mtd_device *dev) { struct list_head *pentry; struct part_info *part; struct reg_cell cell; int off, ndepth = 0; int part_num, ret; char buf[64]; ret = fdt_del_partitions(blob, parent_offset); if (ret < 0) return ret; /* * Check if it is nand {}; subnode, adjust * the offset in this case */ off = fdt_next_node(blob, parent_offset, &ndepth); if (off > 0 && ndepth == 1) parent_offset = off; part_num = 0; list_for_each_prev(pentry, &dev->parts) { int newoff; part = list_entry(pentry, struct part_info, link); debug("%2d: %-20s0x%08llx\t0x%08llx\t%d\n", part_num, part->name, part->size, part->offset, part->mask_flags); sprintf(buf, "partition@%llx", part->offset); add_sub: ret = fdt_add_subnode(blob, parent_offset, buf); if (ret == -FDT_ERR_NOSPACE) { ret = fdt_increase_size(blob, 512); if (!ret) goto add_sub; else goto err_size; } else if (ret < 0) { printf("Can't add partition node: %s\n", fdt_strerror(ret)); return ret; } newoff = ret; /* Check MTD_WRITEABLE_CMD flag */ if (part->mask_flags & 1) { add_ro: ret = fdt_setprop(blob, newoff, "read_only", NULL, 0); if (ret == -FDT_ERR_NOSPACE) { ret = fdt_increase_size(blob, 512); if (!ret) goto add_ro; else goto err_size; } else if (ret < 0) goto err_prop; } cell.r0 = cpu_to_fdt32(part->offset); cell.r1 = cpu_to_fdt32(part->size); add_reg: ret = fdt_setprop(blob, newoff, "reg", &cell, sizeof(cell)); if (ret == -FDT_ERR_NOSPACE) { ret = fdt_increase_size(blob, 512); if (!ret) goto add_reg; else goto err_size; } else if (ret < 0) goto err_prop; add_label: ret = fdt_setprop_string(blob, newoff, "label", part->name); if (ret == -FDT_ERR_NOSPACE) { ret = fdt_increase_size(blob, 512); if (!ret) goto add_label; else goto err_size; } else if (ret < 0) goto err_prop; part_num++; } return 0; err_size: printf("Can't increase blob size: %s\n", fdt_strerror(ret)); return ret; err_prop: printf("Can't add property: %s\n", fdt_strerror(ret)); return ret; } /* * Update partitions in nor/nand nodes using info from * mtdparts environment variable. The nodes to update are * specified by node_info structure which contains mtd device * type and compatible string: E. g. the board code in * ft_board_setup() could use: * * struct node_info nodes[] = { * { "fsl,mpc5121-nfc", MTD_DEV_TYPE_NAND, }, * { "cfi-flash", MTD_DEV_TYPE_NOR, }, * }; * * fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes)); */ void fdt_fixup_mtdparts(void *blob, void *node_info, int node_info_size) { struct node_info *ni = node_info; struct mtd_device *dev; char *parts; int i, idx; int noff; parts = getenv("mtdparts"); if (!parts) return; if (mtdparts_init() != 0) return; for (i = 0; i < node_info_size; i++) { idx = 0; noff = fdt_node_offset_by_compatible(blob, -1, ni[i].compat); while (noff != -FDT_ERR_NOTFOUND) { debug("%s: %s, mtd dev type %d\n", fdt_get_name(blob, noff, 0), ni[i].compat, ni[i].type); dev = device_find(ni[i].type, idx++); if (dev) { if (fdt_node_set_part_info(blob, noff, dev)) return; /* return on error */ } /* Jump to next flash node */ noff = fdt_node_offset_by_compatible(blob, noff, ni[i].compat); } } } #endif void fdt_del_node_and_alias(void *blob, const char *alias) { int off = fdt_path_offset(blob, alias); if (off < 0) return; fdt_del_node(blob, off); off = fdt_path_offset(blob, "/aliases"); fdt_delprop(blob, off, alias); } /* Helper to read a big number; size is in cells (not bytes) */ static inline u64 of_read_number(const fdt32_t *cell, int size) { u64 r = 0; while (size--) r = (r << 32) | fdt32_to_cpu(*(cell++)); return r; } #define PRu64 "%llx" /* Max address size we deal with */ #define OF_MAX_ADDR_CELLS 4 #define OF_BAD_ADDR ((u64)-1) #define OF_CHECK_COUNTS(na, ns) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS && \ (ns) > 0) /* Debug utility */ #ifdef DEBUG static void of_dump_addr(const char *s, const fdt32_t *addr, int na) { printf("%s", s); while(na--) printf(" %08x", *(addr++)); printf("\n"); } #else static void of_dump_addr(const char *s, const fdt32_t *addr, int na) { } #endif /* Callbacks for bus specific translators */ struct of_bus { const char *name; const char *addresses; void (*count_cells)(void *blob, int parentoffset, int *addrc, int *sizec); u64 (*map)(fdt32_t *addr, const fdt32_t *range, int na, int ns, int pna); int (*translate)(fdt32_t *addr, u64 offset, int na); }; /* Default translator (generic bus) */ static void of_bus_default_count_cells(void *blob, int parentoffset, int *addrc, int *sizec) { const fdt32_t *prop; if (addrc) { prop = fdt_getprop(blob, parentoffset, "#address-cells", NULL); if (prop) *addrc = be32_to_cpup(prop); else *addrc = 2; } if (sizec) { prop = fdt_getprop(blob, parentoffset, "#size-cells", NULL); if (prop) *sizec = be32_to_cpup(prop); else *sizec = 1; } } static u64 of_bus_default_map(fdt32_t *addr, const fdt32_t *range, int na, int ns, int pna) { u64 cp, s, da; cp = of_read_number(range, na); s = of_read_number(range + na + pna, ns); da = of_read_number(addr, na); debug("OF: default map, cp="PRu64", s="PRu64", da="PRu64"\n", cp, s, da); if (da < cp || da >= (cp + s)) return OF_BAD_ADDR; return da - cp; } static int of_bus_default_translate(fdt32_t *addr, u64 offset, int na) { u64 a = of_read_number(addr, na); memset(addr, 0, na * 4); a += offset; if (na > 1) addr[na - 2] = cpu_to_fdt32(a >> 32); addr[na - 1] = cpu_to_fdt32(a & 0xffffffffu); return 0; } /* Array of bus specific translators */ static struct of_bus of_busses[] = { /* Default */ { .name = "default", .addresses = "reg", .count_cells = of_bus_default_count_cells, .map = of_bus_default_map, .translate = of_bus_default_translate, }, }; static int of_translate_one(void * blob, int parent, struct of_bus *bus, struct of_bus *pbus, fdt32_t *addr, int na, int ns, int pna, const char *rprop) { const fdt32_t *ranges; int rlen; int rone; u64 offset = OF_BAD_ADDR; /* Normally, an absence of a "ranges" property means we are * crossing a non-translatable boundary, and thus the addresses * below the current not cannot be converted to CPU physical ones. * Unfortunately, while this is very clear in the spec, it's not * what Apple understood, and they do have things like /uni-n or * /ht nodes with no "ranges" property and a lot of perfectly * useable mapped devices below them. Thus we treat the absence of * "ranges" as equivalent to an empty "ranges" property which means * a 1:1 translation at that level. It's up to the caller not to try * to translate addresses that aren't supposed to be translated in * the first place. --BenH. */ ranges = fdt_getprop(blob, parent, rprop, &rlen); if (ranges == NULL || rlen == 0) { offset = of_read_number(addr, na); memset(addr, 0, pna * 4); debug("OF: no ranges, 1:1 translation\n"); goto finish; } debug("OF: walking ranges...\n"); /* Now walk through the ranges */ rlen /= 4; rone = na + pna + ns; for (; rlen >= rone; rlen -= rone, ranges += rone) { offset = bus->map(addr, ranges, na, ns, pna); if (offset != OF_BAD_ADDR) break; } if (offset == OF_BAD_ADDR) { debug("OF: not found !\n"); return 1; } memcpy(addr, ranges + na, 4 * pna); finish: of_dump_addr("OF: parent translation for:", addr, pna); debug("OF: with offset: "PRu64"\n", offset); /* Translate it into parent bus space */ return pbus->translate(addr, offset, pna); } /* * Translate an address from the device-tree into a CPU physical address, * this walks up the tree and applies the various bus mappings on the * way. * * Note: We consider that crossing any level with #size-cells == 0 to mean * that translation is impossible (that is we are not dealing with a value * that can be mapped to a cpu physical address). This is not really specified * that way, but this is traditionally the way IBM at least do things */ static u64 __of_translate_address(void *blob, int node_offset, const fdt32_t *in_addr, const char *rprop) { int parent; struct of_bus *bus, *pbus; fdt32_t addr[OF_MAX_ADDR_CELLS]; int na, ns, pna, pns; u64 result = OF_BAD_ADDR; debug("OF: ** translation for device %s **\n", fdt_get_name(blob, node_offset, NULL)); /* Get parent & match bus type */ parent = fdt_parent_offset(blob, node_offset); if (parent < 0) goto bail; bus = &of_busses[0]; /* Cound address cells & copy address locally */ bus->count_cells(blob, parent, &na, &ns); if (!OF_CHECK_COUNTS(na, ns)) { printf("%s: Bad cell count for %s\n", __FUNCTION__, fdt_get_name(blob, node_offset, NULL)); goto bail; } memcpy(addr, in_addr, na * 4); debug("OF: bus is %s (na=%d, ns=%d) on %s\n", bus->name, na, ns, fdt_get_name(blob, parent, NULL)); of_dump_addr("OF: translating address:", addr, na); /* Translate */ for (;;) { /* Switch to parent bus */ node_offset = parent; parent = fdt_parent_offset(blob, node_offset); /* If root, we have finished */ if (parent < 0) { debug("OF: reached root node\n"); result = of_read_number(addr, na); break; } /* Get new parent bus and counts */ pbus = &of_busses[0]; pbus->count_cells(blob, parent, &pna, &pns); if (!OF_CHECK_COUNTS(pna, pns)) { printf("%s: Bad cell count for %s\n", __FUNCTION__, fdt_get_name(blob, node_offset, NULL)); break; } debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n", pbus->name, pna, pns, fdt_get_name(blob, parent, NULL)); /* Apply bus translation */ if (of_translate_one(blob, node_offset, bus, pbus, addr, na, ns, pna, rprop)) break; /* Complete the move up one level */ na = pna; ns = pns; bus = pbus; of_dump_addr("OF: one level translation:", addr, na); } bail: return result; } u64 fdt_translate_address(void *blob, int node_offset, const fdt32_t *in_addr) { return __of_translate_address(blob, node_offset, in_addr, "ranges"); } /** * fdt_node_offset_by_compat_reg: Find a node that matches compatiable and * who's reg property matches a physical cpu address * * @blob: ptr to device tree * @compat: compatiable string to match * @compat_off: property name * */ int fdt_node_offset_by_compat_reg(void *blob, const char *compat, phys_addr_t compat_off) { int len, off = fdt_node_offset_by_compatible(blob, -1, compat); while (off != -FDT_ERR_NOTFOUND) { const fdt32_t *reg = fdt_getprop(blob, off, "reg", &len); if (reg) { if (compat_off == fdt_translate_address(blob, off, reg)) return off; } off = fdt_node_offset_by_compatible(blob, off, compat); } return -FDT_ERR_NOTFOUND; } /** * fdt_alloc_phandle: Return next free phandle value * * @blob: ptr to device tree */ int fdt_alloc_phandle(void *blob) { int offset, phandle = 0; for (offset = fdt_next_node(blob, -1, NULL); offset >= 0; offset = fdt_next_node(blob, offset, NULL)) { phandle = max(phandle, fdt_get_phandle(blob, offset)); } return phandle + 1; } /* * fdt_set_phandle: Create a phandle property for the given node * * @fdt: ptr to device tree * @nodeoffset: node to update * @phandle: phandle value to set (must be unique) */ int fdt_set_phandle(void *fdt, int nodeoffset, uint32_t phandle) { int ret; #ifdef DEBUG int off = fdt_node_offset_by_phandle(fdt, phandle); if ((off >= 0) && (off != nodeoffset)) { char buf[64]; fdt_get_path(fdt, nodeoffset, buf, sizeof(buf)); printf("Trying to update node %s with phandle %u ", buf, phandle); fdt_get_path(fdt, off, buf, sizeof(buf)); printf("that already exists in node %s.\n", buf); return -FDT_ERR_BADPHANDLE; } #endif ret = fdt_setprop_cell(fdt, nodeoffset, "phandle", phandle); if (ret < 0) return ret; /* * For now, also set the deprecated "linux,phandle" property, so that we * don't break older kernels. */ ret = fdt_setprop_cell(fdt, nodeoffset, "linux,phandle", phandle); return ret; } /* * fdt_create_phandle: Create a phandle property for the given node * * @fdt: ptr to device tree * @nodeoffset: node to update */ unsigned int fdt_create_phandle(void *fdt, int nodeoffset) { /* see if there is a phandle already */ int phandle = fdt_get_phandle(fdt, nodeoffset); /* if we got 0, means no phandle so create one */ if (phandle == 0) { int ret; phandle = fdt_alloc_phandle(fdt); ret = fdt_set_phandle(fdt, nodeoffset, phandle); if (ret < 0) { printf("Can't set phandle %u: %s\n", phandle, fdt_strerror(ret)); return 0; } } return phandle; } /* * fdt_set_node_status: Set status for the given node * * @fdt: ptr to device tree * @nodeoffset: node to update * @status: FDT_STATUS_OKAY, FDT_STATUS_DISABLED, * FDT_STATUS_FAIL, FDT_STATUS_FAIL_ERROR_CODE * @error_code: optional, only used if status is FDT_STATUS_FAIL_ERROR_CODE */ int fdt_set_node_status(void *fdt, int nodeoffset, enum fdt_status status, unsigned int error_code) { char buf[16]; int ret = 0; if (nodeoffset < 0) return nodeoffset; switch (status) { case FDT_STATUS_OKAY: ret = fdt_setprop_string(fdt, nodeoffset, "status", "okay"); break; case FDT_STATUS_DISABLED: ret = fdt_setprop_string(fdt, nodeoffset, "status", "disabled"); break; case FDT_STATUS_FAIL: ret = fdt_setprop_string(fdt, nodeoffset, "status", "fail"); break; case FDT_STATUS_FAIL_ERROR_CODE: sprintf(buf, "fail-%d", error_code); ret = fdt_setprop_string(fdt, nodeoffset, "status", buf); break; default: printf("Invalid fdt status: %x\n", status); ret = -1; break; } return ret; } /* * fdt_set_status_by_alias: Set status for the given node given an alias * * @fdt: ptr to device tree * @alias: alias of node to update * @status: FDT_STATUS_OKAY, FDT_STATUS_DISABLED, * FDT_STATUS_FAIL, FDT_STATUS_FAIL_ERROR_CODE * @error_code: optional, only used if status is FDT_STATUS_FAIL_ERROR_CODE */ int fdt_set_status_by_alias(void *fdt, const char* alias, enum fdt_status status, unsigned int error_code) { int offset = fdt_path_offset(fdt, alias); return fdt_set_node_status(fdt, offset, status, error_code); } #if defined(CONFIG_VIDEO) || defined(CONFIG_LCD) int fdt_add_edid(void *blob, const char *compat, unsigned char *edid_buf) { int noff; int ret; noff = fdt_node_offset_by_compatible(blob, -1, compat); if (noff != -FDT_ERR_NOTFOUND) { debug("%s: %s\n", fdt_get_name(blob, noff, 0), compat); add_edid: ret = fdt_setprop(blob, noff, "edid", edid_buf, 128); if (ret == -FDT_ERR_NOSPACE) { ret = fdt_increase_size(blob, 512); if (!ret) goto add_edid; else goto err_size; } else if (ret < 0) { printf("Can't add property: %s\n", fdt_strerror(ret)); return ret; } } return 0; err_size: printf("Can't increase blob size: %s\n", fdt_strerror(ret)); return ret; } #endif /* * Verify the physical address of device tree node for a given alias * * This function locates the device tree node of a given alias, and then * verifies that the physical address of that device matches the given * parameter. It displays a message if there is a mismatch. * * Returns 1 on success, 0 on failure */ int fdt_verify_alias_address(void *fdt, int anode, const char *alias, u64 addr) { const char *path; const fdt32_t *reg; int node, len; u64 dt_addr; path = fdt_getprop(fdt, anode, alias, NULL); if (!path) { /* If there's no such alias, then it's not a failure */ return 1; } node = fdt_path_offset(fdt, path); if (node < 0) { printf("Warning: device tree alias '%s' points to invalid " "node %s.\n", alias, path); return 0; } reg = fdt_getprop(fdt, node, "reg", &len); if (!reg) { printf("Warning: device tree node '%s' has no address.\n", path); return 0; } dt_addr = fdt_translate_address(fdt, node, reg); if (addr != dt_addr) { printf("Warning: U-Boot configured device %s at address %llx,\n" " but the device tree has it address %llx.\n", alias, addr, dt_addr); return 0; } return 1; } /* * Returns the base address of an SOC or PCI node */ u64 fdt_get_base_address(void *fdt, int node) { int size; u32 naddr; const fdt32_t *prop; prop = fdt_getprop(fdt, node, "#address-cells", &size); if (prop && size == 4) naddr = be32_to_cpup(prop); else naddr = 2; prop = fdt_getprop(fdt, node, "ranges", &size); return prop ? fdt_translate_address(fdt, node, prop + naddr) : 0; } /* * Read a property of size . Currently only supports 1 or 2 cells. */ static int fdt_read_prop(const fdt32_t *prop, int prop_len, int cell_off, uint64_t *val, int cells) { const fdt32_t *prop32 = &prop[cell_off]; const fdt64_t *prop64 = (const fdt64_t *)&prop[cell_off]; if ((cell_off + cells) > prop_len) return -FDT_ERR_NOSPACE; switch (cells) { case 1: *val = fdt32_to_cpu(*prop32); break; case 2: *val = fdt64_to_cpu(*prop64); break; default: return -FDT_ERR_NOSPACE; } return 0; } /** * fdt_read_range - Read a node's n'th range property * * @fdt: ptr to device tree * @node: offset of node * @n: range index * @child_addr: pointer to storage for the "child address" field * @addr: pointer to storage for the CPU view translated physical start * @len: pointer to storage for the range length * * Convenience function that reads and interprets a specific range out of * a number of the "ranges" property array. */ int fdt_read_range(void *fdt, int node, int n, uint64_t *child_addr, uint64_t *addr, uint64_t *len) { int pnode = fdt_parent_offset(fdt, node); const fdt32_t *ranges; int pacells; int acells; int scells; int ranges_len; int cell = 0; int r = 0; /* * The "ranges" property is an array of * { } * * All 3 elements can span a diffent number of cells. Fetch their size. */ pacells = fdt_getprop_u32_default_node(fdt, pnode, 0, "#address-cells", 1); acells = fdt_getprop_u32_default_node(fdt, node, 0, "#address-cells", 1); scells = fdt_getprop_u32_default_node(fdt, node, 0, "#size-cells", 1); /* Now try to get the ranges property */ ranges = fdt_getprop(fdt, node, "ranges", &ranges_len); if (!ranges) return -FDT_ERR_NOTFOUND; ranges_len /= sizeof(uint32_t); /* Jump to the n'th entry */ cell = n * (pacells + acells + scells); /* Read */ if (child_addr) { r = fdt_read_prop(ranges, ranges_len, cell, child_addr, acells); if (r) return r; } cell += acells; /* Read */ if (addr) *addr = fdt_translate_address(fdt, node, ranges + cell); cell += pacells; /* Read */ if (len) { r = fdt_read_prop(ranges, ranges_len, cell, len, scells); if (r) return r; } return 0; }