1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
/*
* Copyright (C) 2012
* Altera Corporation <www.altera.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <malloc.h>
#include <spi.h>
#include <asm/errno.h>
#include "cadence_qspi.h"
#define CQSPI_STIG_READ 0
#define CQSPI_STIG_WRITE 1
#define CQSPI_INDIRECT_READ 2
#define CQSPI_INDIRECT_WRITE 3
DECLARE_GLOBAL_DATA_PTR;
static int cadence_spi_write_speed(struct udevice *bus, uint hz)
{
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
cadence_qspi_apb_config_baudrate_div(priv->regbase,
CONFIG_CQSPI_REF_CLK, hz);
/* Reconfigure delay timing if speed is changed. */
cadence_qspi_apb_delay(priv->regbase, CONFIG_CQSPI_REF_CLK, hz,
plat->tshsl_ns, plat->tsd2d_ns,
plat->tchsh_ns, plat->tslch_ns);
return 0;
}
/* Calibration sequence to determine the read data capture delay register */
static int spi_calibration(struct udevice *bus, uint hz)
{
struct cadence_spi_priv *priv = dev_get_priv(bus);
void *base = priv->regbase;
u8 opcode_rdid = 0x9F;
unsigned int idcode = 0, temp = 0;
int err = 0, i, range_lo = -1, range_hi = -1;
/* start with slowest clock (1 MHz) */
cadence_spi_write_speed(bus, 1000000);
/* configure the read data capture delay register to 0 */
cadence_qspi_apb_readdata_capture(base, 1, 0);
/* Enable QSPI */
cadence_qspi_apb_controller_enable(base);
/* read the ID which will be our golden value */
err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid,
3, (u8 *)&idcode);
if (err) {
puts("SF: Calibration failed (read)\n");
return err;
}
/* use back the intended clock and find low range */
cadence_spi_write_speed(bus, hz);
for (i = 0; i < CQSPI_READ_CAPTURE_MAX_DELAY; i++) {
/* Disable QSPI */
cadence_qspi_apb_controller_disable(base);
/* reconfigure the read data capture delay register */
cadence_qspi_apb_readdata_capture(base, 1, i);
/* Enable back QSPI */
cadence_qspi_apb_controller_enable(base);
/* issue a RDID to get the ID value */
err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid,
3, (u8 *)&temp);
if (err) {
puts("SF: Calibration failed (read)\n");
return err;
}
/* search for range lo */
if (range_lo == -1 && temp == idcode) {
range_lo = i;
continue;
}
/* search for range hi */
if (range_lo != -1 && temp != idcode) {
range_hi = i - 1;
break;
}
range_hi = i;
}
if (range_lo == -1) {
puts("SF: Calibration failed (low range)\n");
return err;
}
/* Disable QSPI for subsequent initialization */
cadence_qspi_apb_controller_disable(base);
/* configure the final value for read data capture delay register */
cadence_qspi_apb_readdata_capture(base, 1, (range_hi + range_lo) / 2);
debug("SF: Read data capture delay calibrated to %i (%i - %i)\n",
(range_hi + range_lo) / 2, range_lo, range_hi);
/* just to ensure we do once only when speed or chip select change */
priv->qspi_calibrated_hz = hz;
priv->qspi_calibrated_cs = spi_chip_select(bus);
return 0;
}
static int cadence_spi_set_speed(struct udevice *bus, uint hz)
{
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
int err;
/* Disable QSPI */
cadence_qspi_apb_controller_disable(priv->regbase);
/*
* Calibration required for different current SCLK speed, requested
* SCLK speed or chip select
*/
if (priv->previous_hz != hz ||
priv->qspi_calibrated_hz != hz ||
priv->qspi_calibrated_cs != spi_chip_select(bus)) {
err = spi_calibration(bus, hz);
if (err)
return err;
/* prevent calibration run when same as previous request */
priv->previous_hz = hz;
}
/* Enable QSPI */
cadence_qspi_apb_controller_enable(priv->regbase);
debug("%s: speed=%d\n", __func__, hz);
return 0;
}
static int cadence_spi_probe(struct udevice *bus)
{
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
priv->regbase = plat->regbase;
priv->ahbbase = plat->ahbbase;
if (!priv->qspi_is_init) {
cadence_qspi_apb_controller_init(plat);
priv->qspi_is_init = 1;
}
return 0;
}
static int cadence_spi_set_mode(struct udevice *bus, uint mode)
{
struct cadence_spi_priv *priv = dev_get_priv(bus);
unsigned int clk_pol = (mode & SPI_CPOL) ? 1 : 0;
unsigned int clk_pha = (mode & SPI_CPHA) ? 1 : 0;
/* Disable QSPI */
cadence_qspi_apb_controller_disable(priv->regbase);
/* Set SPI mode */
cadence_qspi_apb_set_clk_mode(priv->regbase, clk_pol, clk_pha);
/* Enable QSPI */
cadence_qspi_apb_controller_enable(priv->regbase);
return 0;
}
static int cadence_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus);
void *base = priv->regbase;
u8 *cmd_buf = priv->cmd_buf;
size_t data_bytes;
int err = 0;
u32 mode = CQSPI_STIG_WRITE;
if (flags & SPI_XFER_BEGIN) {
/* copy command to local buffer */
priv->cmd_len = bitlen / 8;
memcpy(cmd_buf, dout, priv->cmd_len);
}
if (flags == (SPI_XFER_BEGIN | SPI_XFER_END)) {
/* if start and end bit are set, the data bytes is 0. */
data_bytes = 0;
} else {
data_bytes = bitlen / 8;
}
debug("%s: len=%d [bytes]\n", __func__, data_bytes);
/* Set Chip select */
cadence_qspi_apb_chipselect(base, spi_chip_select(dev),
CONFIG_CQSPI_DECODER);
if ((flags & SPI_XFER_END) || (flags == 0)) {
if (priv->cmd_len == 0) {
printf("QSPI: Error, command is empty.\n");
return -1;
}
if (din && data_bytes) {
/* read */
/* Use STIG if no address. */
if (!CQSPI_IS_ADDR(priv->cmd_len))
mode = CQSPI_STIG_READ;
else
mode = CQSPI_INDIRECT_READ;
} else if (dout && !(flags & SPI_XFER_BEGIN)) {
/* write */
if (!CQSPI_IS_ADDR(priv->cmd_len))
mode = CQSPI_STIG_WRITE;
else
mode = CQSPI_INDIRECT_WRITE;
}
switch (mode) {
case CQSPI_STIG_READ:
err = cadence_qspi_apb_command_read(
base, priv->cmd_len, cmd_buf,
data_bytes, din);
break;
case CQSPI_STIG_WRITE:
err = cadence_qspi_apb_command_write(base,
priv->cmd_len, cmd_buf,
data_bytes, dout);
break;
case CQSPI_INDIRECT_READ:
err = cadence_qspi_apb_indirect_read_setup(plat,
priv->cmd_len, cmd_buf);
if (!err) {
err = cadence_qspi_apb_indirect_read_execute
(plat, data_bytes, din);
}
break;
case CQSPI_INDIRECT_WRITE:
err = cadence_qspi_apb_indirect_write_setup
(plat, priv->cmd_len, cmd_buf);
if (!err) {
err = cadence_qspi_apb_indirect_write_execute
(plat, data_bytes, dout);
}
break;
default:
err = -1;
break;
}
if (flags & SPI_XFER_END) {
/* clear command buffer */
memset(cmd_buf, 0, sizeof(priv->cmd_buf));
priv->cmd_len = 0;
}
}
return err;
}
static int cadence_spi_ofdata_to_platdata(struct udevice *bus)
{
struct cadence_spi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = bus->of_offset;
int subnode;
u32 data[4];
int ret;
/* 2 base addresses are needed, lets get them from the DT */
ret = fdtdec_get_int_array(blob, node, "reg", data, ARRAY_SIZE(data));
if (ret) {
printf("Error: Can't get base addresses (ret=%d)!\n", ret);
return -ENODEV;
}
plat->regbase = (void *)data[0];
plat->ahbbase = (void *)data[2];
/* All other paramters are embedded in the child node */
subnode = fdt_first_subnode(blob, node);
if (subnode < 0) {
printf("Error: subnode with SPI flash config missing!\n");
return -ENODEV;
}
/* Use 500 KHz as a suitable default */
plat->max_hz = fdtdec_get_uint(blob, subnode, "spi-max-frequency",
500000);
/* Read other parameters from DT */
plat->page_size = fdtdec_get_int(blob, subnode, "page-size", 256);
plat->block_size = fdtdec_get_int(blob, subnode, "block-size", 16);
plat->tshsl_ns = fdtdec_get_int(blob, subnode, "tshsl-ns", 200);
plat->tsd2d_ns = fdtdec_get_int(blob, subnode, "tsd2d-ns", 255);
plat->tchsh_ns = fdtdec_get_int(blob, subnode, "tchsh-ns", 20);
plat->tslch_ns = fdtdec_get_int(blob, subnode, "tslch-ns", 20);
plat->sram_size = fdtdec_get_int(blob, node, "sram-size", 128);
debug("%s: regbase=%p ahbbase=%p max-frequency=%d page-size=%d\n",
__func__, plat->regbase, plat->ahbbase, plat->max_hz,
plat->page_size);
return 0;
}
static const struct dm_spi_ops cadence_spi_ops = {
.xfer = cadence_spi_xfer,
.set_speed = cadence_spi_set_speed,
.set_mode = cadence_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id cadence_spi_ids[] = {
{ .compatible = "cadence,qspi" },
{ }
};
U_BOOT_DRIVER(cadence_spi) = {
.name = "cadence_spi",
.id = UCLASS_SPI,
.of_match = cadence_spi_ids,
.ops = &cadence_spi_ops,
.ofdata_to_platdata = cadence_spi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct cadence_spi_platdata),
.priv_auto_alloc_size = sizeof(struct cadence_spi_priv),
.probe = cadence_spi_probe,
};
|