// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2014 Freescale Semiconductor, Inc. * Author: Nitin Garg * Ye Li */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* board will busyloop until this many degrees C below CPU max temperature */ #define TEMPERATURE_HOT_DELTA 5 /* CPU maxT - 5C */ #define FACTOR0 10000000 #define FACTOR1 15423 #define FACTOR2 4148468 #define OFFSET 3580661 #define MEASURE_FREQ 327 #define TEMPERATURE_MIN -40 #define TEMPERATURE_HOT 85 #define TEMPERATURE_MAX 125 #define TEMPSENSE0_TEMP_CNT_SHIFT 8 #define TEMPSENSE0_TEMP_CNT_MASK (0xfff << TEMPSENSE0_TEMP_CNT_SHIFT) #define TEMPSENSE0_FINISHED (1 << 2) #define TEMPSENSE0_MEASURE_TEMP (1 << 1) #define TEMPSENSE0_POWER_DOWN (1 << 0) #define MISC0_REFTOP_SELBIASOFF (1 << 3) #define TEMPSENSE1_MEASURE_FREQ 0xffff struct thermal_data { unsigned int fuse; int critical; int minc; int maxc; }; #if defined(CONFIG_MX6) static int read_cpu_temperature(struct udevice *dev) { int temperature; unsigned int reg, n_meas; const struct imx_thermal_plat *pdata = dev_get_platdata(dev); struct anatop_regs *anatop = (struct anatop_regs *)pdata->regs; struct thermal_data *priv = dev_get_priv(dev); u32 fuse = priv->fuse; int t1, n1; s64 c1, c2; s64 temp64; s32 rem; /* * Sensor data layout: * [31:20] - sensor value @ 25C * We use universal formula now and only need sensor value @ 25C * slope = 0.4445388 - (0.0016549 * 25C fuse) */ n1 = fuse >> 20; t1 = 25; /* t1 always 25C */ /* * Derived from linear interpolation: * slope = 0.4445388 - (0.0016549 * 25C fuse) * slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0 * offset = 3.580661 * offset = OFFSET / 1000000 * (Nmeas - n1) / (Tmeas - t1 - offset) = slope * We want to reduce this down to the minimum computation necessary * for each temperature read. Also, we want Tmeas in millicelsius * and we don't want to lose precision from integer division. So... * Tmeas = (Nmeas - n1) / slope + t1 + offset * milli_Tmeas = 1000000 * (Nmeas - n1) / slope + 1000000 * t1 + OFFSET * milli_Tmeas = -1000000 * (n1 - Nmeas) / slope + 1000000 * t1 + OFFSET * Let constant c1 = (-1000000 / slope) * milli_Tmeas = (n1 - Nmeas) * c1 + 1000000 * t1 + OFFSET * Let constant c2 = n1 *c1 + 1000000 * t1 * milli_Tmeas = (c2 - Nmeas * c1) + OFFSET * Tmeas = ((c2 - Nmeas * c1) + OFFSET) / 1000000 */ temp64 = FACTOR0; temp64 *= 1000000; temp64 = div_s64_rem(temp64, FACTOR1 * n1 - FACTOR2, &rem); c1 = temp64; c2 = n1 * c1 + 1000000 * t1; /* * now we only use single measure, every time we read * the temperature, we will power on/down anadig thermal * module */ writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_clr); writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_set); /* setup measure freq */ reg = readl(&anatop->tempsense1); reg &= ~TEMPSENSE1_MEASURE_FREQ; reg |= MEASURE_FREQ; writel(reg, &anatop->tempsense1); /* start the measurement process */ writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_clr); writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr); writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_set); /* make sure that the latest temp is valid */ while ((readl(&anatop->tempsense0) & TEMPSENSE0_FINISHED) == 0) udelay(10000); /* read temperature count */ reg = readl(&anatop->tempsense0); n_meas = (reg & TEMPSENSE0_TEMP_CNT_MASK) >> TEMPSENSE0_TEMP_CNT_SHIFT; writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr); /* Tmeas = (c2 - Nmeas * c1 + OFFSET) / 1000000 */ temperature = div_s64_rem(c2 - n_meas * c1 + OFFSET, 1000000, &rem); /* power down anatop thermal sensor */ writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_set); writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_clr); return temperature; } #elif defined(CONFIG_MX7) static int read_cpu_temperature(struct udevice *dev) { unsigned int reg, tmp; unsigned int raw_25c, te1; int temperature; unsigned int *priv = dev_get_priv(dev); u32 fuse = *priv; struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *) ANATOP_BASE_ADDR; /* * fuse data layout: * [31:21] sensor value @ 25C * [20:18] hot temperature value * [17:9] sensor value of room * [8:0] sensor value of hot */ raw_25c = fuse >> 21; if (raw_25c == 0) raw_25c = 25; te1 = (fuse >> 9) & 0x1ff; /* * now we only use single measure, every time we read * the temperature, we will power on/down anadig thermal * module */ writel(TEMPMON_HW_ANADIG_TEMPSENSE1_POWER_DOWN_MASK, &ccm_anatop->tempsense1_clr); writel(PMU_REF_REFTOP_SELFBIASOFF_MASK, &ccm_anatop->ref_set); /* write measure freq */ reg = readl(&ccm_anatop->tempsense1); reg &= ~TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_FREQ_MASK; reg |= TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_FREQ(MEASURE_FREQ); writel(reg, &ccm_anatop->tempsense1); writel(TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_TEMP_MASK, &ccm_anatop->tempsense1_clr); writel(TEMPMON_HW_ANADIG_TEMPSENSE1_FINISHED_MASK, &ccm_anatop->tempsense1_clr); writel(TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_TEMP_MASK, &ccm_anatop->tempsense1_set); if (soc_rev() >= CHIP_REV_1_1) { while ((readl(&ccm_anatop->tempsense1) & TEMPMON_HW_ANADIG_TEMPSENSE1_FINISHED_MASK) == 0) ; reg = readl(&ccm_anatop->tempsense1); tmp = (reg & TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_MASK) >> TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_SHIFT; } else { /* * Since we can not rely on finish bit, use 10ms * delay to get temperature. From RM, 17us is * enough to get data, but to gurantee to get * the data, delay 10ms here. */ udelay(10000); reg = readl(&ccm_anatop->tempsense1); tmp = (reg & TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_MASK) >> TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_SHIFT; } writel(TEMPMON_HW_ANADIG_TEMPSENSE1_FINISHED_MASK, &ccm_anatop->tempsense1_clr); /* power down anatop thermal sensor */ writel(TEMPMON_HW_ANADIG_TEMPSENSE1_POWER_DOWN_MASK, &ccm_anatop->tempsense1_set); writel(PMU_REF_REFTOP_SELFBIASOFF_MASK, &ccm_anatop->ref_clr); /* Single point */ temperature = tmp - (te1 - raw_25c); return temperature; } #endif int imx_thermal_get_temp(struct udevice *dev, int *temp) { struct thermal_data *priv = dev_get_priv(dev); int cpu_tmp = 0; cpu_tmp = read_cpu_temperature(dev); while (cpu_tmp >= priv->critical) { printf("CPU Temperature (%dC) too close to max (%dC)", cpu_tmp, priv->maxc); puts(" waiting...\n"); udelay(5000000); cpu_tmp = read_cpu_temperature(dev); } *temp = cpu_tmp; return 0; } static const struct dm_thermal_ops imx_thermal_ops = { .get_temp = imx_thermal_get_temp, }; static int imx_thermal_probe(struct udevice *dev) { unsigned int fuse = ~0; const struct imx_thermal_plat *pdata = dev_get_platdata(dev); struct thermal_data *priv = dev_get_priv(dev); /* Read Temperature calibration data fuse */ fuse_read(pdata->fuse_bank, pdata->fuse_word, &fuse); if (is_soc_type(MXC_SOC_MX6)) { /* Check for valid fuse */ if (fuse == 0 || fuse == ~0) { debug("CPU: Thermal invalid data, fuse: 0x%x\n", fuse); return -EPERM; } } else if (is_soc_type(MXC_SOC_MX7)) { /* No Calibration data in FUSE? */ if ((fuse & 0x3ffff) == 0) return -EPERM; /* We do not support 105C TE2 */ if (((fuse & 0x1c0000) >> 18) == 0x6) return -EPERM; } /* set critical cooling temp */ get_cpu_temp_grade(&priv->minc, &priv->maxc); priv->critical = priv->maxc - TEMPERATURE_HOT_DELTA; priv->fuse = fuse; enable_thermal_clk(); return 0; } U_BOOT_DRIVER(imx_thermal) = { .name = "imx_thermal", .id = UCLASS_THERMAL, .ops = &imx_thermal_ops, .probe = imx_thermal_probe, .priv_auto_alloc_size = sizeof(struct thermal_data), .flags = DM_FLAG_PRE_RELOC, };