summaryrefslogtreecommitdiff
path: root/TAO/orbsvcs/tests/AVStreams/mpeg/source/mpeg_client/jrevdct.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'TAO/orbsvcs/tests/AVStreams/mpeg/source/mpeg_client/jrevdct.cpp')
-rw-r--r--TAO/orbsvcs/tests/AVStreams/mpeg/source/mpeg_client/jrevdct.cpp1461
1 files changed, 0 insertions, 1461 deletions
diff --git a/TAO/orbsvcs/tests/AVStreams/mpeg/source/mpeg_client/jrevdct.cpp b/TAO/orbsvcs/tests/AVStreams/mpeg/source/mpeg_client/jrevdct.cpp
deleted file mode 100644
index 6114517c580..00000000000
--- a/TAO/orbsvcs/tests/AVStreams/mpeg/source/mpeg_client/jrevdct.cpp
+++ /dev/null
@@ -1,1461 +0,0 @@
-/* $Id$ */
-
-/*
- * jrevdct.c
- *
- * Copyright (C) 1991, 1992, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the basic inverse-DCT transformation subroutine.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- *
- * I've made lots of modifications to attempt to take advantage of the
- * sparse nature of the DCT matrices we're getting. Although the logic
- * is cumbersome, it's straightforward and the resulting code is much
- * faster.
- *
- * A better way to do this would be to pass in the DCT block as a sparse
- * matrix, perhaps with the difference cases encoded.
- */
-
-#include <string.h>
-#include "video.h"
-#include "proto.h"
-#include "ace/OS.h"
-
-ACE_RCSID(mpeg_client, jrevdct, "$Id$")
-
-#define GLOBAL /* a function referenced thru EXTERNs */
-
-/* We assume that right shift corresponds to signed division by 2 with
- * rounding towards minus infinity. This is correct for typical "arithmetic
- * shift" instructions that shift in copies of the sign bit. But some
- * C compilers implement >> with an unsigned shift. For these machines you
- * must define RIGHT_SHIFT_IS_UNSIGNED.
- * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
- * It is only applied with constant shift counts. SHIFT_TEMPS must be
- * included in the variables of any routine using RIGHT_SHIFT.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define SHIFT_TEMPS INT32 shift_temp;
-#define RIGHT_SHIFT(x,shft) \
- ((shift_temp = (x)) < 0 ? \
- (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
- (shift_temp >> (shft)))
-#else
-#define SHIFT_TEMPS
-#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-/*
- * This routine is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/*
- * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
- * larger than the true IDCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D IDCT,
- * because the y0 and y4 inputs need not be divided by sqrt(N).
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (To scale up 12-bit sample data further, an
- * intermediate INT32 array would be needed.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
-
-#ifdef EIGHT_BIT_SAMPLES
-#define PASS1_BITS 2
-#else
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-
-#define ONE ((INT32) 1)
-
-#define CONST_SCALE (ONE << CONST_BITS)
-
-/* Convert a positive real constant to an integer scaled by CONST_SCALE.
- * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
- * you will pay a significant penalty in run time. In that case, figure
- * the correct integer constant values and insert them by hand.
- */
-
-#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
-
-/* Descale and correctly round an INT32 value that's scaled by N bits.
- * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- * the fudge factor is correct for either sign of X.
- */
-
-#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
- * this provides a useful speedup on many machines.
- * There is no way to specify a 16x16->32 multiply in portable C, but
- * some C compilers will do the right thing if you provide the correct
- * combination of casts.
- * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
- */
-
-#ifdef EIGHT_BIT_SAMPLES
-#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
-#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const)))
-#endif
-#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
-#define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const)))
-#endif
-#endif
-
-#ifndef MULTIPLY /* default definition */
-#define MULTIPLY(var,const) ((var) * (const))
-#endif
-
-/* Precomputed idct value arrays. */
-
-static DCTELEM PreIDCT[64][64];
-
-void j_rev_dct (DCTBLOCK data);
-
-/* Pre compute singleton coefficient IDCT values. */
-void
-init_pre_idct() {
- int i;
-
- for (i=0; i<64; i++) {
- memset((char *) PreIDCT[i], 0, 64*sizeof(DCTELEM));
- PreIDCT[i][i] = 2048;
- j_rev_dct(PreIDCT[i]);
- }
-}
-
-#ifndef ORIG_DCT
-
-
-/*
- * Perform the inverse DCT on one block of coefficients.
- */
-
-void
-j_rev_dct_sparse (DCTBLOCK data, int pos)
-{
- register DCTELEM *dataptr;
- short int val;
- DCTELEM *ndataptr;
- int scale, coeff, rr;
- register int *dp;
- register int v;
-
- /* If DC Coefficient. */
-
- if (pos == 0) {
- dp = (int *)data;
- v = *data;
- /* Compute 32 bit value to assign. This speeds things up a bit */
- if (v < 0) val = (v-3)>>3;
- else val = (v+4)>>3;
- v = val | (val << 16);
- dp[0] = v; dp[1] = v; dp[2] = v; dp[3] = v;
- dp[4] = v; dp[5] = v; dp[6] = v; dp[7] = v;
- dp[8] = v; dp[9] = v; dp[10] = v; dp[11] = v;
- dp[12] = v; dp[13] = v; dp[14] = v; dp[15] = v;
- dp[16] = v; dp[17] = v; dp[18] = v; dp[19] = v;
- dp[20] = v; dp[21] = v; dp[22] = v; dp[23] = v;
- dp[24] = v; dp[25] = v; dp[26] = v; dp[27] = v;
- dp[28] = v; dp[29] = v; dp[30] = v; dp[31] = v;
- return;
- }
-
- /* Some other coefficient. */
- dataptr = (DCTELEM *)data;
- coeff = dataptr[pos];
- ndataptr = PreIDCT[pos];
-
- for (rr=0; rr<4; rr++) {
- dataptr[0] = (ndataptr[0] * coeff) >> (CONST_BITS-2);
- dataptr[1] = (ndataptr[1] * coeff) >> (CONST_BITS-2);
- dataptr[2] = (ndataptr[2] * coeff) >> (CONST_BITS-2);
- dataptr[3] = (ndataptr[3] * coeff) >> (CONST_BITS-2);
- dataptr[4] = (ndataptr[4] * coeff) >> (CONST_BITS-2);
- dataptr[5] = (ndataptr[5] * coeff) >> (CONST_BITS-2);
- dataptr[6] = (ndataptr[6] * coeff) >> (CONST_BITS-2);
- dataptr[7] = (ndataptr[7] * coeff) >> (CONST_BITS-2);
- dataptr[8] = (ndataptr[8] * coeff) >> (CONST_BITS-2);
- dataptr[9] = (ndataptr[9] * coeff) >> (CONST_BITS-2);
- dataptr[10] = (ndataptr[10] * coeff) >> (CONST_BITS-2);
- dataptr[11] = (ndataptr[11] * coeff) >> (CONST_BITS-2);
- dataptr[12] = (ndataptr[12] * coeff) >> (CONST_BITS-2);
- dataptr[13] = (ndataptr[13] * coeff) >> (CONST_BITS-2);
- dataptr[14] = (ndataptr[14] * coeff) >> (CONST_BITS-2);
- dataptr[15] = (ndataptr[15] * coeff) >> (CONST_BITS-2);
- dataptr += 16;
- ndataptr += 16;
- }
- return;
-}
-
-
-void
-j_rev_dct (DCTBLOCK data)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3, z4, z5;
- INT32 d0, d1, d2, d3, d4, d5, d6, d7;
- register DCTELEM *dataptr;
- int rowctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- dataptr = data;
-
- for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any row in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * row DCT calculations can be simplified this way.
- */
-
- register int *idataptr = (int*)dataptr;
- d0 = dataptr[0];
- d1 = dataptr[1];
- if ((d1 == 0) && (idataptr[1] | idataptr[2] | idataptr[3]) == 0) {
- /* AC terms all zero */
- if (d0) {
- /* Compute a 32 bit value to assign. */
- DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
- register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
-
- idataptr[0] = v;
- idataptr[1] = v;
- idataptr[2] = v;
- idataptr[3] = v;
- }
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
- d2 = dataptr[2];
- d3 = dataptr[3];
- d4 = dataptr[4];
- d5 = dataptr[5];
- d6 = dataptr[6];
- d7 = dataptr[7];
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
- if (d6) {
- if (d4) {
- if (d2) {
- if (d0) {
- /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- } else {
- /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));
-
- tmp0 = d4 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp2 - tmp0;
- tmp12 = -(tmp0 + tmp2);
- }
- } else {
- if (d0) {
- /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
- tmp2 = MULTIPLY(d6, - FIX(1.306562965));
- tmp3 = MULTIPLY(d6, FIX(0.541196100));
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- } else {
- /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
- tmp2 = MULTIPLY(d6, -FIX(1.306562965));
- tmp3 = MULTIPLY(d6, FIX(0.541196100));
-
- tmp0 = d4 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp2 - tmp0;
- tmp12 = -(tmp0 + tmp2);
- }
- }
- } else {
- if (d2) {
- if (d0) {
- /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));
-
- tmp0 = d0 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- } else {
- /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));
-
- tmp10 = tmp3;
- tmp13 = -tmp3;
- tmp11 = tmp2;
- tmp12 = -tmp2;
- }
- } else {
- if (d0) {
- /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
- tmp2 = MULTIPLY(d6, - FIX(1.306562965));
- tmp3 = MULTIPLY(d6, FIX(0.541196100));
-
- tmp0 = d0 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- } else {
- /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
- tmp2 = MULTIPLY(d6, - FIX(1.306562965));
- tmp3 = MULTIPLY(d6, FIX(0.541196100));
-
- tmp10 = tmp3;
- tmp13 = -tmp3;
- tmp11 = tmp2;
- tmp12 = -tmp2;
- }
- }
- }
- } else {
- if (d4) {
- if (d2) {
- if (d0) {
- /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX(0.541196100));
- tmp3 = MULTIPLY(d2, FIX(1.306562965));
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- } else {
- /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX(0.541196100));
- tmp3 = MULTIPLY(d2, FIX(1.306562965));
-
- tmp0 = d4 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp2 - tmp0;
- tmp12 = -(tmp0 + tmp2);
- }
- } else {
- if (d0) {
- /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
- tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
- tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
- } else {
- /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
- tmp10 = tmp13 = d4 << CONST_BITS;
- tmp11 = tmp12 = -tmp10;
- }
- }
- } else {
- if (d2) {
- if (d0) {
- /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX(0.541196100));
- tmp3 = MULTIPLY(d2, FIX(1.306562965));
-
- tmp0 = d0 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- } else {
- /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX(0.541196100));
- tmp3 = MULTIPLY(d2, FIX(1.306562965));
-
- tmp10 = tmp3;
- tmp13 = -tmp3;
- tmp11 = tmp2;
- tmp12 = -tmp2;
- }
- } else {
- if (d0) {
- /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
- tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS;
- } else {
- /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
- tmp10 = tmp13 = tmp11 = tmp12 = 0;
- }
- }
- }
- }
-
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- if (d7) {
- if (d5) {
- if (d3) {
- if (d1) {
- /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
- z1 = d7 + d1;
- z2 = d5 + d3;
- z3 = d7 + d3;
- z4 = d5 + d1;
- z5 = MULTIPLY(z3 + z4, FIX(1.175875602));
-
- tmp0 = MULTIPLY(d7, FIX(0.298631336));
- tmp1 = MULTIPLY(d5, FIX(2.053119869));
- tmp2 = MULTIPLY(d3, FIX(3.072711026));
- tmp3 = MULTIPLY(d1, FIX(1.501321110));
- z1 = MULTIPLY(z1, - FIX(0.899976223));
- z2 = MULTIPLY(z2, - FIX(2.562915447));
- z3 = MULTIPLY(z3, - FIX(1.961570560));
- z4 = MULTIPLY(z4, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- } else {
- /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
- z1 = d7;
- z2 = d5 + d3;
- z3 = d7 + d3;
- z5 = MULTIPLY(z3 + d5, FIX(1.175875602));
-
- tmp0 = MULTIPLY(d7, FIX(0.298631336));
- tmp1 = MULTIPLY(d5, FIX(2.053119869));
- tmp2 = MULTIPLY(d3, FIX(3.072711026));
- z1 = MULTIPLY(d7, - FIX(0.899976223));
- z2 = MULTIPLY(z2, - FIX(2.562915447));
- z3 = MULTIPLY(z3, - FIX(1.961570560));
- z4 = MULTIPLY(d5, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 = z1 + z4;
- }
- } else {
- if (d1) {
- /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
- z1 = d7 + d1;
- z2 = d5;
- z3 = d7;
- z4 = d5 + d1;
- z5 = MULTIPLY(z3 + z4, FIX(1.175875602));
-
- tmp0 = MULTIPLY(d7, FIX(0.298631336));
- tmp1 = MULTIPLY(d5, FIX(2.053119869));
- tmp3 = MULTIPLY(d1, FIX(1.501321110));
- z1 = MULTIPLY(z1, - FIX(0.899976223));
- z2 = MULTIPLY(d5, - FIX(2.562915447));
- z3 = MULTIPLY(d7, - FIX(1.961570560));
- z4 = MULTIPLY(z4, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 = z2 + z3;
- tmp3 += z1 + z4;
- } else {
- /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
- tmp0 = MULTIPLY(d7, - FIX(0.601344887));
- z1 = MULTIPLY(d7, - FIX(0.899976223));
- z3 = MULTIPLY(d7, - FIX(1.961570560));
- tmp1 = MULTIPLY(d5, - FIX(0.509795578));
- z2 = MULTIPLY(d5, - FIX(2.562915447));
- z4 = MULTIPLY(d5, - FIX(0.390180644));
- z5 = MULTIPLY(d5 + d7, FIX(1.175875602));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z3;
- tmp1 += z4;
- tmp2 = z2 + z3;
- tmp3 = z1 + z4;
- }
- }
- } else {
- if (d3) {
- if (d1) {
- /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
- z1 = d7 + d1;
- z3 = d7 + d3;
- z5 = MULTIPLY(z3 + d1, FIX(1.175875602));
-
- tmp0 = MULTIPLY(d7, FIX(0.298631336));
- tmp2 = MULTIPLY(d3, FIX(3.072711026));
- tmp3 = MULTIPLY(d1, FIX(1.501321110));
- z1 = MULTIPLY(z1, - FIX(0.899976223));
- z2 = MULTIPLY(d3, - FIX(2.562915447));
- z3 = MULTIPLY(z3, - FIX(1.961570560));
- z4 = MULTIPLY(d1, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 = z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- } else {
- /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
- z3 = d7 + d3;
-
- tmp0 = MULTIPLY(d7, - FIX(0.601344887));
- z1 = MULTIPLY(d7, - FIX(0.899976223));
- tmp2 = MULTIPLY(d3, FIX(0.509795579));
- z2 = MULTIPLY(d3, - FIX(2.562915447));
- z5 = MULTIPLY(z3, FIX(1.175875602));
- z3 = MULTIPLY(z3, - FIX(0.785694958));
-
- tmp0 += z3;
- tmp1 = z2 + z5;
- tmp2 += z3;
- tmp3 = z1 + z5;
- }
- } else {
- if (d1) {
- /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
- z1 = d7 + d1;
- z5 = MULTIPLY(z1, FIX(1.175875602));
-
- z1 = MULTIPLY(z1, FIX(0.275899379));
- z3 = MULTIPLY(d7, - FIX(1.961570560));
- tmp0 = MULTIPLY(d7, - FIX(1.662939224));
- z4 = MULTIPLY(d1, - FIX(0.390180644));
- tmp3 = MULTIPLY(d1, FIX(1.111140466));
-
- tmp0 += z1;
- tmp1 = z4 + z5;
- tmp2 = z3 + z5;
- tmp3 += z1;
- } else {
- /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
- tmp0 = MULTIPLY(d7, - FIX(1.387039845));
- tmp1 = MULTIPLY(d7, FIX(1.175875602));
- tmp2 = MULTIPLY(d7, - FIX(0.785694958));
- tmp3 = MULTIPLY(d7, FIX(0.275899379));
- }
- }
- }
- } else {
- if (d5) {
- if (d3) {
- if (d1) {
- /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
- z2 = d5 + d3;
- z4 = d5 + d1;
- z5 = MULTIPLY(d3 + z4, FIX(1.175875602));
-
- tmp1 = MULTIPLY(d5, FIX(2.053119869));
- tmp2 = MULTIPLY(d3, FIX(3.072711026));
- tmp3 = MULTIPLY(d1, FIX(1.501321110));
- z1 = MULTIPLY(d1, - FIX(0.899976223));
- z2 = MULTIPLY(z2, - FIX(2.562915447));
- z3 = MULTIPLY(d3, - FIX(1.961570560));
- z4 = MULTIPLY(z4, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 = z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- } else {
- /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
- z2 = d5 + d3;
-
- z5 = MULTIPLY(z2, FIX(1.175875602));
- tmp1 = MULTIPLY(d5, FIX(1.662939225));
- z4 = MULTIPLY(d5, - FIX(0.390180644));
- z2 = MULTIPLY(z2, - FIX(1.387039845));
- tmp2 = MULTIPLY(d3, FIX(1.111140466));
- z3 = MULTIPLY(d3, - FIX(1.961570560));
-
- tmp0 = z3 + z5;
- tmp1 += z2;
- tmp2 += z2;
- tmp3 = z4 + z5;
- }
- } else {
- if (d1) {
- /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
- z4 = d5 + d1;
-
- z5 = MULTIPLY(z4, FIX(1.175875602));
- z1 = MULTIPLY(d1, - FIX(0.899976223));
- tmp3 = MULTIPLY(d1, FIX(0.601344887));
- tmp1 = MULTIPLY(d5, - FIX(0.509795578));
- z2 = MULTIPLY(d5, - FIX(2.562915447));
- z4 = MULTIPLY(z4, FIX(0.785694958));
-
- tmp0 = z1 + z5;
- tmp1 += z4;
- tmp2 = z2 + z5;
- tmp3 += z4;
- } else {
- /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
- tmp0 = MULTIPLY(d5, FIX(1.175875602));
- tmp1 = MULTIPLY(d5, FIX(0.275899380));
- tmp2 = MULTIPLY(d5, - FIX(1.387039845));
- tmp3 = MULTIPLY(d5, FIX(0.785694958));
- }
- }
- } else {
- if (d3) {
- if (d1) {
- /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
- z5 = d1 + d3;
- tmp3 = MULTIPLY(d1, FIX(0.211164243));
- tmp2 = MULTIPLY(d3, - FIX(1.451774981));
- z1 = MULTIPLY(d1, FIX(1.061594337));
- z2 = MULTIPLY(d3, - FIX(2.172734803));
- z4 = MULTIPLY(z5, FIX(0.785694958));
- z5 = MULTIPLY(z5, FIX(1.175875602));
-
- tmp0 = z1 - z4;
- tmp1 = z2 + z4;
- tmp2 += z5;
- tmp3 += z5;
- } else {
- /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
- tmp0 = MULTIPLY(d3, - FIX(0.785694958));
- tmp1 = MULTIPLY(d3, - FIX(1.387039845));
- tmp2 = MULTIPLY(d3, - FIX(0.275899379));
- tmp3 = MULTIPLY(d3, FIX(1.175875602));
- }
- } else {
- if (d1) {
- /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
- tmp0 = MULTIPLY(d1, FIX(0.275899379));
- tmp1 = MULTIPLY(d1, FIX(0.785694958));
- tmp2 = MULTIPLY(d1, FIX(1.175875602));
- tmp3 = MULTIPLY(d1, FIX(1.387039845));
- } else {
- /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
- tmp0 = tmp1 = tmp2 = tmp3 = 0;
- }
- }
- }
- }
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
- dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
- dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
- dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- dataptr = data;
- for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
- /* Columns of zeroes can be exploited in the same way as we did with rows.
- * However, the row calculation has created many nonzero AC terms, so the
- * simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
- d0 = dataptr[DCTSIZE*0];
- d1 = dataptr[DCTSIZE*1];
- d2 = dataptr[DCTSIZE*2];
- d3 = dataptr[DCTSIZE*3];
- d4 = dataptr[DCTSIZE*4];
- d5 = dataptr[DCTSIZE*5];
- d6 = dataptr[DCTSIZE*6];
- d7 = dataptr[DCTSIZE*7];
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
- if (d6) {
- if (d4) {
- if (d2) {
- if (d0) {
- /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- } else {
- /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));
-
- tmp0 = d4 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp2 - tmp0;
- tmp12 = -(tmp0 + tmp2);
- }
- } else {
- if (d0) {
- /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
- tmp2 = MULTIPLY(d6, - FIX(1.306562965));
- tmp3 = MULTIPLY(d6, FIX(0.541196100));
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- } else {
- /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */
- tmp2 = MULTIPLY(d6, -FIX(1.306562965));
- tmp3 = MULTIPLY(d6, FIX(0.541196100));
-
- tmp0 = d4 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp2 - tmp0;
- tmp12 = -(tmp0 + tmp2);
- }
- }
- } else {
- if (d2) {
- if (d0) {
- /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));
-
- tmp0 = d0 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- } else {
- /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));
-
- tmp10 = tmp3;
- tmp13 = -tmp3;
- tmp11 = tmp2;
- tmp12 = -tmp2;
- }
- } else {
- if (d0) {
- /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */
- tmp2 = MULTIPLY(d6, - FIX(1.306562965));
- tmp3 = MULTIPLY(d6, FIX(0.541196100));
-
- tmp0 = d0 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- } else {
- /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */
- tmp2 = MULTIPLY(d6, - FIX(1.306562965));
- tmp3 = MULTIPLY(d6, FIX(0.541196100));
-
- tmp10 = tmp3;
- tmp13 = -tmp3;
- tmp11 = tmp2;
- tmp12 = -tmp2;
- }
- }
- }
- } else {
- if (d4) {
- if (d2) {
- if (d0) {
- /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX(0.541196100));
- tmp3 = MULTIPLY(d2, FIX(1.306562965));
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- } else {
- /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX(0.541196100));
- tmp3 = MULTIPLY(d2, FIX(1.306562965));
-
- tmp0 = d4 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp2 - tmp0;
- tmp12 = -(tmp0 + tmp2);
- }
- } else {
- if (d0) {
- /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
- tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
- tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
- } else {
- /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */
- tmp10 = tmp13 = d4 << CONST_BITS;
- tmp11 = tmp12 = -tmp10;
- }
- }
- } else {
- if (d2) {
- if (d0) {
- /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX(0.541196100));
- tmp3 = MULTIPLY(d2, FIX(1.306562965));
-
- tmp0 = d0 << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
- } else {
- /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX(0.541196100));
- tmp3 = MULTIPLY(d2, FIX(1.306562965));
-
- tmp10 = tmp3;
- tmp13 = -tmp3;
- tmp11 = tmp2;
- tmp12 = -tmp2;
- }
- } else {
- if (d0) {
- /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */
- tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS;
- } else {
- /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */
- tmp10 = tmp13 = tmp11 = tmp12 = 0;
- }
- }
- }
- }
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
- if (d7) {
- if (d5) {
- if (d3) {
- if (d1) {
- /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
- z1 = d7 + d1;
- z2 = d5 + d3;
- z3 = d7 + d3;
- z4 = d5 + d1;
- z5 = MULTIPLY(z3 + z4, FIX(1.175875602));
-
- tmp0 = MULTIPLY(d7, FIX(0.298631336));
- tmp1 = MULTIPLY(d5, FIX(2.053119869));
- tmp2 = MULTIPLY(d3, FIX(3.072711026));
- tmp3 = MULTIPLY(d1, FIX(1.501321110));
- z1 = MULTIPLY(z1, - FIX(0.899976223));
- z2 = MULTIPLY(z2, - FIX(2.562915447));
- z3 = MULTIPLY(z3, - FIX(1.961570560));
- z4 = MULTIPLY(z4, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- } else {
- /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
- z1 = d7;
- z2 = d5 + d3;
- z3 = d7 + d3;
- z5 = MULTIPLY(z3 + d5, FIX(1.175875602));
-
- tmp0 = MULTIPLY(d7, FIX(0.298631336));
- tmp1 = MULTIPLY(d5, FIX(2.053119869));
- tmp2 = MULTIPLY(d3, FIX(3.072711026));
- z1 = MULTIPLY(d7, - FIX(0.899976223));
- z2 = MULTIPLY(z2, - FIX(2.562915447));
- z3 = MULTIPLY(z3, - FIX(1.961570560));
- z4 = MULTIPLY(d5, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 = z1 + z4;
- }
- } else {
- if (d1) {
- /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
- z1 = d7 + d1;
- z2 = d5;
- z3 = d7;
- z4 = d5 + d1;
- z5 = MULTIPLY(z3 + z4, FIX(1.175875602));
-
- tmp0 = MULTIPLY(d7, FIX(0.298631336));
- tmp1 = MULTIPLY(d5, FIX(2.053119869));
- tmp3 = MULTIPLY(d1, FIX(1.501321110));
- z1 = MULTIPLY(z1, - FIX(0.899976223));
- z2 = MULTIPLY(d5, - FIX(2.562915447));
- z3 = MULTIPLY(d7, - FIX(1.961570560));
- z4 = MULTIPLY(z4, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 = z2 + z3;
- tmp3 += z1 + z4;
- } else {
- /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
- tmp0 = MULTIPLY(d7, - FIX(0.601344887));
- z1 = MULTIPLY(d7, - FIX(0.899976223));
- z3 = MULTIPLY(d7, - FIX(1.961570560));
- tmp1 = MULTIPLY(d5, - FIX(0.509795578));
- z2 = MULTIPLY(d5, - FIX(2.562915447));
- z4 = MULTIPLY(d5, - FIX(0.390180644));
- z5 = MULTIPLY(d5 + d7, FIX(1.175875602));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z3;
- tmp1 += z4;
- tmp2 = z2 + z3;
- tmp3 = z1 + z4;
- }
- }
- } else {
- if (d3) {
- if (d1) {
- /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
- z1 = d7 + d1;
- z3 = d7 + d3;
- z5 = MULTIPLY(z3 + d1, FIX(1.175875602));
-
- tmp0 = MULTIPLY(d7, FIX(0.298631336));
- tmp2 = MULTIPLY(d3, FIX(3.072711026));
- tmp3 = MULTIPLY(d1, FIX(1.501321110));
- z1 = MULTIPLY(z1, - FIX(0.899976223));
- z2 = MULTIPLY(d3, - FIX(2.562915447));
- z3 = MULTIPLY(z3, - FIX(1.961570560));
- z4 = MULTIPLY(d1, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 = z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- } else {
- /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
- z3 = d7 + d3;
-
- tmp0 = MULTIPLY(d7, - FIX(0.601344887));
- z1 = MULTIPLY(d7, - FIX(0.899976223));
- tmp2 = MULTIPLY(d3, FIX(0.509795579));
- z2 = MULTIPLY(d3, - FIX(2.562915447));
- z5 = MULTIPLY(z3, FIX(1.175875602));
- z3 = MULTIPLY(z3, - FIX(0.785694958));
-
- tmp0 += z3;
- tmp1 = z2 + z5;
- tmp2 += z3;
- tmp3 = z1 + z5;
- }
- } else {
- if (d1) {
- /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
- z1 = d7 + d1;
- z5 = MULTIPLY(z1, FIX(1.175875602));
-
- z1 = MULTIPLY(z1, FIX(0.275899379));
- z3 = MULTIPLY(d7, - FIX(1.961570560));
- tmp0 = MULTIPLY(d7, - FIX(1.662939224));
- z4 = MULTIPLY(d1, - FIX(0.390180644));
- tmp3 = MULTIPLY(d1, FIX(1.111140466));
-
- tmp0 += z1;
- tmp1 = z4 + z5;
- tmp2 = z3 + z5;
- tmp3 += z1;
- } else {
- /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
- tmp0 = MULTIPLY(d7, - FIX(1.387039845));
- tmp1 = MULTIPLY(d7, FIX(1.175875602));
- tmp2 = MULTIPLY(d7, - FIX(0.785694958));
- tmp3 = MULTIPLY(d7, FIX(0.275899379));
- }
- }
- }
- } else {
- if (d5) {
- if (d3) {
- if (d1) {
- /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
- z2 = d5 + d3;
- z4 = d5 + d1;
- z5 = MULTIPLY(d3 + z4, FIX(1.175875602));
-
- tmp1 = MULTIPLY(d5, FIX(2.053119869));
- tmp2 = MULTIPLY(d3, FIX(3.072711026));
- tmp3 = MULTIPLY(d1, FIX(1.501321110));
- z1 = MULTIPLY(d1, - FIX(0.899976223));
- z2 = MULTIPLY(z2, - FIX(2.562915447));
- z3 = MULTIPLY(d3, - FIX(1.961570560));
- z4 = MULTIPLY(z4, - FIX(0.390180644));
-
- z3 += z5;
- z4 += z5;
-
- tmp0 = z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- } else {
- /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
- z2 = d5 + d3;
-
- z5 = MULTIPLY(z2, FIX(1.175875602));
- tmp1 = MULTIPLY(d5, FIX(1.662939225));
- z4 = MULTIPLY(d5, - FIX(0.390180644));
- z2 = MULTIPLY(z2, - FIX(1.387039845));
- tmp2 = MULTIPLY(d3, FIX(1.111140466));
- z3 = MULTIPLY(d3, - FIX(1.961570560));
-
- tmp0 = z3 + z5;
- tmp1 += z2;
- tmp2 += z2;
- tmp3 = z4 + z5;
- }
- } else {
- if (d1) {
- /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
- z4 = d5 + d1;
-
- z5 = MULTIPLY(z4, FIX(1.175875602));
- z1 = MULTIPLY(d1, - FIX(0.899976223));
- tmp3 = MULTIPLY(d1, FIX(0.601344887));
- tmp1 = MULTIPLY(d5, - FIX(0.509795578));
- z2 = MULTIPLY(d5, - FIX(2.562915447));
- z4 = MULTIPLY(z4, FIX(0.785694958));
-
- tmp0 = z1 + z5;
- tmp1 += z4;
- tmp2 = z2 + z5;
- tmp3 += z4;
- } else {
- /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
- tmp0 = MULTIPLY(d5, FIX(1.175875602));
- tmp1 = MULTIPLY(d5, FIX(0.275899380));
- tmp2 = MULTIPLY(d5, - FIX(1.387039845));
- tmp3 = MULTIPLY(d5, FIX(0.785694958));
- }
- }
- } else {
- if (d3) {
- if (d1) {
- /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
- z5 = d1 + d3;
- tmp3 = MULTIPLY(d1, FIX(0.211164243));
- tmp2 = MULTIPLY(d3, - FIX(1.451774981));
- z1 = MULTIPLY(d1, FIX(1.061594337));
- z2 = MULTIPLY(d3, - FIX(2.172734803));
- z4 = MULTIPLY(z5, FIX(0.785694958));
- z5 = MULTIPLY(z5, FIX(1.175875602));
-
- tmp0 = z1 - z4;
- tmp1 = z2 + z4;
- tmp2 += z5;
- tmp3 += z5;
- } else {
- /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
- tmp0 = MULTIPLY(d3, - FIX(0.785694958));
- tmp1 = MULTIPLY(d3, - FIX(1.387039845));
- tmp2 = MULTIPLY(d3, - FIX(0.275899379));
- tmp3 = MULTIPLY(d3, FIX(1.175875602));
- }
- } else {
- if (d1) {
- /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
- tmp0 = MULTIPLY(d1, FIX(0.275899379));
- tmp1 = MULTIPLY(d1, FIX(0.785694958));
- tmp2 = MULTIPLY(d1, FIX(1.175875602));
- tmp3 = MULTIPLY(d1, FIX(1.387039845));
- } else {
- /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
- tmp0 = tmp1 = tmp2 = tmp3 = 0;
- }
- }
- }
- }
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
- CONST_BITS+PASS1_BITS+3);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-#else
-
-
-void
-j_rev_dct_sparse (DCTBLOCK data, int pos)
-{
- j_rev_dct(data);
-}
-
-void
-j_rev_dct (DCTBLOCK data)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3, z4, z5;
- register DCTELEM *dataptr;
- int rowctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- dataptr = data;
- for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any row in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * row DCT calculations can be simplified this way.
- */
-
- if ((dataptr[1] | dataptr[2] | dataptr[3] | dataptr[4] |
- dataptr[5] | dataptr[6] | dataptr[7]) == 0) {
- /* AC terms all zero */
- DCTELEM dcval = (DCTELEM) (dataptr[0] << PASS1_BITS);
-
- dataptr[0] = dcval;
- dataptr[1] = dcval;
- dataptr[2] = dcval;
- dataptr[3] = dcval;
- dataptr[4] = dcval;
- dataptr[5] = dcval;
- dataptr[6] = dcval;
- dataptr[7] = dcval;
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = (INT32) dataptr[2];
- z3 = (INT32) dataptr[6];
-
- z1 = MULTIPLY(z2 + z3, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(z3, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(z2, FIX(0.765366865));
-
- tmp0 = ((INT32) dataptr[0] + (INT32) dataptr[4]) << CONST_BITS;
- tmp1 = ((INT32) dataptr[0] - (INT32) dataptr[4]) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = (INT32) dataptr[7];
- tmp1 = (INT32) dataptr[5];
- tmp2 = (INT32) dataptr[3];
- tmp3 = (INT32) dataptr[1];
-
- z1 = tmp0 + tmp3;
- z2 = tmp1 + tmp2;
- z3 = tmp0 + tmp2;
- z4 = tmp1 + tmp3;
- z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); /* sqrt(2) * c3 */
-
- tmp0 = MULTIPLY(tmp0, FIX(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp1 = MULTIPLY(tmp1, FIX(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY(z1, - FIX(0.899976223)); /* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY(z2, - FIX(2.562915447)); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY(z3, - FIX(1.961570560)); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY(z4, - FIX(0.390180644)); /* sqrt(2) * (c5-c3) */
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
- dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
- dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
- dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- dataptr = data;
- for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
- /* Columns of zeroes can be exploited in the same way as we did with rows.
- * However, the row calculation has created many nonzero AC terms, so the
- * simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
-#ifndef NO_ZERO_COLUMN_TEST
- if ((dataptr[DCTSIZE*1] | dataptr[DCTSIZE*2] | dataptr[DCTSIZE*3] |
- dataptr[DCTSIZE*4] | dataptr[DCTSIZE*5] | dataptr[DCTSIZE*6] |
- dataptr[DCTSIZE*7]) == 0) {
- /* AC terms all zero */
- DCTELEM dcval = (DCTELEM) DESCALE((INT32) dataptr[0], PASS1_BITS+3);
-
- dataptr[DCTSIZE*0] = dcval;
- dataptr[DCTSIZE*1] = dcval;
- dataptr[DCTSIZE*2] = dcval;
- dataptr[DCTSIZE*3] = dcval;
- dataptr[DCTSIZE*4] = dcval;
- dataptr[DCTSIZE*5] = dcval;
- dataptr[DCTSIZE*6] = dcval;
- dataptr[DCTSIZE*7] = dcval;
-
- dataptr++; /* advance pointer to next column */
- continue;
- }
-#endif
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = (INT32) dataptr[DCTSIZE*2];
- z3 = (INT32) dataptr[DCTSIZE*6];
-
- z1 = MULTIPLY(z2 + z3, FIX(0.541196100));
- tmp2 = z1 + MULTIPLY(z3, - FIX(1.847759065));
- tmp3 = z1 + MULTIPLY(z2, FIX(0.765366865));
-
- tmp0 = ((INT32) dataptr[DCTSIZE*0] + (INT32) dataptr[DCTSIZE*4]) << CONST_BITS;
- tmp1 = ((INT32) dataptr[DCTSIZE*0] - (INT32) dataptr[DCTSIZE*4]) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = (INT32) dataptr[DCTSIZE*7];
- tmp1 = (INT32) dataptr[DCTSIZE*5];
- tmp2 = (INT32) dataptr[DCTSIZE*3];
- tmp3 = (INT32) dataptr[DCTSIZE*1];
-
- z1 = tmp0 + tmp3;
- z2 = tmp1 + tmp2;
- z3 = tmp0 + tmp2;
- z4 = tmp1 + tmp3;
- z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); /* sqrt(2) * c3 */
-
- tmp0 = MULTIPLY(tmp0, FIX(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp1 = MULTIPLY(tmp1, FIX(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY(z1, - FIX(0.899976223)); /* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY(z2, - FIX(2.562915447)); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY(z3, - FIX(1.961570560)); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY(z4, - FIX(0.390180644)); /* sqrt(2) * (c5-c3) */
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
- CONST_BITS+PASS1_BITS+3);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
- CONST_BITS+PASS1_BITS+3);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-
-#endif