1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Direct Memory Access U-Class driver
*
* Copyright (C) 2018 Álvaro Fernández Rojas <noltari@gmail.com>
* Copyright (C) 2015 - 2018 Texas Instruments Incorporated <www.ti.com>
* Written by Mugunthan V N <mugunthanvnm@ti.com>
*
* Author: Mugunthan V N <mugunthanvnm@ti.com>
*/
#define LOG_CATEGORY UCLASS_DMA
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <log.h>
#include <malloc.h>
#include <asm/cache.h>
#include <dm/read.h>
#include <dma-uclass.h>
#include <dt-structs.h>
#include <errno.h>
#ifdef CONFIG_DMA_CHANNELS
static inline struct dma_ops *dma_dev_ops(struct udevice *dev)
{
return (struct dma_ops *)dev->driver->ops;
}
# if CONFIG_IS_ENABLED(OF_CONTROL)
static int dma_of_xlate_default(struct dma *dma,
struct ofnode_phandle_args *args)
{
debug("%s(dma=%p)\n", __func__, dma);
if (args->args_count > 1) {
pr_err("Invaild args_count: %d\n", args->args_count);
return -EINVAL;
}
if (args->args_count)
dma->id = args->args[0];
else
dma->id = 0;
return 0;
}
int dma_get_by_index(struct udevice *dev, int index, struct dma *dma)
{
int ret;
struct ofnode_phandle_args args;
struct udevice *dev_dma;
const struct dma_ops *ops;
debug("%s(dev=%p, index=%d, dma=%p)\n", __func__, dev, index, dma);
assert(dma);
dma->dev = NULL;
ret = dev_read_phandle_with_args(dev, "dmas", "#dma-cells", 0, index,
&args);
if (ret) {
pr_err("%s: dev_read_phandle_with_args failed: err=%d\n",
__func__, ret);
return ret;
}
ret = uclass_get_device_by_ofnode(UCLASS_DMA, args.node, &dev_dma);
if (ret) {
pr_err("%s: uclass_get_device_by_ofnode failed: err=%d\n",
__func__, ret);
return ret;
}
dma->dev = dev_dma;
ops = dma_dev_ops(dev_dma);
if (ops->of_xlate)
ret = ops->of_xlate(dma, &args);
else
ret = dma_of_xlate_default(dma, &args);
if (ret) {
pr_err("of_xlate() failed: %d\n", ret);
return ret;
}
return dma_request(dev_dma, dma);
}
int dma_get_by_name(struct udevice *dev, const char *name, struct dma *dma)
{
int index;
debug("%s(dev=%p, name=%s, dma=%p)\n", __func__, dev, name, dma);
dma->dev = NULL;
index = dev_read_stringlist_search(dev, "dma-names", name);
if (index < 0) {
pr_err("dev_read_stringlist_search() failed: %d\n", index);
return index;
}
return dma_get_by_index(dev, index, dma);
}
# endif /* OF_CONTROL */
int dma_request(struct udevice *dev, struct dma *dma)
{
struct dma_ops *ops = dma_dev_ops(dev);
debug("%s(dev=%p, dma=%p)\n", __func__, dev, dma);
dma->dev = dev;
if (!ops->request)
return 0;
return ops->request(dma);
}
int dma_free(struct dma *dma)
{
struct dma_ops *ops = dma_dev_ops(dma->dev);
debug("%s(dma=%p)\n", __func__, dma);
if (!ops->rfree)
return 0;
return ops->rfree(dma);
}
int dma_enable(struct dma *dma)
{
struct dma_ops *ops = dma_dev_ops(dma->dev);
debug("%s(dma=%p)\n", __func__, dma);
if (!ops->enable)
return -ENOSYS;
return ops->enable(dma);
}
int dma_disable(struct dma *dma)
{
struct dma_ops *ops = dma_dev_ops(dma->dev);
debug("%s(dma=%p)\n", __func__, dma);
if (!ops->disable)
return -ENOSYS;
return ops->disable(dma);
}
int dma_prepare_rcv_buf(struct dma *dma, void *dst, size_t size)
{
struct dma_ops *ops = dma_dev_ops(dma->dev);
debug("%s(dma=%p)\n", __func__, dma);
if (!ops->prepare_rcv_buf)
return -1;
return ops->prepare_rcv_buf(dma, dst, size);
}
int dma_receive(struct dma *dma, void **dst, void *metadata)
{
struct dma_ops *ops = dma_dev_ops(dma->dev);
debug("%s(dma=%p)\n", __func__, dma);
if (!ops->receive)
return -ENOSYS;
return ops->receive(dma, dst, metadata);
}
int dma_send(struct dma *dma, void *src, size_t len, void *metadata)
{
struct dma_ops *ops = dma_dev_ops(dma->dev);
debug("%s(dma=%p)\n", __func__, dma);
if (!ops->send)
return -ENOSYS;
return ops->send(dma, src, len, metadata);
}
int dma_get_cfg(struct dma *dma, u32 cfg_id, void **cfg_data)
{
struct dma_ops *ops = dma_dev_ops(dma->dev);
debug("%s(dma=%p)\n", __func__, dma);
if (!ops->get_cfg)
return -ENOSYS;
return ops->get_cfg(dma, cfg_id, cfg_data);
}
#endif /* CONFIG_DMA_CHANNELS */
int dma_get_device(u32 transfer_type, struct udevice **devp)
{
struct udevice *dev;
int ret;
for (ret = uclass_first_device(UCLASS_DMA, &dev); dev && !ret;
ret = uclass_next_device(&dev)) {
struct dma_dev_priv *uc_priv;
uc_priv = dev_get_uclass_priv(dev);
if (uc_priv->supported & transfer_type)
break;
}
if (!dev) {
pr_debug("No DMA device found that supports %x type\n",
transfer_type);
return -EPROTONOSUPPORT;
}
*devp = dev;
return ret;
}
int dma_memcpy(void *dst, void *src, size_t len)
{
struct udevice *dev;
const struct dma_ops *ops;
int ret;
ret = dma_get_device(DMA_SUPPORTS_MEM_TO_MEM, &dev);
if (ret < 0)
return ret;
ops = device_get_ops(dev);
if (!ops->transfer)
return -ENOSYS;
/* Invalidate the area, so no writeback into the RAM races with DMA */
invalidate_dcache_range((unsigned long)dst, (unsigned long)dst +
roundup(len, ARCH_DMA_MINALIGN));
return ops->transfer(dev, DMA_MEM_TO_MEM, dst, src, len);
}
UCLASS_DRIVER(dma) = {
.id = UCLASS_DMA,
.name = "dma",
.flags = DM_UC_FLAG_SEQ_ALIAS,
.per_device_auto = sizeof(struct dma_dev_priv),
};
|