// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * (C) Copyright 2016-2017 Rockchip Inc. * * Adapted from coreboot. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PRESET_SGRF_HOLD(n) ((0x1 << (6 + 16)) | ((n) << 6)) #define PRESET_GPIO0_HOLD(n) ((0x1 << (7 + 16)) | ((n) << 7)) #define PRESET_GPIO1_HOLD(n) ((0x1 << (8 + 16)) | ((n) << 8)) #define PHY_DRV_ODT_HI_Z 0x0 #define PHY_DRV_ODT_240 0x1 #define PHY_DRV_ODT_120 0x8 #define PHY_DRV_ODT_80 0x9 #define PHY_DRV_ODT_60 0xc #define PHY_DRV_ODT_48 0xd #define PHY_DRV_ODT_40 0xe #define PHY_DRV_ODT_34_3 0xf #define PHY_BOOSTP_EN 0x1 #define PHY_BOOSTN_EN 0x1 #define PHY_SLEWP_EN 0x1 #define PHY_SLEWN_EN 0x1 #define PHY_RX_CM_INPUT 0x1 #define CS0_MR22_VAL 0 #define CS1_MR22_VAL 3 /* LPDDR3 DRAM DS */ #define LPDDR3_DS_34 0x1 #define LPDDR3_DS_40 0x2 #define LPDDR3_DS_48 0x3 #define CRU_SFTRST_DDR_CTRL(ch, n) ((0x1 << (8 + 16 + (ch) * 4)) | \ ((n) << (8 + (ch) * 4))) #define CRU_SFTRST_DDR_PHY(ch, n) ((0x1 << (9 + 16 + (ch) * 4)) | \ ((n) << (9 + (ch) * 4))) struct chan_info { struct rk3399_ddr_pctl_regs *pctl; struct rk3399_ddr_pi_regs *pi; struct rk3399_ddr_publ_regs *publ; struct msch_regs *msch; }; struct dram_info { #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) u32 pwrup_srefresh_exit[2]; struct chan_info chan[2]; struct clk ddr_clk; struct rockchip_cru *cru; struct rk3399_grf_regs *grf; struct rk3399_pmu_regs *pmu; struct rk3399_pmucru *pmucru; struct rk3399_pmusgrf_regs *pmusgrf; struct rk3399_ddr_cic_regs *cic; const struct sdram_rk3399_ops *ops; #endif struct ram_info info; struct rk3399_pmugrf_regs *pmugrf; }; struct sdram_rk3399_ops { int (*data_training_first)(struct dram_info *dram, u32 channel, u8 rank, struct rk3399_sdram_params *sdram); int (*set_rate_index)(struct dram_info *dram, struct rk3399_sdram_params *params); void (*modify_param)(const struct chan_info *chan, struct rk3399_sdram_params *params); struct rk3399_sdram_params * (*get_phy_index_params)(u32 phy_fn, struct rk3399_sdram_params *params); }; #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) struct rockchip_dmc_plat { #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_rockchip_rk3399_dmc dtplat; #else struct rk3399_sdram_params sdram_params; #endif struct regmap *map; }; struct io_setting { u32 mhz; u32 mr5; /* dram side */ u32 dq_odt; u32 ca_odt; u32 pdds; u32 dq_vref; u32 ca_vref; /* phy side */ u32 rd_odt; u32 wr_dq_drv; u32 wr_ca_drv; u32 wr_ckcs_drv; u32 rd_odt_en; u32 rd_vref; } lpddr4_io_setting[] = { { 50 * MHz, 0, /* dram side */ 0, /* dq_odt; */ 0, /* ca_odt; */ 6, /* pdds; */ 0x72, /* dq_vref; */ 0x72, /* ca_vref; */ /* phy side */ PHY_DRV_ODT_HI_Z, /* rd_odt; */ PHY_DRV_ODT_40, /* wr_dq_drv; */ PHY_DRV_ODT_40, /* wr_ca_drv; */ PHY_DRV_ODT_40, /* wr_ckcs_drv; */ 0, /* rd_odt_en;*/ 41, /* rd_vref; (unit %, range 3.3% - 48.7%) */ }, { 600 * MHz, 0, /* dram side */ 1, /* dq_odt; */ 0, /* ca_odt; */ 6, /* pdds; */ 0x72, /* dq_vref; */ 0x72, /* ca_vref; */ /* phy side */ PHY_DRV_ODT_HI_Z, /* rd_odt; */ PHY_DRV_ODT_48, /* wr_dq_drv; */ PHY_DRV_ODT_40, /* wr_ca_drv; */ PHY_DRV_ODT_40, /* wr_ckcs_drv; */ 0, /* rd_odt_en; */ 32, /* rd_vref; (unit %, range 3.3% - 48.7%) */ }, { 933 * MHz, 0, /* dram side */ 1, /* dq_odt; */ 0, /* ca_odt; */ 3, /* pdds; */ 0x72, /* dq_vref; */ 0x72, /* ca_vref; */ /* phy side */ PHY_DRV_ODT_80, /* rd_odt; */ PHY_DRV_ODT_40, /* wr_dq_drv; */ PHY_DRV_ODT_40, /* wr_ca_drv; */ PHY_DRV_ODT_40, /* wr_ckcs_drv; */ 1, /* rd_odt_en; */ 20, /* rd_vref; (unit %, range 3.3% - 48.7%) */ }, { 1066 * MHz, 0, /* dram side */ 6, /* dq_odt; */ 0, /* ca_odt; */ 3, /* pdds; */ 0x10, /* dq_vref; */ 0x72, /* ca_vref; */ /* phy side */ PHY_DRV_ODT_80, /* rd_odt; */ PHY_DRV_ODT_60, /* wr_dq_drv; */ PHY_DRV_ODT_40, /* wr_ca_drv; */ PHY_DRV_ODT_40, /* wr_ckcs_drv; */ 1, /* rd_odt_en; */ 20, /* rd_vref; (unit %, range 3.3% - 48.7%) */ }, }; static struct io_setting * lpddr4_get_io_settings(const struct rk3399_sdram_params *params, u32 mr5) { struct io_setting *io = NULL; u32 n; for (n = 0; n < ARRAY_SIZE(lpddr4_io_setting); n++) { io = &lpddr4_io_setting[n]; if (io->mr5 != 0) { if (io->mhz >= params->base.ddr_freq && io->mr5 == mr5) break; } else { if (io->mhz >= params->base.ddr_freq) break; } } return io; } static void *get_denali_ctl(const struct chan_info *chan, struct rk3399_sdram_params *params, bool reg) { return reg ? &chan->pctl->denali_ctl : ¶ms->pctl_regs.denali_ctl; } static void *get_denali_phy(const struct chan_info *chan, struct rk3399_sdram_params *params, bool reg) { return reg ? &chan->publ->denali_phy : ¶ms->phy_regs.denali_phy; } static void *get_ddrc0_con(struct dram_info *dram, u8 channel) { return (channel == 0) ? &dram->grf->ddrc0_con0 : &dram->grf->ddrc1_con0; } static void rkclk_ddr_reset(struct rockchip_cru *cru, u32 channel, u32 ctl, u32 phy) { channel &= 0x1; ctl &= 0x1; phy &= 0x1; writel(CRU_SFTRST_DDR_CTRL(channel, ctl) | CRU_SFTRST_DDR_PHY(channel, phy), &cru->softrst_con[4]); } static void phy_pctrl_reset(struct rockchip_cru *cru, u32 channel) { rkclk_ddr_reset(cru, channel, 1, 1); udelay(10); rkclk_ddr_reset(cru, channel, 1, 0); udelay(10); rkclk_ddr_reset(cru, channel, 0, 0); udelay(10); } static void phy_dll_bypass_set(struct rk3399_ddr_publ_regs *ddr_publ_regs, u32 freq) { u32 *denali_phy = ddr_publ_regs->denali_phy; /* From IP spec, only freq small than 125 can enter dll bypass mode */ if (freq <= 125) { /* phy_sw_master_mode_X PHY_86/214/342/470 4bits offset_8 */ setbits_le32(&denali_phy[86], (0x3 << 2) << 8); setbits_le32(&denali_phy[214], (0x3 << 2) << 8); setbits_le32(&denali_phy[342], (0x3 << 2) << 8); setbits_le32(&denali_phy[470], (0x3 << 2) << 8); /* phy_adrctl_sw_master_mode PHY_547/675/803 4bits offset_16 */ setbits_le32(&denali_phy[547], (0x3 << 2) << 16); setbits_le32(&denali_phy[675], (0x3 << 2) << 16); setbits_le32(&denali_phy[803], (0x3 << 2) << 16); } else { /* phy_sw_master_mode_X PHY_86/214/342/470 4bits offset_8 */ clrbits_le32(&denali_phy[86], (0x3 << 2) << 8); clrbits_le32(&denali_phy[214], (0x3 << 2) << 8); clrbits_le32(&denali_phy[342], (0x3 << 2) << 8); clrbits_le32(&denali_phy[470], (0x3 << 2) << 8); /* phy_adrctl_sw_master_mode PHY_547/675/803 4bits offset_16 */ clrbits_le32(&denali_phy[547], (0x3 << 2) << 16); clrbits_le32(&denali_phy[675], (0x3 << 2) << 16); clrbits_le32(&denali_phy[803], (0x3 << 2) << 16); } } static void set_memory_map(const struct chan_info *chan, u32 channel, const struct rk3399_sdram_params *params) { const struct rk3399_sdram_channel *sdram_ch = ¶ms->ch[channel]; u32 *denali_ctl = chan->pctl->denali_ctl; u32 *denali_pi = chan->pi->denali_pi; u32 cs_map; u32 reduc; u32 row; /* Get row number from ddrconfig setting */ if (sdram_ch->cap_info.ddrconfig < 2 || sdram_ch->cap_info.ddrconfig == 4) row = 16; else if (sdram_ch->cap_info.ddrconfig == 3 || sdram_ch->cap_info.ddrconfig == 5) row = 14; else row = 15; cs_map = (sdram_ch->cap_info.rank > 1) ? 3 : 1; reduc = (sdram_ch->cap_info.bw == 2) ? 0 : 1; /* Set the dram configuration to ctrl */ clrsetbits_le32(&denali_ctl[191], 0xF, (12 - sdram_ch->cap_info.col)); clrsetbits_le32(&denali_ctl[190], (0x3 << 16) | (0x7 << 24), ((3 - sdram_ch->cap_info.bk) << 16) | ((16 - row) << 24)); clrsetbits_le32(&denali_ctl[196], 0x3 | (1 << 16), cs_map | (reduc << 16)); /* PI_199 PI_COL_DIFF:RW:0:4 */ clrsetbits_le32(&denali_pi[199], 0xF, (12 - sdram_ch->cap_info.col)); /* PI_155 PI_ROW_DIFF:RW:24:3 PI_BANK_DIFF:RW:16:2 */ clrsetbits_le32(&denali_pi[155], (0x3 << 16) | (0x7 << 24), ((3 - sdram_ch->cap_info.bk) << 16) | ((16 - row) << 24)); if (params->base.dramtype == LPDDR4) { if (cs_map == 1) cs_map = 0x5; else if (cs_map == 2) cs_map = 0xa; else cs_map = 0xF; } /* PI_41 PI_CS_MAP:RW:24:4 */ clrsetbits_le32(&denali_pi[41], 0xf << 24, cs_map << 24); if (sdram_ch->cap_info.rank == 1 && params->base.dramtype == DDR3) writel(0x2EC7FFFF, &denali_pi[34]); } static int phy_io_config(u32 *denali_phy, u32 *denali_ctl, const struct rk3399_sdram_params *params, u32 mr5) { u32 vref_mode_dq, vref_value_dq, vref_mode_ac, vref_value_ac; u32 mode_sel; u32 speed; u32 reg_value; u32 ds_value, odt_value; /* vref setting & mode setting */ if (params->base.dramtype == LPDDR4) { struct io_setting *io = lpddr4_get_io_settings(params, mr5); u32 rd_vref = io->rd_vref * 1000; if (rd_vref < 36700) { /* MODE_LV[2:0] = LPDDR4 (Range 2)*/ vref_mode_dq = 0x7; /* MODE[2:0]= LPDDR4 Range 2(0.4*VDDQ) */ mode_sel = 0x5; vref_value_dq = (rd_vref - 3300) / 521; } else { /* MODE_LV[2:0] = LPDDR4 (Range 1)*/ vref_mode_dq = 0x6; /* MODE[2:0]= LPDDR4 Range 1(0.33*VDDQ) */ mode_sel = 0x4; vref_value_dq = (rd_vref - 15300) / 521; } vref_mode_ac = 0x6; /* VDDQ/3/2=16.8% */ vref_value_ac = 0x3; } else if (params->base.dramtype == LPDDR3) { if (params->base.odt == 1) { vref_mode_dq = 0x5; /* LPDDR3 ODT */ ds_value = readl(&denali_ctl[138]) & 0xf; odt_value = (readl(&denali_phy[6]) >> 4) & 0xf; if (ds_value == LPDDR3_DS_48) { switch (odt_value) { case PHY_DRV_ODT_240: vref_value_dq = 0x1B; break; case PHY_DRV_ODT_120: vref_value_dq = 0x26; break; case PHY_DRV_ODT_60: vref_value_dq = 0x36; break; default: debug("Invalid ODT value.\n"); return -EINVAL; } } else if (ds_value == LPDDR3_DS_40) { switch (odt_value) { case PHY_DRV_ODT_240: vref_value_dq = 0x19; break; case PHY_DRV_ODT_120: vref_value_dq = 0x23; break; case PHY_DRV_ODT_60: vref_value_dq = 0x31; break; default: debug("Invalid ODT value.\n"); return -EINVAL; } } else if (ds_value == LPDDR3_DS_34) { switch (odt_value) { case PHY_DRV_ODT_240: vref_value_dq = 0x17; break; case PHY_DRV_ODT_120: vref_value_dq = 0x20; break; case PHY_DRV_ODT_60: vref_value_dq = 0x2e; break; default: debug("Invalid ODT value.\n"); return -EINVAL; } } else { debug("Invalid DRV value.\n"); return -EINVAL; } } else { vref_mode_dq = 0x2; /* LPDDR3 */ vref_value_dq = 0x1f; } vref_mode_ac = 0x2; vref_value_ac = 0x1f; mode_sel = 0x0; } else if (params->base.dramtype == DDR3) { /* DDR3L */ vref_mode_dq = 0x1; vref_value_dq = 0x1f; vref_mode_ac = 0x1; vref_value_ac = 0x1f; mode_sel = 0x1; } else { debug("Unknown DRAM type.\n"); return -EINVAL; } reg_value = (vref_mode_dq << 9) | (0x1 << 8) | vref_value_dq; /* PHY_913 PHY_PAD_VREF_CTRL_DQ_0 12bits offset_8 */ clrsetbits_le32(&denali_phy[913], 0xfff << 8, reg_value << 8); /* PHY_914 PHY_PAD_VREF_CTRL_DQ_1 12bits offset_0 */ clrsetbits_le32(&denali_phy[914], 0xfff, reg_value); /* PHY_914 PHY_PAD_VREF_CTRL_DQ_2 12bits offset_16 */ clrsetbits_le32(&denali_phy[914], 0xfff << 16, reg_value << 16); /* PHY_915 PHY_PAD_VREF_CTRL_DQ_3 12bits offset_0 */ clrsetbits_le32(&denali_phy[915], 0xfff, reg_value); reg_value = (vref_mode_ac << 9) | (0x1 << 8) | vref_value_ac; /* PHY_915 PHY_PAD_VREF_CTRL_AC 12bits offset_16 */ clrsetbits_le32(&denali_phy[915], 0xfff << 16, reg_value << 16); /* PHY_924 PHY_PAD_FDBK_DRIVE */ clrsetbits_le32(&denali_phy[924], 0x7 << 15, mode_sel << 15); /* PHY_926 PHY_PAD_DATA_DRIVE */ clrsetbits_le32(&denali_phy[926], 0x7 << 6, mode_sel << 6); /* PHY_927 PHY_PAD_DQS_DRIVE */ clrsetbits_le32(&denali_phy[927], 0x7 << 6, mode_sel << 6); /* PHY_928 PHY_PAD_ADDR_DRIVE */ clrsetbits_le32(&denali_phy[928], 0x7 << 14, mode_sel << 14); /* PHY_929 PHY_PAD_CLK_DRIVE */ clrsetbits_le32(&denali_phy[929], 0x7 << 14, mode_sel << 14); /* PHY_935 PHY_PAD_CKE_DRIVE */ clrsetbits_le32(&denali_phy[935], 0x7 << 14, mode_sel << 14); /* PHY_937 PHY_PAD_RST_DRIVE */ clrsetbits_le32(&denali_phy[937], 0x7 << 14, mode_sel << 14); /* PHY_939 PHY_PAD_CS_DRIVE */ clrsetbits_le32(&denali_phy[939], 0x7 << 14, mode_sel << 14); if (params->base.dramtype == LPDDR4) { /* BOOSTP_EN & BOOSTN_EN */ reg_value = ((PHY_BOOSTP_EN << 4) | PHY_BOOSTN_EN); /* PHY_925 PHY_PAD_FDBK_DRIVE2 */ clrsetbits_le32(&denali_phy[925], 0xff << 8, reg_value << 8); /* PHY_926 PHY_PAD_DATA_DRIVE */ clrsetbits_le32(&denali_phy[926], 0xff << 12, reg_value << 12); /* PHY_927 PHY_PAD_DQS_DRIVE */ clrsetbits_le32(&denali_phy[927], 0xff << 14, reg_value << 14); /* PHY_928 PHY_PAD_ADDR_DRIVE */ clrsetbits_le32(&denali_phy[928], 0xff << 20, reg_value << 20); /* PHY_929 PHY_PAD_CLK_DRIVE */ clrsetbits_le32(&denali_phy[929], 0xff << 22, reg_value << 22); /* PHY_935 PHY_PAD_CKE_DRIVE */ clrsetbits_le32(&denali_phy[935], 0xff << 20, reg_value << 20); /* PHY_937 PHY_PAD_RST_DRIVE */ clrsetbits_le32(&denali_phy[937], 0xff << 20, reg_value << 20); /* PHY_939 PHY_PAD_CS_DRIVE */ clrsetbits_le32(&denali_phy[939], 0xff << 20, reg_value << 20); /* SLEWP_EN & SLEWN_EN */ reg_value = ((PHY_SLEWP_EN << 3) | PHY_SLEWN_EN); /* PHY_924 PHY_PAD_FDBK_DRIVE */ clrsetbits_le32(&denali_phy[924], 0x3f << 8, reg_value << 8); /* PHY_926 PHY_PAD_DATA_DRIVE */ clrsetbits_le32(&denali_phy[926], 0x3f, reg_value); /* PHY_927 PHY_PAD_DQS_DRIVE */ clrsetbits_le32(&denali_phy[927], 0x3f, reg_value); /* PHY_928 PHY_PAD_ADDR_DRIVE */ clrsetbits_le32(&denali_phy[928], 0x3f << 8, reg_value << 8); /* PHY_929 PHY_PAD_CLK_DRIVE */ clrsetbits_le32(&denali_phy[929], 0x3f << 8, reg_value << 8); /* PHY_935 PHY_PAD_CKE_DRIVE */ clrsetbits_le32(&denali_phy[935], 0x3f << 8, reg_value << 8); /* PHY_937 PHY_PAD_RST_DRIVE */ clrsetbits_le32(&denali_phy[937], 0x3f << 8, reg_value << 8); /* PHY_939 PHY_PAD_CS_DRIVE */ clrsetbits_le32(&denali_phy[939], 0x3f << 8, reg_value << 8); } /* speed setting */ speed = 0x2; /* PHY_924 PHY_PAD_FDBK_DRIVE */ clrsetbits_le32(&denali_phy[924], 0x3 << 21, speed << 21); /* PHY_926 PHY_PAD_DATA_DRIVE */ clrsetbits_le32(&denali_phy[926], 0x3 << 9, speed << 9); /* PHY_927 PHY_PAD_DQS_DRIVE */ clrsetbits_le32(&denali_phy[927], 0x3 << 9, speed << 9); /* PHY_928 PHY_PAD_ADDR_DRIVE */ clrsetbits_le32(&denali_phy[928], 0x3 << 17, speed << 17); /* PHY_929 PHY_PAD_CLK_DRIVE */ clrsetbits_le32(&denali_phy[929], 0x3 << 17, speed << 17); /* PHY_935 PHY_PAD_CKE_DRIVE */ clrsetbits_le32(&denali_phy[935], 0x3 << 17, speed << 17); /* PHY_937 PHY_PAD_RST_DRIVE */ clrsetbits_le32(&denali_phy[937], 0x3 << 17, speed << 17); /* PHY_939 PHY_PAD_CS_DRIVE */ clrsetbits_le32(&denali_phy[939], 0x3 << 17, speed << 17); if (params->base.dramtype == LPDDR4) { /* RX_CM_INPUT */ reg_value = PHY_RX_CM_INPUT; /* PHY_924 PHY_PAD_FDBK_DRIVE */ clrsetbits_le32(&denali_phy[924], 0x1 << 14, reg_value << 14); /* PHY_926 PHY_PAD_DATA_DRIVE */ clrsetbits_le32(&denali_phy[926], 0x1 << 11, reg_value << 11); /* PHY_927 PHY_PAD_DQS_DRIVE */ clrsetbits_le32(&denali_phy[927], 0x1 << 13, reg_value << 13); /* PHY_928 PHY_PAD_ADDR_DRIVE */ clrsetbits_le32(&denali_phy[928], 0x1 << 19, reg_value << 19); /* PHY_929 PHY_PAD_CLK_DRIVE */ clrsetbits_le32(&denali_phy[929], 0x1 << 21, reg_value << 21); /* PHY_935 PHY_PAD_CKE_DRIVE */ clrsetbits_le32(&denali_phy[935], 0x1 << 19, reg_value << 19); /* PHY_937 PHY_PAD_RST_DRIVE */ clrsetbits_le32(&denali_phy[937], 0x1 << 19, reg_value << 19); /* PHY_939 PHY_PAD_CS_DRIVE */ clrsetbits_le32(&denali_phy[939], 0x1 << 19, reg_value << 19); } return 0; } static void set_ds_odt(const struct chan_info *chan, struct rk3399_sdram_params *params, bool ctl_phy_reg, u32 mr5) { u32 *denali_phy = get_denali_phy(chan, params, ctl_phy_reg); u32 *denali_ctl = get_denali_ctl(chan, params, ctl_phy_reg); u32 tsel_idle_en, tsel_wr_en, tsel_rd_en; u32 tsel_idle_select_p, tsel_rd_select_p; u32 tsel_idle_select_n, tsel_rd_select_n; u32 tsel_wr_select_dq_p, tsel_wr_select_ca_p; u32 tsel_wr_select_dq_n, tsel_wr_select_ca_n; u32 tsel_ckcs_select_p, tsel_ckcs_select_n; struct io_setting *io = NULL; u32 soc_odt = 0; u32 reg_value; if (params->base.dramtype == LPDDR4) { io = lpddr4_get_io_settings(params, mr5); tsel_rd_select_p = PHY_DRV_ODT_HI_Z; tsel_rd_select_n = io->rd_odt; tsel_idle_select_p = PHY_DRV_ODT_HI_Z; tsel_idle_select_n = PHY_DRV_ODT_HI_Z; tsel_wr_select_dq_p = io->wr_dq_drv; tsel_wr_select_dq_n = PHY_DRV_ODT_34_3; tsel_wr_select_ca_p = io->wr_ca_drv; tsel_wr_select_ca_n = PHY_DRV_ODT_34_3; tsel_ckcs_select_p = io->wr_ckcs_drv; tsel_ckcs_select_n = PHY_DRV_ODT_34_3; switch (tsel_rd_select_n) { case PHY_DRV_ODT_240: soc_odt = 1; break; case PHY_DRV_ODT_120: soc_odt = 2; break; case PHY_DRV_ODT_80: soc_odt = 3; break; case PHY_DRV_ODT_60: soc_odt = 4; break; case PHY_DRV_ODT_48: soc_odt = 5; break; case PHY_DRV_ODT_40: soc_odt = 6; break; case PHY_DRV_ODT_34_3: soc_odt = 6; printf("%s: Unable to support LPDDR4 MR22 Soc ODT\n", __func__); break; case PHY_DRV_ODT_HI_Z: default: soc_odt = 0; break; } } else if (params->base.dramtype == LPDDR3) { tsel_rd_select_p = PHY_DRV_ODT_240; tsel_rd_select_n = PHY_DRV_ODT_HI_Z; tsel_idle_select_p = PHY_DRV_ODT_240; tsel_idle_select_n = PHY_DRV_ODT_HI_Z; tsel_wr_select_dq_p = PHY_DRV_ODT_34_3; tsel_wr_select_dq_n = PHY_DRV_ODT_34_3; tsel_wr_select_ca_p = PHY_DRV_ODT_34_3; tsel_wr_select_ca_n = PHY_DRV_ODT_34_3; tsel_ckcs_select_p = PHY_DRV_ODT_34_3; tsel_ckcs_select_n = PHY_DRV_ODT_34_3; } else { tsel_rd_select_p = PHY_DRV_ODT_240; tsel_rd_select_n = PHY_DRV_ODT_240; tsel_idle_select_p = PHY_DRV_ODT_240; tsel_idle_select_n = PHY_DRV_ODT_240; tsel_wr_select_dq_p = PHY_DRV_ODT_34_3; tsel_wr_select_dq_n = PHY_DRV_ODT_34_3; tsel_wr_select_ca_p = PHY_DRV_ODT_34_3; tsel_wr_select_ca_n = PHY_DRV_ODT_34_3; tsel_ckcs_select_p = PHY_DRV_ODT_34_3; tsel_ckcs_select_n = PHY_DRV_ODT_34_3; } if (params->base.odt == 1) { tsel_rd_en = 1; if (params->base.dramtype == LPDDR4) tsel_rd_en = io->rd_odt_en; } else { tsel_rd_en = 0; } tsel_wr_en = 0; tsel_idle_en = 0; /* F0_0 */ clrsetbits_le32(&denali_ctl[145], 0xFF << 16, (soc_odt | (CS0_MR22_VAL << 3)) << 16); /* F2_0, F1_0 */ clrsetbits_le32(&denali_ctl[146], 0xFF00FF, ((soc_odt | (CS0_MR22_VAL << 3)) << 16) | (soc_odt | (CS0_MR22_VAL << 3))); /* F0_1 */ clrsetbits_le32(&denali_ctl[159], 0xFF << 16, (soc_odt | (CS1_MR22_VAL << 3)) << 16); /* F2_1, F1_1 */ clrsetbits_le32(&denali_ctl[160], 0xFF00FF, ((soc_odt | (CS1_MR22_VAL << 3)) << 16) | (soc_odt | (CS1_MR22_VAL << 3))); /* * phy_dq_tsel_select_X 24bits DENALI_PHY_6/134/262/390 offset_0 * sets termination values for read/idle cycles and drive strength * for write cycles for DQ/DM */ reg_value = tsel_rd_select_n | (tsel_rd_select_p << 0x4) | (tsel_wr_select_dq_n << 8) | (tsel_wr_select_dq_p << 12) | (tsel_idle_select_n << 16) | (tsel_idle_select_p << 20); clrsetbits_le32(&denali_phy[6], 0xffffff, reg_value); clrsetbits_le32(&denali_phy[134], 0xffffff, reg_value); clrsetbits_le32(&denali_phy[262], 0xffffff, reg_value); clrsetbits_le32(&denali_phy[390], 0xffffff, reg_value); /* * phy_dqs_tsel_select_X 24bits DENALI_PHY_7/135/263/391 offset_0 * sets termination values for read/idle cycles and drive strength * for write cycles for DQS */ clrsetbits_le32(&denali_phy[7], 0xffffff, reg_value); clrsetbits_le32(&denali_phy[135], 0xffffff, reg_value); clrsetbits_le32(&denali_phy[263], 0xffffff, reg_value); clrsetbits_le32(&denali_phy[391], 0xffffff, reg_value); /* phy_adr_tsel_select_ 8bits DENALI_PHY_544/672/800 offset_0 */ reg_value = tsel_wr_select_ca_n | (tsel_wr_select_ca_p << 0x4); if (params->base.dramtype == LPDDR4) { /* LPDDR4 these register read always return 0, so * can not use clrsetbits_le32(), need to write32 */ writel((0x300 << 8) | reg_value, &denali_phy[544]); writel((0x300 << 8) | reg_value, &denali_phy[672]); writel((0x300 << 8) | reg_value, &denali_phy[800]); } else { clrsetbits_le32(&denali_phy[544], 0xff, reg_value); clrsetbits_le32(&denali_phy[672], 0xff, reg_value); clrsetbits_le32(&denali_phy[800], 0xff, reg_value); } /* phy_pad_addr_drive 8bits DENALI_PHY_928 offset_0 */ clrsetbits_le32(&denali_phy[928], 0xff, reg_value); /* phy_pad_rst_drive 8bits DENALI_PHY_937 offset_0 */ if (!ctl_phy_reg) clrsetbits_le32(&denali_phy[937], 0xff, reg_value); /* phy_pad_cke_drive 8bits DENALI_PHY_935 offset_0 */ clrsetbits_le32(&denali_phy[935], 0xff, reg_value); /* phy_pad_cs_drive 8bits DENALI_PHY_939 offset_0 */ clrsetbits_le32(&denali_phy[939], 0xff, tsel_ckcs_select_n | (tsel_ckcs_select_p << 0x4)); /* phy_pad_clk_drive 8bits DENALI_PHY_929 offset_0 */ clrsetbits_le32(&denali_phy[929], 0xff, tsel_ckcs_select_n | (tsel_ckcs_select_p << 0x4)); /* phy_pad_fdbk_drive 23bit DENALI_PHY_924/925 */ clrsetbits_le32(&denali_phy[924], 0xff, tsel_wr_select_ca_n | (tsel_wr_select_ca_p << 4)); clrsetbits_le32(&denali_phy[925], 0xff, tsel_wr_select_dq_n | (tsel_wr_select_dq_p << 4)); /* phy_dq_tsel_enable_X 3bits DENALI_PHY_5/133/261/389 offset_16 */ reg_value = (tsel_rd_en | (tsel_wr_en << 1) | (tsel_idle_en << 2)) << 16; clrsetbits_le32(&denali_phy[5], 0x7 << 16, reg_value); clrsetbits_le32(&denali_phy[133], 0x7 << 16, reg_value); clrsetbits_le32(&denali_phy[261], 0x7 << 16, reg_value); clrsetbits_le32(&denali_phy[389], 0x7 << 16, reg_value); /* phy_dqs_tsel_enable_X 3bits DENALI_PHY_6/134/262/390 offset_24 */ reg_value = (tsel_rd_en | (tsel_wr_en << 1) | (tsel_idle_en << 2)) << 24; clrsetbits_le32(&denali_phy[6], 0x7 << 24, reg_value); clrsetbits_le32(&denali_phy[134], 0x7 << 24, reg_value); clrsetbits_le32(&denali_phy[262], 0x7 << 24, reg_value); clrsetbits_le32(&denali_phy[390], 0x7 << 24, reg_value); /* phy_adr_tsel_enable_ 1bit DENALI_PHY_518/646/774 offset_8 */ reg_value = tsel_wr_en << 8; clrsetbits_le32(&denali_phy[518], 0x1 << 8, reg_value); clrsetbits_le32(&denali_phy[646], 0x1 << 8, reg_value); clrsetbits_le32(&denali_phy[774], 0x1 << 8, reg_value); /* phy_pad_addr_term tsel 1bit DENALI_PHY_933 offset_17 */ reg_value = tsel_wr_en << 17; clrsetbits_le32(&denali_phy[933], 0x1 << 17, reg_value); /* * pad_rst/cke/cs/clk_term tsel 1bits * DENALI_PHY_938/936/940/934 offset_17 */ clrsetbits_le32(&denali_phy[938], 0x1 << 17, reg_value); clrsetbits_le32(&denali_phy[936], 0x1 << 17, reg_value); clrsetbits_le32(&denali_phy[940], 0x1 << 17, reg_value); clrsetbits_le32(&denali_phy[934], 0x1 << 17, reg_value); /* phy_pad_fdbk_term 1bit DENALI_PHY_930 offset_17 */ clrsetbits_le32(&denali_phy[930], 0x1 << 17, reg_value); phy_io_config(denali_phy, denali_ctl, params, mr5); } static void pctl_start(struct dram_info *dram, struct rk3399_sdram_params *params, u32 channel_mask) { const struct chan_info *chan_0 = &dram->chan[0]; const struct chan_info *chan_1 = &dram->chan[1]; u32 *denali_ctl_0 = chan_0->pctl->denali_ctl; u32 *denali_phy_0 = chan_0->publ->denali_phy; u32 *ddrc0_con_0 = get_ddrc0_con(dram, 0); u32 *denali_ctl_1 = chan_1->pctl->denali_ctl; u32 *denali_phy_1 = chan_1->publ->denali_phy; u32 *ddrc1_con_0 = get_ddrc0_con(dram, 1); u32 count = 0; u32 byte, tmp; /* PHY_DLL_RST_EN */ if (channel_mask & 1) { writel(0x01000000, &ddrc0_con_0); clrsetbits_le32(&denali_phy_0[957], 0x3 << 24, 0x2 << 24); } if (channel_mask & 1) { count = 0; while (!(readl(&denali_ctl_0[203]) & (1 << 3))) { if (count > 1000) { printf("%s: Failed to init pctl channel 0\n", __func__); while (1) ; } udelay(1); count++; } writel(0x01000100, &ddrc0_con_0); for (byte = 0; byte < 4; byte++) { tmp = 0x820; writel((tmp << 16) | tmp, &denali_phy_0[53 + (128 * byte)]); writel((tmp << 16) | tmp, &denali_phy_0[54 + (128 * byte)]); writel((tmp << 16) | tmp, &denali_phy_0[55 + (128 * byte)]); writel((tmp << 16) | tmp, &denali_phy_0[56 + (128 * byte)]); writel((tmp << 16) | tmp, &denali_phy_0[57 + (128 * byte)]); clrsetbits_le32(&denali_phy_0[58 + (128 * byte)], 0xffff, tmp); } clrsetbits_le32(&denali_ctl_0[68], PWRUP_SREFRESH_EXIT, dram->pwrup_srefresh_exit[0]); } if (channel_mask & 2) { writel(0x01000000, &ddrc1_con_0); clrsetbits_le32(&denali_phy_1[957], 0x3 << 24, 0x2 << 24); } if (channel_mask & 2) { count = 0; while (!(readl(&denali_ctl_1[203]) & (1 << 3))) { if (count > 1000) { printf("%s: Failed to init pctl channel 1\n", __func__); while (1) ; } udelay(1); count++; } writel(0x01000100, &ddrc1_con_0); for (byte = 0; byte < 4; byte++) { tmp = 0x820; writel((tmp << 16) | tmp, &denali_phy_1[53 + (128 * byte)]); writel((tmp << 16) | tmp, &denali_phy_1[54 + (128 * byte)]); writel((tmp << 16) | tmp, &denali_phy_1[55 + (128 * byte)]); writel((tmp << 16) | tmp, &denali_phy_1[56 + (128 * byte)]); writel((tmp << 16) | tmp, &denali_phy_1[57 + (128 * byte)]); clrsetbits_le32(&denali_phy_1[58 + (128 * byte)], 0xffff, tmp); } clrsetbits_le32(&denali_ctl_1[68], PWRUP_SREFRESH_EXIT, dram->pwrup_srefresh_exit[1]); /* * restore channel 1 RESET original setting * to avoid 240ohm too weak to prevent ESD test */ if (params->base.dramtype == LPDDR4) clrsetbits_le32(&denali_phy_1[937], 0xff, params->phy_regs.denali_phy[937] & 0xFF); } } static int pctl_cfg(struct dram_info *dram, const struct chan_info *chan, u32 channel, struct rk3399_sdram_params *params) { u32 *denali_ctl = chan->pctl->denali_ctl; u32 *denali_pi = chan->pi->denali_pi; u32 *denali_phy = chan->publ->denali_phy; const u32 *params_ctl = params->pctl_regs.denali_ctl; const u32 *params_phy = params->phy_regs.denali_phy; u32 tmp, tmp1, tmp2; struct rk3399_sdram_params *params_cfg; u32 byte; dram->ops->modify_param(chan, params); /* * work around controller bug: * Do not program DRAM_CLASS until NO_PHY_IND_TRAIN_INT is programmed */ sdram_copy_to_reg(&denali_ctl[1], ¶ms_ctl[1], sizeof(struct rk3399_ddr_pctl_regs) - 4); writel(params_ctl[0], &denali_ctl[0]); /* * two channel init at the same time, then ZQ Cal Start * at the same time, it will use the same RZQ, but cannot * start at the same time. * * So, increase tINIT3 for channel 1, will avoid two * channel ZQ Cal Start at the same time */ if (params->base.dramtype == LPDDR4 && channel == 1) { tmp = ((params->base.ddr_freq * MHz + 999) / 1000); tmp1 = readl(&denali_ctl[14]); writel(tmp + tmp1, &denali_ctl[14]); } sdram_copy_to_reg(denali_pi, ¶ms->pi_regs.denali_pi[0], sizeof(struct rk3399_ddr_pi_regs)); /* rank count need to set for init */ set_memory_map(chan, channel, params); writel(params->phy_regs.denali_phy[910], &denali_phy[910]); writel(params->phy_regs.denali_phy[911], &denali_phy[911]); writel(params->phy_regs.denali_phy[912], &denali_phy[912]); if (params->base.dramtype == LPDDR4) { writel(params->phy_regs.denali_phy[898], &denali_phy[898]); writel(params->phy_regs.denali_phy[919], &denali_phy[919]); } dram->pwrup_srefresh_exit[channel] = readl(&denali_ctl[68]) & PWRUP_SREFRESH_EXIT; clrbits_le32(&denali_ctl[68], PWRUP_SREFRESH_EXIT); /* PHY_DLL_RST_EN */ clrsetbits_le32(&denali_phy[957], 0x3 << 24, 1 << 24); setbits_le32(&denali_pi[0], START); setbits_le32(&denali_ctl[0], START); /** * LPDDR4 use PLL bypass mode for init * not need to wait for the PLL to lock */ if (params->base.dramtype != LPDDR4) { /* Waiting for phy DLL lock */ while (1) { tmp = readl(&denali_phy[920]); tmp1 = readl(&denali_phy[921]); tmp2 = readl(&denali_phy[922]); if ((((tmp >> 16) & 0x1) == 0x1) && (((tmp1 >> 16) & 0x1) == 0x1) && (((tmp1 >> 0) & 0x1) == 0x1) && (((tmp2 >> 0) & 0x1) == 0x1)) break; } } sdram_copy_to_reg(&denali_phy[896], ¶ms_phy[896], (958 - 895) * 4); sdram_copy_to_reg(&denali_phy[0], ¶ms_phy[0], (90 - 0 + 1) * 4); sdram_copy_to_reg(&denali_phy[128], ¶ms_phy[128], (218 - 128 + 1) * 4); sdram_copy_to_reg(&denali_phy[256], ¶ms_phy[256], (346 - 256 + 1) * 4); sdram_copy_to_reg(&denali_phy[384], ¶ms_phy[384], (474 - 384 + 1) * 4); sdram_copy_to_reg(&denali_phy[512], ¶ms_phy[512], (549 - 512 + 1) * 4); sdram_copy_to_reg(&denali_phy[640], ¶ms_phy[640], (677 - 640 + 1) * 4); sdram_copy_to_reg(&denali_phy[768], ¶ms_phy[768], (805 - 768 + 1) * 4); if (params->base.dramtype == LPDDR4) params_cfg = dram->ops->get_phy_index_params(1, params); else params_cfg = dram->ops->get_phy_index_params(0, params); clrsetbits_le32(¶ms_cfg->phy_regs.denali_phy[896], 0x3 << 8, 0 << 8); writel(params_cfg->phy_regs.denali_phy[896], &denali_phy[896]); writel(params->phy_regs.denali_phy[83] + (0x10 << 16), &denali_phy[83]); writel(params->phy_regs.denali_phy[84] + (0x10 << 8), &denali_phy[84]); writel(params->phy_regs.denali_phy[211] + (0x10 << 16), &denali_phy[211]); writel(params->phy_regs.denali_phy[212] + (0x10 << 8), &denali_phy[212]); writel(params->phy_regs.denali_phy[339] + (0x10 << 16), &denali_phy[339]); writel(params->phy_regs.denali_phy[340] + (0x10 << 8), &denali_phy[340]); writel(params->phy_regs.denali_phy[467] + (0x10 << 16), &denali_phy[467]); writel(params->phy_regs.denali_phy[468] + (0x10 << 8), &denali_phy[468]); if (params->base.dramtype == LPDDR4) { /* * to improve write dqs and dq phase from 1.5ns to 3.5ns * at 50MHz. this's the measure result from oscilloscope * of dqs and dq write signal. */ for (byte = 0; byte < 4; byte++) { tmp = 0x680; clrsetbits_le32(&denali_phy[1 + (128 * byte)], 0xfff << 8, tmp << 8); } /* * to workaround 366ball two channel's RESET connect to * one RESET signal of die */ if (channel == 1) clrsetbits_le32(&denali_phy[937], 0xff, PHY_DRV_ODT_240 | (PHY_DRV_ODT_240 << 0x4)); } return 0; } static void select_per_cs_training_index(const struct chan_info *chan, u32 rank) { u32 *denali_phy = chan->publ->denali_phy; /* PHY_84 PHY_PER_CS_TRAINING_EN_0 1bit offset_16 */ if ((readl(&denali_phy[84]) >> 16) & 1) { /* * PHY_8/136/264/392 * phy_per_cs_training_index_X 1bit offset_24 */ clrsetbits_le32(&denali_phy[8], 0x1 << 24, rank << 24); clrsetbits_le32(&denali_phy[136], 0x1 << 24, rank << 24); clrsetbits_le32(&denali_phy[264], 0x1 << 24, rank << 24); clrsetbits_le32(&denali_phy[392], 0x1 << 24, rank << 24); } } static void override_write_leveling_value(const struct chan_info *chan) { u32 *denali_ctl = chan->pctl->denali_ctl; u32 *denali_phy = chan->publ->denali_phy; u32 byte; /* PHY_896 PHY_FREQ_SEL_MULTICAST_EN 1bit offset_0 */ setbits_le32(&denali_phy[896], 1); /* * PHY_8/136/264/392 * phy_per_cs_training_multicast_en_X 1bit offset_16 */ clrsetbits_le32(&denali_phy[8], 0x1 << 16, 1 << 16); clrsetbits_le32(&denali_phy[136], 0x1 << 16, 1 << 16); clrsetbits_le32(&denali_phy[264], 0x1 << 16, 1 << 16); clrsetbits_le32(&denali_phy[392], 0x1 << 16, 1 << 16); for (byte = 0; byte < 4; byte++) clrsetbits_le32(&denali_phy[63 + (128 * byte)], 0xffff << 16, 0x200 << 16); /* PHY_896 PHY_FREQ_SEL_MULTICAST_EN 1bit offset_0 */ clrbits_le32(&denali_phy[896], 1); /* CTL_200 ctrlupd_req 1bit offset_8 */ clrsetbits_le32(&denali_ctl[200], 0x1 << 8, 0x1 << 8); } static int data_training_ca(const struct chan_info *chan, u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = chan->pi->denali_pi; u32 *denali_phy = chan->publ->denali_phy; u32 i, tmp; u32 obs_0, obs_1, obs_2, obs_err = 0; u32 rank = params->ch[channel].cap_info.rank; u32 rank_mask; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); if (params->base.dramtype == LPDDR4) rank_mask = (rank == 1) ? 0x5 : 0xf; else rank_mask = (rank == 1) ? 0x1 : 0x3; for (i = 0; i < 4; i++) { if (!(rank_mask & (1 << i))) continue; select_per_cs_training_index(chan, i); /* PI_100 PI_CALVL_EN:RW:8:2 */ clrsetbits_le32(&denali_pi[100], 0x3 << 8, 0x2 << 8); /* PI_92 PI_CALVL_REQ:WR:16:1,PI_CALVL_CS:RW:24:2 */ clrsetbits_le32(&denali_pi[92], (0x1 << 16) | (0x3 << 24), (0x1 << 16) | (i << 24)); /* Waiting for training complete */ while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = readl(&denali_pi[174]) >> 8; /* * check status obs * PHY_532/660/789 phy_adr_calvl_obs1_:0:32 */ obs_0 = readl(&denali_phy[532]); obs_1 = readl(&denali_phy[660]); obs_2 = readl(&denali_phy[788]); if (((obs_0 >> 30) & 0x3) || ((obs_1 >> 30) & 0x3) || ((obs_2 >> 30) & 0x3)) obs_err = 1; if ((((tmp >> 11) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 5) & 0x1) == 0x0) && obs_err == 0) break; else if ((((tmp >> 5) & 0x1) == 0x1) || (obs_err == 1)) return -EIO; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); } clrbits_le32(&denali_pi[100], 0x3 << 8); return 0; } static int data_training_wl(const struct chan_info *chan, u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = chan->pi->denali_pi; u32 *denali_phy = chan->publ->denali_phy; u32 i, tmp; u32 obs_0, obs_1, obs_2, obs_3, obs_err = 0; u32 rank = params->ch[channel].cap_info.rank; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); for (i = 0; i < rank; i++) { select_per_cs_training_index(chan, i); /* PI_60 PI_WRLVL_EN:RW:8:2 */ clrsetbits_le32(&denali_pi[60], 0x3 << 8, 0x2 << 8); /* PI_59 PI_WRLVL_REQ:WR:8:1,PI_WRLVL_CS:RW:16:2 */ clrsetbits_le32(&denali_pi[59], (0x1 << 8) | (0x3 << 16), (0x1 << 8) | (i << 16)); /* Waiting for training complete */ while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = readl(&denali_pi[174]) >> 8; /* * check status obs, if error maybe can not * get leveling done PHY_40/168/296/424 * phy_wrlvl_status_obs_X:0:13 */ obs_0 = readl(&denali_phy[40]); obs_1 = readl(&denali_phy[168]); obs_2 = readl(&denali_phy[296]); obs_3 = readl(&denali_phy[424]); if (((obs_0 >> 12) & 0x1) || ((obs_1 >> 12) & 0x1) || ((obs_2 >> 12) & 0x1) || ((obs_3 >> 12) & 0x1)) obs_err = 1; if ((((tmp >> 10) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 4) & 0x1) == 0x0) && obs_err == 0) break; else if ((((tmp >> 4) & 0x1) == 0x1) || (obs_err == 1)) return -EIO; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); } override_write_leveling_value(chan); clrbits_le32(&denali_pi[60], 0x3 << 8); return 0; } static int data_training_rg(const struct chan_info *chan, u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = chan->pi->denali_pi; u32 *denali_phy = chan->publ->denali_phy; u32 i, tmp; u32 obs_0, obs_1, obs_2, obs_3, obs_err = 0; u32 rank = params->ch[channel].cap_info.rank; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); for (i = 0; i < rank; i++) { select_per_cs_training_index(chan, i); /* PI_80 PI_RDLVL_GATE_EN:RW:24:2 */ clrsetbits_le32(&denali_pi[80], 0x3 << 24, 0x2 << 24); /* * PI_74 PI_RDLVL_GATE_REQ:WR:16:1 * PI_RDLVL_CS:RW:24:2 */ clrsetbits_le32(&denali_pi[74], (0x1 << 16) | (0x3 << 24), (0x1 << 16) | (i << 24)); /* Waiting for training complete */ while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = readl(&denali_pi[174]) >> 8; /* * check status obs * PHY_43/171/299/427 * PHY_GTLVL_STATUS_OBS_x:16:8 */ obs_0 = readl(&denali_phy[43]); obs_1 = readl(&denali_phy[171]); obs_2 = readl(&denali_phy[299]); obs_3 = readl(&denali_phy[427]); if (((obs_0 >> (16 + 6)) & 0x3) || ((obs_1 >> (16 + 6)) & 0x3) || ((obs_2 >> (16 + 6)) & 0x3) || ((obs_3 >> (16 + 6)) & 0x3)) obs_err = 1; if ((((tmp >> 9) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 3) & 0x1) == 0x0) && obs_err == 0) break; else if ((((tmp >> 3) & 0x1) == 0x1) || (obs_err == 1)) return -EIO; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); } clrbits_le32(&denali_pi[80], 0x3 << 24); return 0; } static int data_training_rl(const struct chan_info *chan, u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = chan->pi->denali_pi; u32 i, tmp; u32 rank = params->ch[channel].cap_info.rank; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); for (i = 0; i < rank; i++) { select_per_cs_training_index(chan, i); /* PI_80 PI_RDLVL_EN:RW:16:2 */ clrsetbits_le32(&denali_pi[80], 0x3 << 16, 0x2 << 16); /* PI_74 PI_RDLVL_REQ:WR:8:1,PI_RDLVL_CS:RW:24:2 */ clrsetbits_le32(&denali_pi[74], (0x1 << 8) | (0x3 << 24), (0x1 << 8) | (i << 24)); /* Waiting for training complete */ while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = readl(&denali_pi[174]) >> 8; /* * make sure status obs not report error bit * PHY_46/174/302/430 * phy_rdlvl_status_obs_X:16:8 */ if ((((tmp >> 8) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 2) & 0x1) == 0x0)) break; else if (((tmp >> 2) & 0x1) == 0x1) return -EIO; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); } clrbits_le32(&denali_pi[80], 0x3 << 16); return 0; } static int data_training_wdql(const struct chan_info *chan, u32 channel, const struct rk3399_sdram_params *params) { u32 *denali_pi = chan->pi->denali_pi; u32 i, tmp; u32 rank = params->ch[channel].cap_info.rank; u32 rank_mask; /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); if (params->base.dramtype == LPDDR4) rank_mask = (rank == 1) ? 0x5 : 0xf; else rank_mask = (rank == 1) ? 0x1 : 0x3; for (i = 0; i < 4; i++) { if (!(rank_mask & (1 << i))) continue; select_per_cs_training_index(chan, i); /* * disable PI_WDQLVL_VREF_EN before wdq leveling? * PI_117 PI_WDQLVL_VREF_EN:RW:8:1 */ clrbits_le32(&denali_pi[117], 0x1 << 8); /* PI_124 PI_WDQLVL_EN:RW:16:2 */ clrsetbits_le32(&denali_pi[124], 0x3 << 16, 0x2 << 16); /* PI_121 PI_WDQLVL_REQ:WR:8:1,PI_WDQLVL_CS:RW:16:2 */ clrsetbits_le32(&denali_pi[121], (0x1 << 8) | (0x3 << 16), (0x1 << 8) | (i << 16)); /* Waiting for training complete */ while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = readl(&denali_pi[174]) >> 8; if ((((tmp >> 12) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 6) & 0x1) == 0x0)) break; else if (((tmp >> 6) & 0x1) == 0x1) return -EIO; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ writel(0x00003f7c, (&denali_pi[175])); } clrbits_le32(&denali_pi[124], 0x3 << 16); return 0; } static int data_training(struct dram_info *dram, u32 channel, const struct rk3399_sdram_params *params, u32 training_flag) { struct chan_info *chan = &dram->chan[channel]; u32 *denali_phy = chan->publ->denali_phy; int ret; /* PHY_927 PHY_PAD_DQS_DRIVE RPULL offset_22 */ setbits_le32(&denali_phy[927], (1 << 22)); if (training_flag == PI_FULL_TRAINING) { if (params->base.dramtype == LPDDR4) { training_flag = PI_WRITE_LEVELING | PI_READ_GATE_TRAINING | PI_READ_LEVELING | PI_WDQ_LEVELING; } else if (params->base.dramtype == LPDDR3) { training_flag = PI_CA_TRAINING | PI_WRITE_LEVELING | PI_READ_GATE_TRAINING; } else if (params->base.dramtype == DDR3) { training_flag = PI_WRITE_LEVELING | PI_READ_GATE_TRAINING | PI_READ_LEVELING; } } /* ca training(LPDDR4,LPDDR3 support) */ if ((training_flag & PI_CA_TRAINING) == PI_CA_TRAINING) { ret = data_training_ca(chan, channel, params); if (ret < 0) { debug("%s: data training ca failed\n", __func__); return ret; } } /* write leveling(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_WRITE_LEVELING) == PI_WRITE_LEVELING) { ret = data_training_wl(chan, channel, params); if (ret < 0) { debug("%s: data training wl failed\n", __func__); return ret; } } /* read gate training(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_READ_GATE_TRAINING) == PI_READ_GATE_TRAINING) { ret = data_training_rg(chan, channel, params); if (ret < 0) { debug("%s: data training rg failed\n", __func__); return ret; } } /* read leveling(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_READ_LEVELING) == PI_READ_LEVELING) { ret = data_training_rl(chan, channel, params); if (ret < 0) { debug("%s: data training rl failed\n", __func__); return ret; } } /* wdq leveling(LPDDR4 support) */ if ((training_flag & PI_WDQ_LEVELING) == PI_WDQ_LEVELING) { ret = data_training_wdql(chan, channel, params); if (ret < 0) { debug("%s: data training wdql failed\n", __func__); return ret; } } /* PHY_927 PHY_PAD_DQS_DRIVE RPULL offset_22 */ clrbits_le32(&denali_phy[927], (1 << 22)); return 0; } static void set_ddrconfig(const struct chan_info *chan, const struct rk3399_sdram_params *params, unsigned char channel, u32 ddrconfig) { /* only need to set ddrconfig */ struct msch_regs *ddr_msch_regs = chan->msch; unsigned int cs0_cap = 0; unsigned int cs1_cap = 0; cs0_cap = (1 << (params->ch[channel].cap_info.cs0_row + params->ch[channel].cap_info.col + params->ch[channel].cap_info.bk + params->ch[channel].cap_info.bw - 20)); if (params->ch[channel].cap_info.rank > 1) cs1_cap = cs0_cap >> (params->ch[channel].cap_info.cs0_row - params->ch[channel].cap_info.cs1_row); if (params->ch[channel].cap_info.row_3_4) { cs0_cap = cs0_cap * 3 / 4; cs1_cap = cs1_cap * 3 / 4; } writel(ddrconfig | (ddrconfig << 8), &ddr_msch_regs->ddrconf); writel(((cs0_cap / 32) & 0xff) | (((cs1_cap / 32) & 0xff) << 8), &ddr_msch_regs->ddrsize); } static void sdram_msch_config(struct msch_regs *msch, struct sdram_msch_timings *noc_timings) { writel(noc_timings->ddrtiminga0.d32, &msch->ddrtiminga0.d32); writel(noc_timings->ddrtimingb0.d32, &msch->ddrtimingb0.d32); writel(noc_timings->ddrtimingc0.d32, &msch->ddrtimingc0.d32); writel(noc_timings->devtodev0.d32, &msch->devtodev0.d32); writel(noc_timings->ddrmode.d32, &msch->ddrmode.d32); } static void dram_all_config(struct dram_info *dram, struct rk3399_sdram_params *params) { u32 sys_reg2 = 0; u32 sys_reg3 = 0; unsigned int channel, idx; for (channel = 0, idx = 0; (idx < params->base.num_channels) && (channel < 2); channel++) { struct msch_regs *ddr_msch_regs; struct sdram_msch_timings *noc_timing; if (params->ch[channel].cap_info.col == 0) continue; idx++; sdram_org_config(¶ms->ch[channel].cap_info, ¶ms->base, &sys_reg2, &sys_reg3, channel); ddr_msch_regs = dram->chan[channel].msch; noc_timing = ¶ms->ch[channel].noc_timings; sdram_msch_config(ddr_msch_regs, noc_timing); /** * rank 1 memory clock disable (dfi_dram_clk_disable = 1) * * The hardware for LPDDR4 with * - CLK0P/N connect to lower 16-bits * - CLK1P/N connect to higher 16-bits * * dfi dram clk is configured via CLK1P/N, so disabling * dfi dram clk will disable the CLK1P/N as well for lpddr4. */ if (params->ch[channel].cap_info.rank == 1 && params->base.dramtype != LPDDR4) setbits_le32(&dram->chan[channel].pctl->denali_ctl[276], 1 << 17); } writel(sys_reg2, &dram->pmugrf->os_reg2); writel(sys_reg3, &dram->pmugrf->os_reg3); rk_clrsetreg(&dram->pmusgrf->soc_con4, 0x1f << 10, params->base.stride << 10); /* reboot hold register set */ writel(PRESET_SGRF_HOLD(0) | PRESET_GPIO0_HOLD(1) | PRESET_GPIO1_HOLD(1), &dram->pmucru->pmucru_rstnhold_con[1]); clrsetbits_le32(&dram->cru->glb_rst_con, 0x3, 0x3); } static void set_cap_relate_config(const struct chan_info *chan, struct rk3399_sdram_params *params, unsigned int channel) { u32 *denali_ctl = chan->pctl->denali_ctl; u32 tmp; struct sdram_msch_timings *noc_timing; if (params->base.dramtype == LPDDR3) { tmp = (8 << params->ch[channel].cap_info.bw) / (8 << params->ch[channel].cap_info.dbw); /** * memdata_ratio * 1 -> 0, 2 -> 1, 4 -> 2 */ clrsetbits_le32(&denali_ctl[197], 0x7, (tmp >> 1)); clrsetbits_le32(&denali_ctl[198], 0x7 << 8, (tmp >> 1) << 8); } noc_timing = ¶ms->ch[channel].noc_timings; /* * noc timing bw relate timing is 32 bit, and real bw is 16bit * actually noc reg is setting at function dram_all_config */ if (params->ch[channel].cap_info.bw == 16 && noc_timing->ddrmode.b.mwrsize == 2) { if (noc_timing->ddrmode.b.burstsize) noc_timing->ddrmode.b.burstsize -= 1; noc_timing->ddrmode.b.mwrsize -= 1; noc_timing->ddrtimingc0.b.burstpenalty *= 2; noc_timing->ddrtimingc0.b.wrtomwr *= 2; } } static u32 calculate_ddrconfig(struct rk3399_sdram_params *params, u32 channel) { unsigned int cs0_row = params->ch[channel].cap_info.cs0_row; unsigned int col = params->ch[channel].cap_info.col; unsigned int bw = params->ch[channel].cap_info.bw; u16 ddr_cfg_2_rbc[] = { /* * [6] highest bit col * [5:3] max row(14+n) * [2] insertion row * [1:0] col(9+n),col, data bus 32bit * * highbitcol, max_row, insertion_row, col */ ((0 << 6) | (2 << 3) | (0 << 2) | 0), /* 0 */ ((0 << 6) | (2 << 3) | (0 << 2) | 1), /* 1 */ ((0 << 6) | (1 << 3) | (0 << 2) | 2), /* 2 */ ((0 << 6) | (0 << 3) | (0 << 2) | 3), /* 3 */ ((0 << 6) | (2 << 3) | (1 << 2) | 1), /* 4 */ ((0 << 6) | (1 << 3) | (1 << 2) | 2), /* 5 */ ((1 << 6) | (0 << 3) | (0 << 2) | 2), /* 6 */ ((1 << 6) | (1 << 3) | (0 << 2) | 2), /* 7 */ }; u32 i; col -= (bw == 2) ? 0 : 1; col -= 9; for (i = 0; i < 4; i++) { if ((col == (ddr_cfg_2_rbc[i] & 0x3)) && (cs0_row <= (((ddr_cfg_2_rbc[i] >> 3) & 0x7) + 14))) break; } if (i >= 4) i = -EINVAL; return i; } static void set_ddr_stride(struct rk3399_pmusgrf_regs *pmusgrf, u32 stride) { rk_clrsetreg(&pmusgrf->soc_con4, 0x1f << 10, stride << 10); } #if !defined(CONFIG_RAM_RK3399_LPDDR4) static int data_training_first(struct dram_info *dram, u32 channel, u8 rank, struct rk3399_sdram_params *params) { u8 training_flag = PI_READ_GATE_TRAINING; /* * LPDDR3 CA training msut be trigger before * other training. * DDR3 is not have CA training. */ if (params->base.dramtype == LPDDR3) training_flag |= PI_CA_TRAINING; return data_training(dram, channel, params, training_flag); } static int switch_to_phy_index1(struct dram_info *dram, struct rk3399_sdram_params *params) { u32 channel; u32 *denali_phy; u32 ch_count = params->base.num_channels; int ret; int i = 0; writel(RK_CLRSETBITS(0x03 << 4 | 1 << 2 | 1, 1 << 4 | 1 << 2 | 1), &dram->cic->cic_ctrl0); while (!(readl(&dram->cic->cic_status0) & (1 << 2))) { mdelay(10); i++; if (i > 10) { debug("index1 frequency change overtime\n"); return -ETIME; } } i = 0; writel(RK_CLRSETBITS(1 << 1, 1 << 1), &dram->cic->cic_ctrl0); while (!(readl(&dram->cic->cic_status0) & (1 << 0))) { mdelay(10); i++; if (i > 10) { debug("index1 frequency done overtime\n"); return -ETIME; } } for (channel = 0; channel < ch_count; channel++) { denali_phy = dram->chan[channel].publ->denali_phy; clrsetbits_le32(&denali_phy[896], (0x3 << 8) | 1, 1 << 8); ret = data_training(dram, channel, params, PI_FULL_TRAINING); if (ret < 0) { debug("index1 training failed\n"); return ret; } } return 0; } struct rk3399_sdram_params *get_phy_index_params(u32 phy_fn, struct rk3399_sdram_params *params) { if (phy_fn == 0) return params; else return NULL; } void modify_param(const struct chan_info *chan, struct rk3399_sdram_params *params) { struct rk3399_sdram_params *params_cfg; u32 *denali_pi_params; denali_pi_params = params->pi_regs.denali_pi; /* modify PHY F0/F1/F2 params */ params_cfg = get_phy_index_params(0, params); set_ds_odt(chan, params_cfg, false, 0); clrsetbits_le32(&denali_pi_params[45], 0x1 << 24, 0x1 << 24); clrsetbits_le32(&denali_pi_params[61], 0x1 << 24, 0x1 << 24); clrsetbits_le32(&denali_pi_params[76], 0x1 << 24, 0x1 << 24); clrsetbits_le32(&denali_pi_params[77], 0x1, 0x1); } #else struct rk3399_sdram_params dfs_cfgs_lpddr4[] = { #include "sdram-rk3399-lpddr4-400.inc" #include "sdram-rk3399-lpddr4-800.inc" }; static struct rk3399_sdram_params *lpddr4_get_phy_index_params(u32 phy_fn, struct rk3399_sdram_params *params) { if (phy_fn == 0) return params; else if (phy_fn == 1) return &dfs_cfgs_lpddr4[1]; else if (phy_fn == 2) return &dfs_cfgs_lpddr4[0]; else return NULL; } static void *get_denali_pi(const struct chan_info *chan, struct rk3399_sdram_params *params, bool reg) { return reg ? &chan->pi->denali_pi : ¶ms->pi_regs.denali_pi; } static u32 lpddr4_get_phy_fn(struct rk3399_sdram_params *params, u32 ctl_fn) { u32 lpddr4_phy_fn[] = {1, 0, 0xb}; return lpddr4_phy_fn[ctl_fn]; } static u32 lpddr4_get_ctl_fn(struct rk3399_sdram_params *params, u32 phy_fn) { u32 lpddr4_ctl_fn[] = {1, 0, 2}; return lpddr4_ctl_fn[phy_fn]; } static u32 get_ddr_stride(struct rk3399_pmusgrf_regs *pmusgrf) { return ((readl(&pmusgrf->soc_con4) >> 10) & 0x1F); } /* * read mr_num mode register * rank = 1: cs0 * rank = 2: cs1 */ static int read_mr(struct rk3399_ddr_pctl_regs *ddr_pctl_regs, u32 rank, u32 mr_num, u32 *buf) { s32 timeout = 100; writel(((1 << 16) | (((rank == 2) ? 1 : 0) << 8) | mr_num) << 8, &ddr_pctl_regs->denali_ctl[118]); while (0 == (readl(&ddr_pctl_regs->denali_ctl[203]) & ((1 << 21) | (1 << 12)))) { udelay(1); if (timeout <= 0) { printf("%s: pctl timeout!\n", __func__); return -ETIMEDOUT; } timeout--; } if (!(readl(&ddr_pctl_regs->denali_ctl[203]) & (1 << 12))) { *buf = readl(&ddr_pctl_regs->denali_ctl[119]) & 0xFF; } else { printf("%s: read mr failed with 0x%x status\n", __func__, readl(&ddr_pctl_regs->denali_ctl[17]) & 0x3); *buf = 0; } setbits_le32(&ddr_pctl_regs->denali_ctl[205], (1 << 21) | (1 << 12)); return 0; } static int lpddr4_mr_detect(struct dram_info *dram, u32 channel, u8 rank, struct rk3399_sdram_params *params) { u64 cs0_cap; u32 stride; u32 cs = 0, col = 0, bk = 0, bw = 0, row_3_4 = 0; u32 cs0_row = 0, cs1_row = 0, ddrconfig = 0; u32 mr5, mr12, mr14; struct chan_info *chan = &dram->chan[channel]; struct rk3399_ddr_pctl_regs *ddr_pctl_regs = chan->pctl; void __iomem *addr = NULL; int ret = 0; u32 val; stride = get_ddr_stride(dram->pmusgrf); if (params->ch[channel].cap_info.col == 0) { ret = -EPERM; goto end; } cs = params->ch[channel].cap_info.rank; col = params->ch[channel].cap_info.col; bk = params->ch[channel].cap_info.bk; bw = params->ch[channel].cap_info.bw; row_3_4 = params->ch[channel].cap_info.row_3_4; cs0_row = params->ch[channel].cap_info.cs0_row; cs1_row = params->ch[channel].cap_info.cs1_row; ddrconfig = params->ch[channel].cap_info.ddrconfig; /* 2GB */ params->ch[channel].cap_info.rank = 2; params->ch[channel].cap_info.col = 10; params->ch[channel].cap_info.bk = 3; params->ch[channel].cap_info.bw = 2; params->ch[channel].cap_info.row_3_4 = 0; params->ch[channel].cap_info.cs0_row = 15; params->ch[channel].cap_info.cs1_row = 15; params->ch[channel].cap_info.ddrconfig = 1; set_memory_map(chan, channel, params); params->ch[channel].cap_info.ddrconfig = calculate_ddrconfig(params, channel); set_ddrconfig(chan, params, channel, params->ch[channel].cap_info.ddrconfig); set_cap_relate_config(chan, params, channel); cs0_cap = (1 << (params->ch[channel].cap_info.bw + params->ch[channel].cap_info.col + params->ch[channel].cap_info.bk + params->ch[channel].cap_info.cs0_row)); if (params->ch[channel].cap_info.row_3_4) cs0_cap = cs0_cap * 3 / 4; if (channel == 0) set_ddr_stride(dram->pmusgrf, 0x17); else set_ddr_stride(dram->pmusgrf, 0x18); /* read and write data to DRAM, avoid be optimized by compiler. */ if (rank == 1) addr = (void __iomem *)0x100; else if (rank == 2) addr = (void __iomem *)(cs0_cap + 0x100); val = readl(addr); writel(val + 1, addr); read_mr(ddr_pctl_regs, rank, 5, &mr5); read_mr(ddr_pctl_regs, rank, 12, &mr12); read_mr(ddr_pctl_regs, rank, 14, &mr14); if (mr5 == 0 || mr12 != 0x4d || mr14 != 0x4d) { ret = -EINVAL; goto end; } end: params->ch[channel].cap_info.rank = cs; params->ch[channel].cap_info.col = col; params->ch[channel].cap_info.bk = bk; params->ch[channel].cap_info.bw = bw; params->ch[channel].cap_info.row_3_4 = row_3_4; params->ch[channel].cap_info.cs0_row = cs0_row; params->ch[channel].cap_info.cs1_row = cs1_row; params->ch[channel].cap_info.ddrconfig = ddrconfig; set_ddr_stride(dram->pmusgrf, stride); return ret; } static void set_lpddr4_dq_odt(const struct chan_info *chan, struct rk3399_sdram_params *params, u32 ctl_fn, bool en, bool ctl_phy_reg, u32 mr5) { u32 *denali_ctl = get_denali_ctl(chan, params, ctl_phy_reg); u32 *denali_pi = get_denali_pi(chan, params, ctl_phy_reg); struct io_setting *io; u32 reg_value; io = lpddr4_get_io_settings(params, mr5); if (en) reg_value = io->dq_odt; else reg_value = 0; switch (ctl_fn) { case 0: clrsetbits_le32(&denali_ctl[139], 0x7 << 24, reg_value << 24); clrsetbits_le32(&denali_ctl[153], 0x7 << 24, reg_value << 24); clrsetbits_le32(&denali_pi[132], 0x7 << 0, (reg_value << 0)); clrsetbits_le32(&denali_pi[139], 0x7 << 16, (reg_value << 16)); clrsetbits_le32(&denali_pi[147], 0x7 << 0, (reg_value << 0)); clrsetbits_le32(&denali_pi[154], 0x7 << 16, (reg_value << 16)); break; case 1: clrsetbits_le32(&denali_ctl[140], 0x7 << 0, reg_value << 0); clrsetbits_le32(&denali_ctl[154], 0x7 << 0, reg_value << 0); clrsetbits_le32(&denali_pi[129], 0x7 << 16, (reg_value << 16)); clrsetbits_le32(&denali_pi[137], 0x7 << 0, (reg_value << 0)); clrsetbits_le32(&denali_pi[144], 0x7 << 16, (reg_value << 16)); clrsetbits_le32(&denali_pi[152], 0x7 << 0, (reg_value << 0)); break; case 2: default: clrsetbits_le32(&denali_ctl[140], 0x7 << 8, (reg_value << 8)); clrsetbits_le32(&denali_ctl[154], 0x7 << 8, (reg_value << 8)); clrsetbits_le32(&denali_pi[127], 0x7 << 0, (reg_value << 0)); clrsetbits_le32(&denali_pi[134], 0x7 << 16, (reg_value << 16)); clrsetbits_le32(&denali_pi[142], 0x7 << 0, (reg_value << 0)); clrsetbits_le32(&denali_pi[149], 0x7 << 16, (reg_value << 16)); break; } } static void set_lpddr4_ca_odt(const struct chan_info *chan, struct rk3399_sdram_params *params, u32 ctl_fn, bool en, bool ctl_phy_reg, u32 mr5) { u32 *denali_ctl = get_denali_ctl(chan, params, ctl_phy_reg); u32 *denali_pi = get_denali_pi(chan, params, ctl_phy_reg); struct io_setting *io; u32 reg_value; io = lpddr4_get_io_settings(params, mr5); if (en) reg_value = io->ca_odt; else reg_value = 0; switch (ctl_fn) { case 0: clrsetbits_le32(&denali_ctl[139], 0x7 << 28, reg_value << 28); clrsetbits_le32(&denali_ctl[153], 0x7 << 28, reg_value << 28); clrsetbits_le32(&denali_pi[132], 0x7 << 4, reg_value << 4); clrsetbits_le32(&denali_pi[139], 0x7 << 20, reg_value << 20); clrsetbits_le32(&denali_pi[147], 0x7 << 4, reg_value << 4); clrsetbits_le32(&denali_pi[154], 0x7 << 20, reg_value << 20); break; case 1: clrsetbits_le32(&denali_ctl[140], 0x7 << 4, reg_value << 4); clrsetbits_le32(&denali_ctl[154], 0x7 << 4, reg_value << 4); clrsetbits_le32(&denali_pi[129], 0x7 << 20, reg_value << 20); clrsetbits_le32(&denali_pi[137], 0x7 << 4, reg_value << 4); clrsetbits_le32(&denali_pi[144], 0x7 << 20, reg_value << 20); clrsetbits_le32(&denali_pi[152], 0x7 << 4, reg_value << 4); break; case 2: default: clrsetbits_le32(&denali_ctl[140], 0x7 << 12, (reg_value << 12)); clrsetbits_le32(&denali_ctl[154], 0x7 << 12, (reg_value << 12)); clrsetbits_le32(&denali_pi[127], 0x7 << 4, reg_value << 4); clrsetbits_le32(&denali_pi[134], 0x7 << 20, reg_value << 20); clrsetbits_le32(&denali_pi[142], 0x7 << 4, reg_value << 4); clrsetbits_le32(&denali_pi[149], 0x7 << 20, reg_value << 20); break; } } static void set_lpddr4_MR3(const struct chan_info *chan, struct rk3399_sdram_params *params, u32 ctl_fn, bool ctl_phy_reg, u32 mr5) { u32 *denali_ctl = get_denali_ctl(chan, params, ctl_phy_reg); u32 *denali_pi = get_denali_pi(chan, params, ctl_phy_reg); struct io_setting *io; u32 reg_value; io = lpddr4_get_io_settings(params, mr5); reg_value = ((io->pdds << 3) | 1); switch (ctl_fn) { case 0: clrsetbits_le32(&denali_ctl[138], 0xFFFF, reg_value); clrsetbits_le32(&denali_ctl[152], 0xFFFF, reg_value); clrsetbits_le32(&denali_pi[131], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[139], 0xFFFF, reg_value); clrsetbits_le32(&denali_pi[146], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[154], 0xFFFF, reg_value); break; case 1: clrsetbits_le32(&denali_ctl[138], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_ctl[152], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[129], 0xFFFF, reg_value); clrsetbits_le32(&denali_pi[136], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[144], 0xFFFF, reg_value); clrsetbits_le32(&denali_pi[151], 0xFFFF << 16, reg_value << 16); break; case 2: default: clrsetbits_le32(&denali_ctl[139], 0xFFFF, reg_value); clrsetbits_le32(&denali_ctl[153], 0xFFFF, reg_value); clrsetbits_le32(&denali_pi[126], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[134], 0xFFFF, reg_value); clrsetbits_le32(&denali_pi[141], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[149], 0xFFFF, reg_value); break; } } static void set_lpddr4_MR12(const struct chan_info *chan, struct rk3399_sdram_params *params, u32 ctl_fn, bool ctl_phy_reg, u32 mr5) { u32 *denali_ctl = get_denali_ctl(chan, params, ctl_phy_reg); u32 *denali_pi = get_denali_pi(chan, params, ctl_phy_reg); struct io_setting *io; u32 reg_value; io = lpddr4_get_io_settings(params, mr5); reg_value = io->ca_vref; switch (ctl_fn) { case 0: clrsetbits_le32(&denali_ctl[140], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_ctl[154], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[132], 0xFF << 8, reg_value << 8); clrsetbits_le32(&denali_pi[139], 0xFF << 24, reg_value << 24); clrsetbits_le32(&denali_pi[147], 0xFF << 8, reg_value << 8); clrsetbits_le32(&denali_pi[154], 0xFF << 24, reg_value << 24); break; case 1: clrsetbits_le32(&denali_ctl[141], 0xFFFF, reg_value); clrsetbits_le32(&denali_ctl[155], 0xFFFF, reg_value); clrsetbits_le32(&denali_pi[129], 0xFF << 24, reg_value << 24); clrsetbits_le32(&denali_pi[137], 0xFF << 8, reg_value << 8); clrsetbits_le32(&denali_pi[144], 0xFF << 24, reg_value << 24); clrsetbits_le32(&denali_pi[152], 0xFF << 8, reg_value << 8); break; case 2: default: clrsetbits_le32(&denali_ctl[141], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_ctl[155], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[127], 0xFF << 8, reg_value << 8); clrsetbits_le32(&denali_pi[134], 0xFF << 24, reg_value << 24); clrsetbits_le32(&denali_pi[142], 0xFF << 8, reg_value << 8); clrsetbits_le32(&denali_pi[149], 0xFF << 24, reg_value << 24); break; } } static void set_lpddr4_MR14(const struct chan_info *chan, struct rk3399_sdram_params *params, u32 ctl_fn, bool ctl_phy_reg, u32 mr5) { u32 *denali_ctl = get_denali_ctl(chan, params, ctl_phy_reg); u32 *denali_pi = get_denali_pi(chan, params, ctl_phy_reg); struct io_setting *io; u32 reg_value; io = lpddr4_get_io_settings(params, mr5); reg_value = io->dq_vref; switch (ctl_fn) { case 0: clrsetbits_le32(&denali_ctl[142], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_ctl[156], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[132], 0xFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[140], 0xFF << 0, reg_value << 0); clrsetbits_le32(&denali_pi[147], 0xFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[155], 0xFF << 0, reg_value << 0); break; case 1: clrsetbits_le32(&denali_ctl[143], 0xFFFF, reg_value); clrsetbits_le32(&denali_ctl[157], 0xFFFF, reg_value); clrsetbits_le32(&denali_pi[130], 0xFF << 0, reg_value << 0); clrsetbits_le32(&denali_pi[137], 0xFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[145], 0xFF << 0, reg_value << 0); clrsetbits_le32(&denali_pi[152], 0xFF << 16, reg_value << 16); break; case 2: default: clrsetbits_le32(&denali_ctl[143], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_ctl[157], 0xFFFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[127], 0xFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[135], 0xFF << 0, reg_value << 0); clrsetbits_le32(&denali_pi[142], 0xFF << 16, reg_value << 16); clrsetbits_le32(&denali_pi[150], 0xFF << 0, reg_value << 0); break; } } void lpddr4_modify_param(const struct chan_info *chan, struct rk3399_sdram_params *params) { struct rk3399_sdram_params *params_cfg; u32 *denali_ctl_params; u32 *denali_pi_params; u32 *denali_phy_params; denali_ctl_params = params->pctl_regs.denali_ctl; denali_pi_params = params->pi_regs.denali_pi; denali_phy_params = params->phy_regs.denali_phy; set_lpddr4_dq_odt(chan, params, 2, true, false, 0); set_lpddr4_ca_odt(chan, params, 2, true, false, 0); set_lpddr4_MR3(chan, params, 2, false, 0); set_lpddr4_MR12(chan, params, 2, false, 0); set_lpddr4_MR14(chan, params, 2, false, 0); params_cfg = lpddr4_get_phy_index_params(0, params); set_ds_odt(chan, params_cfg, false, 0); /* read two cycle preamble */ clrsetbits_le32(&denali_ctl_params[200], 0x3 << 24, 0x3 << 24); clrsetbits_le32(&denali_phy_params[7], 0x3 << 24, 0x3 << 24); clrsetbits_le32(&denali_phy_params[135], 0x3 << 24, 0x3 << 24); clrsetbits_le32(&denali_phy_params[263], 0x3 << 24, 0x3 << 24); clrsetbits_le32(&denali_phy_params[391], 0x3 << 24, 0x3 << 24); /* boot frequency two cycle preamble */ clrsetbits_le32(&denali_phy_params[2], 0x3 << 16, 0x3 << 16); clrsetbits_le32(&denali_phy_params[130], 0x3 << 16, 0x3 << 16); clrsetbits_le32(&denali_phy_params[258], 0x3 << 16, 0x3 << 16); clrsetbits_le32(&denali_phy_params[386], 0x3 << 16, 0x3 << 16); clrsetbits_le32(&denali_pi_params[45], 0x3 << 8, 0x3 << 8); clrsetbits_le32(&denali_pi_params[58], 0x1, 0x1); /* * bypass mode need PHY_SLICE_PWR_RDC_DISABLE_x = 1, * boot frequency mode use bypass mode */ setbits_le32(&denali_phy_params[10], 1 << 16); setbits_le32(&denali_phy_params[138], 1 << 16); setbits_le32(&denali_phy_params[266], 1 << 16); setbits_le32(&denali_phy_params[394], 1 << 16); clrsetbits_le32(&denali_pi_params[45], 0x1 << 24, 0x1 << 24); clrsetbits_le32(&denali_pi_params[61], 0x1 << 24, 0x1 << 24); clrsetbits_le32(&denali_pi_params[76], 0x1 << 24, 0x1 << 24); clrsetbits_le32(&denali_pi_params[77], 0x1, 0x1); } static void lpddr4_copy_phy(struct dram_info *dram, struct rk3399_sdram_params *params, u32 phy_fn, struct rk3399_sdram_params *params_cfg, u32 channel) { u32 *denali_ctl, *denali_phy; u32 *denali_phy_params; u32 speed = 0; u32 ctl_fn, mr5; denali_ctl = dram->chan[channel].pctl->denali_ctl; denali_phy = dram->chan[channel].publ->denali_phy; denali_phy_params = params_cfg->phy_regs.denali_phy; /* switch index */ clrsetbits_le32(&denali_phy_params[896], 0x3 << 8, phy_fn << 8); writel(denali_phy_params[896], &denali_phy[896]); /* phy_pll_ctrl_ca, phy_pll_ctrl */ writel(denali_phy_params[911], &denali_phy[911]); /* phy_low_freq_sel */ clrsetbits_le32(&denali_phy[913], 0x1, denali_phy_params[913] & 0x1); /* phy_grp_slave_delay_x, phy_cslvl_dly_step */ writel(denali_phy_params[916], &denali_phy[916]); writel(denali_phy_params[917], &denali_phy[917]); writel(denali_phy_params[918], &denali_phy[918]); /* phy_adrz_sw_wraddr_shift_x */ writel(denali_phy_params[512], &denali_phy[512]); clrsetbits_le32(&denali_phy[513], 0xffff, denali_phy_params[513] & 0xffff); writel(denali_phy_params[640], &denali_phy[640]); clrsetbits_le32(&denali_phy[641], 0xffff, denali_phy_params[641] & 0xffff); writel(denali_phy_params[768], &denali_phy[768]); clrsetbits_le32(&denali_phy[769], 0xffff, denali_phy_params[769] & 0xffff); writel(denali_phy_params[544], &denali_phy[544]); writel(denali_phy_params[545], &denali_phy[545]); writel(denali_phy_params[546], &denali_phy[546]); writel(denali_phy_params[547], &denali_phy[547]); writel(denali_phy_params[672], &denali_phy[672]); writel(denali_phy_params[673], &denali_phy[673]); writel(denali_phy_params[674], &denali_phy[674]); writel(denali_phy_params[675], &denali_phy[675]); writel(denali_phy_params[800], &denali_phy[800]); writel(denali_phy_params[801], &denali_phy[801]); writel(denali_phy_params[802], &denali_phy[802]); writel(denali_phy_params[803], &denali_phy[803]); /* * phy_adr_master_delay_start_x * phy_adr_master_delay_step_x * phy_adr_master_delay_wait_x */ writel(denali_phy_params[548], &denali_phy[548]); writel(denali_phy_params[676], &denali_phy[676]); writel(denali_phy_params[804], &denali_phy[804]); /* phy_adr_calvl_dly_step_x */ writel(denali_phy_params[549], &denali_phy[549]); writel(denali_phy_params[677], &denali_phy[677]); writel(denali_phy_params[805], &denali_phy[805]); /* * phy_clk_wrdm_slave_delay_x * phy_clk_wrdqz_slave_delay_x * phy_clk_wrdqs_slave_delay_x */ sdram_copy_to_reg((u32 *)&denali_phy[59], (u32 *)&denali_phy_params[59], (63 - 58) * 4); sdram_copy_to_reg((u32 *)&denali_phy[187], (u32 *)&denali_phy_params[187], (191 - 186) * 4); sdram_copy_to_reg((u32 *)&denali_phy[315], (u32 *)&denali_phy_params[315], (319 - 314) * 4); sdram_copy_to_reg((u32 *)&denali_phy[443], (u32 *)&denali_phy_params[443], (447 - 442) * 4); /* * phy_dqs_tsel_wr_timing_x 8bits denali_phy_84/212/340/468 offset_8 * dqs_tsel_wr_end[7:4] add half cycle * phy_dq_tsel_wr_timing_x 8bits denali_phy_83/211/339/467 offset_8 * dq_tsel_wr_end[7:4] add half cycle */ writel(denali_phy_params[83] + (0x10 << 16), &denali_phy[83]); writel(denali_phy_params[84] + (0x10 << 8), &denali_phy[84]); writel(denali_phy_params[85], &denali_phy[85]); writel(denali_phy_params[211] + (0x10 << 16), &denali_phy[211]); writel(denali_phy_params[212] + (0x10 << 8), &denali_phy[212]); writel(denali_phy_params[213], &denali_phy[213]); writel(denali_phy_params[339] + (0x10 << 16), &denali_phy[339]); writel(denali_phy_params[340] + (0x10 << 8), &denali_phy[340]); writel(denali_phy_params[341], &denali_phy[341]); writel(denali_phy_params[467] + (0x10 << 16), &denali_phy[467]); writel(denali_phy_params[468] + (0x10 << 8), &denali_phy[468]); writel(denali_phy_params[469], &denali_phy[469]); /* * phy_gtlvl_resp_wait_cnt_x * phy_gtlvl_dly_step_x * phy_wrlvl_resp_wait_cnt_x * phy_gtlvl_final_step_x * phy_gtlvl_back_step_x * phy_rdlvl_dly_step_x * * phy_master_delay_step_x * phy_master_delay_wait_x * phy_wrlvl_dly_step_x * phy_rptr_update_x * phy_wdqlvl_dly_step_x */ writel(denali_phy_params[87], &denali_phy[87]); writel(denali_phy_params[88], &denali_phy[88]); writel(denali_phy_params[89], &denali_phy[89]); writel(denali_phy_params[90], &denali_phy[90]); writel(denali_phy_params[215], &denali_phy[215]); writel(denali_phy_params[216], &denali_phy[216]); writel(denali_phy_params[217], &denali_phy[217]); writel(denali_phy_params[218], &denali_phy[218]); writel(denali_phy_params[343], &denali_phy[343]); writel(denali_phy_params[344], &denali_phy[344]); writel(denali_phy_params[345], &denali_phy[345]); writel(denali_phy_params[346], &denali_phy[346]); writel(denali_phy_params[471], &denali_phy[471]); writel(denali_phy_params[472], &denali_phy[472]); writel(denali_phy_params[473], &denali_phy[473]); writel(denali_phy_params[474], &denali_phy[474]); /* * phy_gtlvl_lat_adj_start_x * phy_gtlvl_rddqs_slv_dly_start_x * phy_rdlvl_rddqs_dq_slv_dly_start_x * phy_wdqlvl_dqdm_slv_dly_start_x */ writel(denali_phy_params[80], &denali_phy[80]); writel(denali_phy_params[81], &denali_phy[81]); writel(denali_phy_params[208], &denali_phy[208]); writel(denali_phy_params[209], &denali_phy[209]); writel(denali_phy_params[336], &denali_phy[336]); writel(denali_phy_params[337], &denali_phy[337]); writel(denali_phy_params[464], &denali_phy[464]); writel(denali_phy_params[465], &denali_phy[465]); /* * phy_master_delay_start_x * phy_sw_master_mode_x * phy_rddata_en_tsel_dly_x */ writel(denali_phy_params[86], &denali_phy[86]); writel(denali_phy_params[214], &denali_phy[214]); writel(denali_phy_params[342], &denali_phy[342]); writel(denali_phy_params[470], &denali_phy[470]); /* * phy_rddqz_slave_delay_x * phy_rddqs_dqz_fall_slave_delay_x * phy_rddqs_dqz_rise_slave_delay_x * phy_rddqs_dm_fall_slave_delay_x * phy_rddqs_dm_rise_slave_delay_x * phy_rddqs_gate_slave_delay_x * phy_wrlvl_delay_early_threshold_x * phy_write_path_lat_add_x * phy_rddqs_latency_adjust_x * phy_wrlvl_delay_period_threshold_x * phy_wrlvl_early_force_zero_x */ sdram_copy_to_reg((u32 *)&denali_phy[64], (u32 *)&denali_phy_params[64], (67 - 63) * 4); clrsetbits_le32(&denali_phy[68], 0xfffffc00, denali_phy_params[68] & 0xfffffc00); sdram_copy_to_reg((u32 *)&denali_phy[69], (u32 *)&denali_phy_params[69], (79 - 68) * 4); sdram_copy_to_reg((u32 *)&denali_phy[192], (u32 *)&denali_phy_params[192], (195 - 191) * 4); clrsetbits_le32(&denali_phy[196], 0xfffffc00, denali_phy_params[196] & 0xfffffc00); sdram_copy_to_reg((u32 *)&denali_phy[197], (u32 *)&denali_phy_params[197], (207 - 196) * 4); sdram_copy_to_reg((u32 *)&denali_phy[320], (u32 *)&denali_phy_params[320], (323 - 319) * 4); clrsetbits_le32(&denali_phy[324], 0xfffffc00, denali_phy_params[324] & 0xfffffc00); sdram_copy_to_reg((u32 *)&denali_phy[325], (u32 *)&denali_phy_params[325], (335 - 324) * 4); sdram_copy_to_reg((u32 *)&denali_phy[448], (u32 *)&denali_phy_params[448], (451 - 447) * 4); clrsetbits_le32(&denali_phy[452], 0xfffffc00, denali_phy_params[452] & 0xfffffc00); sdram_copy_to_reg((u32 *)&denali_phy[453], (u32 *)&denali_phy_params[453], (463 - 452) * 4); /* phy_two_cyc_preamble_x */ clrsetbits_le32(&denali_phy[7], 0x3 << 24, denali_phy_params[7] & (0x3 << 24)); clrsetbits_le32(&denali_phy[135], 0x3 << 24, denali_phy_params[135] & (0x3 << 24)); clrsetbits_le32(&denali_phy[263], 0x3 << 24, denali_phy_params[263] & (0x3 << 24)); clrsetbits_le32(&denali_phy[391], 0x3 << 24, denali_phy_params[391] & (0x3 << 24)); /* speed */ if (params_cfg->base.ddr_freq < 400) speed = 0x0; else if (params_cfg->base.ddr_freq < 800) speed = 0x1; else if (params_cfg->base.ddr_freq < 1200) speed = 0x2; /* phy_924 phy_pad_fdbk_drive */ clrsetbits_le32(&denali_phy[924], 0x3 << 21, speed << 21); /* phy_926 phy_pad_data_drive */ clrsetbits_le32(&denali_phy[926], 0x3 << 9, speed << 9); /* phy_927 phy_pad_dqs_drive */ clrsetbits_le32(&denali_phy[927], 0x3 << 9, speed << 9); /* phy_928 phy_pad_addr_drive */ clrsetbits_le32(&denali_phy[928], 0x3 << 17, speed << 17); /* phy_929 phy_pad_clk_drive */ clrsetbits_le32(&denali_phy[929], 0x3 << 17, speed << 17); /* phy_935 phy_pad_cke_drive */ clrsetbits_le32(&denali_phy[935], 0x3 << 17, speed << 17); /* phy_937 phy_pad_rst_drive */ clrsetbits_le32(&denali_phy[937], 0x3 << 17, speed << 17); /* phy_939 phy_pad_cs_drive */ clrsetbits_le32(&denali_phy[939], 0x3 << 17, speed << 17); if (params_cfg->base.dramtype == LPDDR4) { read_mr(dram->chan[channel].pctl, 1, 5, &mr5); set_ds_odt(&dram->chan[channel], params_cfg, true, mr5); ctl_fn = lpddr4_get_ctl_fn(params_cfg, phy_fn); set_lpddr4_dq_odt(&dram->chan[channel], params_cfg, ctl_fn, true, true, mr5); set_lpddr4_ca_odt(&dram->chan[channel], params_cfg, ctl_fn, true, true, mr5); set_lpddr4_MR3(&dram->chan[channel], params_cfg, ctl_fn, true, mr5); set_lpddr4_MR12(&dram->chan[channel], params_cfg, ctl_fn, true, mr5); set_lpddr4_MR14(&dram->chan[channel], params_cfg, ctl_fn, true, mr5); /* * if phy_sw_master_mode_x not bypass mode, * clear phy_slice_pwr_rdc_disable. * note: need use timings, not ddr_publ_regs */ if (!((denali_phy_params[86] >> 8) & (1 << 2))) { clrbits_le32(&denali_phy[10], 1 << 16); clrbits_le32(&denali_phy[138], 1 << 16); clrbits_le32(&denali_phy[266], 1 << 16); clrbits_le32(&denali_phy[394], 1 << 16); } /* * when PHY_PER_CS_TRAINING_EN=1, W2W_DIFFCS_DLY_Fx can't * smaller than 8 * NOTE: need use timings, not ddr_publ_regs */ if ((denali_phy_params[84] >> 16) & 1) { if (((readl(&denali_ctl[217 + ctl_fn]) >> 16) & 0x1f) < 8) clrsetbits_le32(&denali_ctl[217 + ctl_fn], 0x1f << 16, 8 << 16); } } } static void lpddr4_set_phy(struct dram_info *dram, struct rk3399_sdram_params *params, u32 phy_fn, struct rk3399_sdram_params *params_cfg) { u32 channel; for (channel = 0; channel < 2; channel++) lpddr4_copy_phy(dram, params, phy_fn, params_cfg, channel); } static int lpddr4_set_ctl(struct dram_info *dram, struct rk3399_sdram_params *params, u32 fn, u32 hz) { u32 channel; int ret_clk, ret; /* cci idle req stall */ writel(0x70007, &dram->grf->soc_con0); /* enable all clk */ setbits_le32(&dram->pmu->pmu_noc_auto_ena, (0x3 << 7)); /* idle */ setbits_le32(&dram->pmu->pmu_bus_idle_req, (0x3 << 18)); while ((readl(&dram->pmu->pmu_bus_idle_st) & (0x3 << 18)) != (0x3 << 18)) ; /* change freq */ writel((((0x3 << 4) | (1 << 2) | 1) << 16) | (fn << 4) | (1 << 2) | 1, &dram->cic->cic_ctrl0); while (!(readl(&dram->cic->cic_status0) & (1 << 2))) ; ret_clk = clk_set_rate(&dram->ddr_clk, hz); if (ret_clk < 0) { printf("%s clk set failed %d\n", __func__, ret_clk); return ret_clk; } writel(0x20002, &dram->cic->cic_ctrl0); while (!(readl(&dram->cic->cic_status0) & (1 << 0))) ; /* deidle */ clrbits_le32(&dram->pmu->pmu_bus_idle_req, (0x3 << 18)); while (readl(&dram->pmu->pmu_bus_idle_st) & (0x3 << 18)) ; /* clear enable all clk */ clrbits_le32(&dram->pmu->pmu_noc_auto_ena, (0x3 << 7)); /* lpddr4 ctl2 can not do training, all training will fail */ if (!(params->base.dramtype == LPDDR4 && fn == 2)) { for (channel = 0; channel < 2; channel++) { if (!(params->ch[channel].cap_info.col)) continue; ret = data_training(dram, channel, params, PI_FULL_TRAINING); if (ret) printf("%s: channel %d training failed!\n", __func__, channel); else debug("%s: channel %d training pass\n", __func__, channel); } } return 0; } static int lpddr4_set_rate(struct dram_info *dram, struct rk3399_sdram_params *params) { u32 ctl_fn; u32 phy_fn; for (ctl_fn = 0; ctl_fn < 2; ctl_fn++) { phy_fn = lpddr4_get_phy_fn(params, ctl_fn); lpddr4_set_phy(dram, params, phy_fn, &dfs_cfgs_lpddr4[ctl_fn]); lpddr4_set_ctl(dram, params, ctl_fn, dfs_cfgs_lpddr4[ctl_fn].base.ddr_freq); printf("%s: change freq to %d mhz %d, %d\n", __func__, dfs_cfgs_lpddr4[ctl_fn].base.ddr_freq, ctl_fn, phy_fn); } return 0; } #endif /* CONFIG_RAM_RK3399_LPDDR4 */ /* CS0,n=1 * CS1,n=2 * CS0 & CS1, n=3 * cs0_cap: MB unit */ static void dram_set_cs(const struct chan_info *chan, u32 cs_map, u32 cs0_cap, unsigned char dramtype) { u32 *denali_ctl = chan->pctl->denali_ctl; u32 *denali_pi = chan->pi->denali_pi; struct msch_regs *ddr_msch_regs = chan->msch; clrsetbits_le32(&denali_ctl[196], 0x3, cs_map); writel((cs0_cap / 32) | (((4096 - cs0_cap) / 32) << 8), &ddr_msch_regs->ddrsize); if (dramtype == LPDDR4) { if (cs_map == 1) cs_map = 0x5; else if (cs_map == 2) cs_map = 0xa; else cs_map = 0xF; } /*PI_41 PI_CS_MAP:RW:24:4*/ clrsetbits_le32(&denali_pi[41], 0xf << 24, cs_map << 24); if (cs_map == 1 && dramtype == DDR3) writel(0x2EC7FFFF, &denali_pi[34]); } static void dram_set_bw(const struct chan_info *chan, u32 bw) { u32 *denali_ctl = chan->pctl->denali_ctl; if (bw == 2) clrbits_le32(&denali_ctl[196], 1 << 16); else setbits_le32(&denali_ctl[196], 1 << 16); } static void dram_set_max_col(const struct chan_info *chan, u32 bw, u32 *pcol) { u32 *denali_ctl = chan->pctl->denali_ctl; struct msch_regs *ddr_msch_regs = chan->msch; u32 *denali_pi = chan->pi->denali_pi; u32 ddrconfig; clrbits_le32(&denali_ctl[191], 0xf); clrsetbits_le32(&denali_ctl[190], (7 << 24), ((16 - ((bw == 2) ? 14 : 15)) << 24)); /*PI_199 PI_COL_DIFF:RW:0:4*/ clrbits_le32(&denali_pi[199], 0xf); /*PI_155 PI_ROW_DIFF:RW:24:3*/ clrsetbits_le32(&denali_pi[155], (7 << 24), ((16 - 12) << 24)); ddrconfig = (bw == 2) ? 3 : 2; writel(ddrconfig | (ddrconfig << 8), &ddr_msch_regs->ddrconf); /* set max cs0 size */ writel((4096 / 32) | ((0 / 32) << 8), &ddr_msch_regs->ddrsize); *pcol = 12; } static void dram_set_max_bank(const struct chan_info *chan, u32 bw, u32 *pbank, u32 *pcol) { u32 *denali_ctl = chan->pctl->denali_ctl; u32 *denali_pi = chan->pi->denali_pi; clrbits_le32(&denali_ctl[191], 0xf); clrbits_le32(&denali_ctl[190], (3 << 16)); /*PI_199 PI_COL_DIFF:RW:0:4*/ clrbits_le32(&denali_pi[199], 0xf); /*PI_155 PI_BANK_DIFF:RW:16:2*/ clrbits_le32(&denali_pi[155], (3 << 16)); *pbank = 3; *pcol = 12; } static void dram_set_max_row(const struct chan_info *chan, u32 bw, u32 *prow, u32 *pbank, u32 *pcol) { u32 *denali_ctl = chan->pctl->denali_ctl; u32 *denali_pi = chan->pi->denali_pi; struct msch_regs *ddr_msch_regs = chan->msch; clrsetbits_le32(&denali_ctl[191], 0xf, 12 - 10); clrbits_le32(&denali_ctl[190], (0x3 << 16) | (0x7 << 24)); /*PI_199 PI_COL_DIFF:RW:0:4*/ clrsetbits_le32(&denali_pi[199], 0xf, 12 - 10); /*PI_155 PI_ROW_DIFF:RW:24:3 PI_BANK_DIFF:RW:16:2*/ clrbits_le32(&denali_pi[155], (0x3 << 16) | (0x7 << 24)); writel(1 | (1 << 8), &ddr_msch_regs->ddrconf); /* set max cs0 size */ writel((4096 / 32) | ((0 / 32) << 8), &ddr_msch_regs->ddrsize); *prow = 16; *pbank = 3; *pcol = (bw == 2) ? 10 : 11; } static u64 dram_detect_cap(struct dram_info *dram, struct rk3399_sdram_params *params, unsigned char channel) { const struct chan_info *chan = &dram->chan[channel]; struct sdram_cap_info *cap_info = ¶ms->ch[channel].cap_info; u32 bw; u32 col_tmp; u32 bk_tmp; u32 row_tmp; u32 cs0_cap; u32 training_flag; u32 ddrconfig; /* detect bw */ bw = 2; if (params->base.dramtype != LPDDR4) { dram_set_bw(chan, bw); cap_info->bw = bw; if (data_training(dram, channel, params, PI_READ_GATE_TRAINING)) { bw = 1; dram_set_bw(chan, 1); cap_info->bw = bw; if (data_training(dram, channel, params, PI_READ_GATE_TRAINING)) { printf("16bit error!!!\n"); goto error; } } } /* * LPDDR3 CA training msut be trigger before other training. * DDR3 is not have CA training. */ if (params->base.dramtype == LPDDR3) training_flag = PI_WRITE_LEVELING; else training_flag = PI_FULL_TRAINING; if (params->base.dramtype != LPDDR4) { if (data_training(dram, channel, params, training_flag)) { printf("full training error!!!\n"); goto error; } } /* detect col */ dram_set_max_col(chan, bw, &col_tmp); if (sdram_detect_col(cap_info, col_tmp) != 0) goto error; /* detect bank */ dram_set_max_bank(chan, bw, &bk_tmp, &col_tmp); sdram_detect_bank(cap_info, col_tmp, bk_tmp); /* detect row */ dram_set_max_row(chan, bw, &row_tmp, &bk_tmp, &col_tmp); if (sdram_detect_row(cap_info, col_tmp, bk_tmp, row_tmp) != 0) goto error; /* detect row_3_4 */ sdram_detect_row_3_4(cap_info, col_tmp, bk_tmp); /* set ddrconfig */ cs0_cap = (1 << (cap_info->cs0_row + cap_info->col + cap_info->bk + cap_info->bw - 20)); if (cap_info->row_3_4) cs0_cap = cs0_cap * 3 / 4; cap_info->cs1_row = cap_info->cs0_row; set_memory_map(chan, channel, params); ddrconfig = calculate_ddrconfig(params, channel); if (-1 == ddrconfig) goto error; set_ddrconfig(chan, params, channel, cap_info->ddrconfig); /* detect cs1 row */ sdram_detect_cs1_row(cap_info, params->base.dramtype); /* detect die bw */ sdram_detect_dbw(cap_info, params->base.dramtype); return 0; error: return (-1); } static unsigned char calculate_stride(struct rk3399_sdram_params *params) { unsigned int gstride_type; unsigned int channel; unsigned int chinfo = 0; unsigned int cap = 0; unsigned int stride = -1; unsigned int ch_cap[2] = {0, 0}; gstride_type = STRIDE_256B; for (channel = 0; channel < 2; channel++) { unsigned int cs0_cap = 0; unsigned int cs1_cap = 0; struct sdram_cap_info *cap_info = ¶ms->ch[channel].cap_info; if (cap_info->col == 0) continue; cs0_cap = (1 << (cap_info->cs0_row + cap_info->col + cap_info->bk + cap_info->bw - 20)); if (cap_info->rank > 1) cs1_cap = cs0_cap >> (cap_info->cs0_row - cap_info->cs1_row); if (cap_info->row_3_4) { cs0_cap = cs0_cap * 3 / 4; cs1_cap = cs1_cap * 3 / 4; } ch_cap[channel] = cs0_cap + cs1_cap; chinfo |= 1 << channel; } cap = ch_cap[0] + ch_cap[1]; if (params->base.num_channels == 1) { if (chinfo & 1) /* channel a only */ stride = 0x17; else /* channel b only */ stride = 0x18; } else {/* 2 channel */ if (ch_cap[0] == ch_cap[1]) { /* interleaved */ if (gstride_type == PART_STRIDE) { /* * first 64MB no interleaved other 256B interleaved * if 786M+768M.useful space from 0-1280MB and * 1536MB-1792MB * if 1.5G+1.5G(continuous).useful space from 0-2560MB * and 3072MB-3584MB */ stride = 0x1F; } else { switch (cap) { /* 512MB */ case 512: stride = 0; break; /* 1GB unstride or 256B stride*/ case 1024: stride = (gstride_type == UN_STRIDE) ? 0x1 : 0x5; break; /* * 768MB + 768MB same as total 2GB memory * useful space: 0-768MB 1GB-1792MB */ case 1536: /* 2GB unstride or 256B or 512B stride */ case 2048: stride = (gstride_type == UN_STRIDE) ? 0x2 : ((gstride_type == STRIDE_512B) ? 0xA : 0x9); break; /* 1536MB + 1536MB */ case 3072: stride = (gstride_type == UN_STRIDE) ? 0x3 : ((gstride_type == STRIDE_512B) ? 0x12 : 0x11); break; /* 4GB unstride or 128B,256B,512B,4KB stride */ case 4096: stride = (gstride_type == UN_STRIDE) ? 0x3 : (0xC + gstride_type); break; } } } if (ch_cap[0] == 2048 && ch_cap[1] == 1024) { /* 2GB + 1GB */ stride = (gstride_type == UN_STRIDE) ? 0x3 : 0x19; } /* * remain two channel capability not equal OR capability * power function of 2 */ if (stride == (-1)) { switch ((ch_cap[0] > ch_cap[1]) ? ch_cap[0] : ch_cap[1]) { case 256: /* 256MB + 128MB */ stride = 0; break; case 512: /* 512MB + 256MB */ stride = 1; break; case 1024:/* 1GB + 128MB/256MB/384MB/512MB/768MB */ stride = 2; break; case 2048: /* 2GB + 128MB/256MB/384MB/512MB/768MB/1GB */ stride = 3; break; default: break; } } if (stride == (-1)) goto error; } switch (stride) { case 0xc: printf("128B stride\n"); break; case 5: case 9: case 0xd: case 0x11: case 0x19: printf("256B stride\n"); break; case 0xa: case 0xe: case 0x12: printf("512B stride\n"); break; case 0xf: printf("4K stride\n"); break; case 0x1f: printf("32MB + 256B stride\n"); break; default: printf("no stride\n"); } sdram_print_stride(stride); return stride; error: printf("Cap not support!\n"); return (-1); } static void clear_channel_params(struct rk3399_sdram_params *params, u8 channel) { params->ch[channel].cap_info.rank = 0; params->ch[channel].cap_info.col = 0; params->ch[channel].cap_info.bk = 0; params->ch[channel].cap_info.bw = 32; params->ch[channel].cap_info.dbw = 32; params->ch[channel].cap_info.row_3_4 = 0; params->ch[channel].cap_info.cs0_row = 0; params->ch[channel].cap_info.cs1_row = 0; params->ch[channel].cap_info.ddrconfig = 0; } static int sdram_init(struct dram_info *dram, struct rk3399_sdram_params *params) { unsigned char dramtype = params->base.dramtype; unsigned int ddr_freq = params->base.ddr_freq; int channel, ch, rank; u32 tmp, ret; debug("Starting SDRAM initialization...\n"); if ((dramtype == DDR3 && ddr_freq > 933) || (dramtype == LPDDR3 && ddr_freq > 933) || (dramtype == LPDDR4 && ddr_freq > 800)) { debug("SDRAM frequency is to high!"); return -E2BIG; } /* detect rank */ for (ch = 0; ch < 2; ch++) { params->ch[ch].cap_info.rank = 2; for (rank = 2; rank != 0; rank--) { for (channel = 0; channel < 2; channel++) { const struct chan_info *chan = &dram->chan[channel]; struct rockchip_cru *cru = dram->cru; struct rk3399_ddr_publ_regs *publ = chan->publ; phy_pctrl_reset(cru, channel); phy_dll_bypass_set(publ, ddr_freq); pctl_cfg(dram, chan, channel, params); } /* start to trigger initialization */ pctl_start(dram, params, 3); /* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */ if (dramtype == LPDDR3) udelay(10); tmp = (rank == 2) ? 3 : 1; dram_set_cs(&dram->chan[ch], tmp, 2048, params->base.dramtype); params->ch[ch].cap_info.rank = rank; ret = dram->ops->data_training_first(dram, ch, rank, params); if (!ret) { debug("%s: data trained for rank %d, ch %d\n", __func__, rank, ch); break; } } /* Computed rank with associated channel number */ params->ch[ch].cap_info.rank = rank; } params->base.num_channels = 0; for (channel = 0; channel < 2; channel++) { const struct chan_info *chan = &dram->chan[channel]; struct sdram_cap_info *cap_info = ¶ms->ch[channel].cap_info; if (cap_info->rank == 0) { clear_channel_params(params, 1); continue; } else { params->base.num_channels++; } printf("Channel "); printf(channel ? "1: " : "0: "); if (channel == 0) set_ddr_stride(dram->pmusgrf, 0x17); else set_ddr_stride(dram->pmusgrf, 0x18); if (dram_detect_cap(dram, params, channel)) { printf("Cap error!\n"); continue; } sdram_print_ddr_info(cap_info, ¶ms->base); set_memory_map(chan, channel, params); cap_info->ddrconfig = calculate_ddrconfig(params, channel); if (-1 == cap_info->ddrconfig) { printf("no ddrconfig find, Cap not support!\n"); continue; } set_ddrconfig(chan, params, channel, cap_info->ddrconfig); set_cap_relate_config(chan, params, channel); } if (params->base.num_channels == 0) { printf("%s: ", __func__); sdram_print_dram_type(params->base.dramtype); printf(" - %dMHz failed!\n", params->base.ddr_freq); return -EINVAL; } params->base.stride = calculate_stride(params); dram_all_config(dram, params); dram->ops->set_rate_index(dram, params); debug("Finish SDRAM initialization...\n"); return 0; } static int rk3399_dmc_ofdata_to_platdata(struct udevice *dev) { #if !CONFIG_IS_ENABLED(OF_PLATDATA) struct rockchip_dmc_plat *plat = dev_get_platdata(dev); int ret; ret = dev_read_u32_array(dev, "rockchip,sdram-params", (u32 *)&plat->sdram_params, sizeof(plat->sdram_params) / sizeof(u32)); if (ret) { printf("%s: Cannot read rockchip,sdram-params %d\n", __func__, ret); return ret; } ret = regmap_init_mem(dev_ofnode(dev), &plat->map); if (ret) printf("%s: regmap failed %d\n", __func__, ret); #endif return 0; } #if CONFIG_IS_ENABLED(OF_PLATDATA) static int conv_of_platdata(struct udevice *dev) { struct rockchip_dmc_plat *plat = dev_get_platdata(dev); struct dtd_rockchip_rk3399_dmc *dtplat = &plat->dtplat; int ret; ret = regmap_init_mem_platdata(dev, dtplat->reg, ARRAY_SIZE(dtplat->reg) / 2, &plat->map); if (ret) return ret; return 0; } #endif static const struct sdram_rk3399_ops rk3399_ops = { #if !defined(CONFIG_RAM_RK3399_LPDDR4) .data_training_first = data_training_first, .set_rate_index = switch_to_phy_index1, .modify_param = modify_param, .get_phy_index_params = get_phy_index_params, #else .data_training_first = lpddr4_mr_detect, .set_rate_index = lpddr4_set_rate, .modify_param = lpddr4_modify_param, .get_phy_index_params = lpddr4_get_phy_index_params, #endif }; static int rk3399_dmc_init(struct udevice *dev) { struct dram_info *priv = dev_get_priv(dev); struct rockchip_dmc_plat *plat = dev_get_platdata(dev); int ret; #if !CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3399_sdram_params *params = &plat->sdram_params; #else struct dtd_rockchip_rk3399_dmc *dtplat = &plat->dtplat; struct rk3399_sdram_params *params = (void *)dtplat->rockchip_sdram_params; ret = conv_of_platdata(dev); if (ret) return ret; #endif priv->ops = &rk3399_ops; priv->cic = syscon_get_first_range(ROCKCHIP_SYSCON_CIC); priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); priv->pmu = syscon_get_first_range(ROCKCHIP_SYSCON_PMU); priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF); priv->pmusgrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUSGRF); priv->pmucru = rockchip_get_pmucru(); priv->cru = rockchip_get_cru(); priv->chan[0].pctl = regmap_get_range(plat->map, 0); priv->chan[0].pi = regmap_get_range(plat->map, 1); priv->chan[0].publ = regmap_get_range(plat->map, 2); priv->chan[0].msch = regmap_get_range(plat->map, 3); priv->chan[1].pctl = regmap_get_range(plat->map, 4); priv->chan[1].pi = regmap_get_range(plat->map, 5); priv->chan[1].publ = regmap_get_range(plat->map, 6); priv->chan[1].msch = regmap_get_range(plat->map, 7); debug("con reg %p %p %p %p %p %p %p %p\n", priv->chan[0].pctl, priv->chan[0].pi, priv->chan[0].publ, priv->chan[0].msch, priv->chan[1].pctl, priv->chan[1].pi, priv->chan[1].publ, priv->chan[1].msch); debug("cru %p, cic %p, grf %p, sgrf %p, pmucru %p, pmu %p\n", priv->cru, priv->cic, priv->pmugrf, priv->pmusgrf, priv->pmucru, priv->pmu); #if CONFIG_IS_ENABLED(OF_PLATDATA) ret = clk_get_by_index_platdata(dev, 0, dtplat->clocks, &priv->ddr_clk); #else ret = clk_get_by_index(dev, 0, &priv->ddr_clk); #endif if (ret) { printf("%s clk get failed %d\n", __func__, ret); return ret; } ret = clk_set_rate(&priv->ddr_clk, params->base.ddr_freq * MHz); if (ret < 0) { printf("%s clk set failed %d\n", __func__, ret); return ret; } ret = sdram_init(priv, params); if (ret < 0) { printf("%s DRAM init failed %d\n", __func__, ret); return ret; } return 0; } #endif static int rk3399_dmc_probe(struct udevice *dev) { #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) if (rk3399_dmc_init(dev)) return 0; #else struct dram_info *priv = dev_get_priv(dev); priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF); debug("%s: pmugrf = %p\n", __func__, priv->pmugrf); priv->info.base = CONFIG_SYS_SDRAM_BASE; priv->info.size = rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg2); #endif return 0; } static int rk3399_dmc_get_info(struct udevice *dev, struct ram_info *info) { struct dram_info *priv = dev_get_priv(dev); *info = priv->info; return 0; } static struct ram_ops rk3399_dmc_ops = { .get_info = rk3399_dmc_get_info, }; static const struct udevice_id rk3399_dmc_ids[] = { { .compatible = "rockchip,rk3399-dmc" }, { } }; U_BOOT_DRIVER(dmc_rk3399) = { .name = "rockchip_rk3399_dmc", .id = UCLASS_RAM, .of_match = rk3399_dmc_ids, .ops = &rk3399_dmc_ops, #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) .ofdata_to_platdata = rk3399_dmc_ofdata_to_platdata, #endif .probe = rk3399_dmc_probe, .priv_auto_alloc_size = sizeof(struct dram_info), #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) .platdata_auto_alloc_size = sizeof(struct rockchip_dmc_plat), #endif };