summaryrefslogtreecommitdiff
path: root/java/ImageProcessing/filters/RotateFilter.java
diff options
context:
space:
mode:
Diffstat (limited to 'java/ImageProcessing/filters/RotateFilter.java')
-rw-r--r--java/ImageProcessing/filters/RotateFilter.java358
1 files changed, 0 insertions, 358 deletions
diff --git a/java/ImageProcessing/filters/RotateFilter.java b/java/ImageProcessing/filters/RotateFilter.java
deleted file mode 100644
index 39551017a4b..00000000000
--- a/java/ImageProcessing/filters/RotateFilter.java
+++ /dev/null
@@ -1,358 +0,0 @@
-package imaging.filters;
-
-import java.awt.image.*;
-
-public class RotateFilter extends SpatialFilter
-{
- private double angle_;
- private int rotx_, roty_;
- private int rotheight_, rotwidth_;
-
- public RotateFilter ()
- {
- this.angle_ = 90.0;
- }
-
- public RotateFilter(double angle)
- {
- this.angle_ = angle;
- }
-
- public String info ()
- {
- return "Rotates an image";
- }
-
- public void setDimensions(int width, int height)
- {
- DoublePoint temp;
-
- rows_ = height;
- columns_ = width;
-
- // Convert the angle into radians
- double rotrad = angle_ * Math.PI / (double)180.0;
-
- // Compute the corner points after rotation
- double center_x = (double)(columns_ - 1) / (double)2.0;
- double center_y = (double)(rows_ - 1) / (double)2.0;
-
- // The new top left corner
- temp = rotatePoint(0, 0, center_x, center_y, rotrad);
- int rtl_x = (int)(temp.x_ + ((temp.x_ < 0) ? -0.5 : 0.5));
- int rtl_y = (int)(temp.y_ + ((temp.y_ < 0) ? -0.5 : 0.5));
-
- // the new top right corner
- temp = rotatePoint(0, rows_, center_x, center_y, rotrad);
- int rtr_x = (int)(temp.x_ + ((temp.x_ < 0) ? -0.5 : 0.5));
- int rtr_y = (int)(temp.y_ + ((temp.y_ < 0) ? -0.5 : 0.5));
-
- // the new bottom left corner
- temp = rotatePoint(columns_, 0, center_x, center_y, rotrad);
- int rbl_x = (int)(temp.x_ + ((temp.x_ < 0) ? -0.5 : 0.5));
- int rbl_y = (int)(temp.y_ + ((temp.y_ < 0) ? -0.5 : 0.5));
-
- // the new bottom right corner
- temp = rotatePoint(columns_, rows_, center_x, center_y, rotrad);
- int rbr_x = (int)(temp.x_ + ((temp.x_ < 0) ? -0.5 : 0.5));
- int rbr_y = (int)(temp.y_ + ((temp.y_ < 0) ? -0.5 : 0.5));
-
- //System.out.println(" ( " + center_x + "," + center_y + " ) ");
- //System.out.println(" ( " + rtl_x + "," + rtl_y + " ) ");
- //System.out.println(" ( " + rtr_x + "," + rtr_y + " ) ");
- //System.out.println(" ( " + rbr_x + "," + rbr_y + " ) ");
- //System.out.println(" ( " + rbl_x + "," + rbl_y + " ) ");
-
- // rotated bounding box
- int rbbx1, rbby1;
- int rbbx = rbbx1 = rtl_x;
- int rbby = rbby1 = rtl_y;
-
- if (rtr_x < rbbx) rbbx = rtr_x;
- if (rtr_x > rbbx1) rbbx1 = rtr_x;
- if (rtr_y < rbby) rbby = rtr_y;
- if (rtr_y > rbby1) rbby1 = rtr_y;
-
- if (rbl_x < rbbx) rbbx = rbl_x;
- if (rbl_x > rbbx1) rbbx1 = rbl_x;
- if (rbl_y < rbby) rbby = rbl_y;
- if (rbl_y > rbby1) rbby1 = rbl_y;
-
- if (rbr_x < rbbx) rbbx = rbr_x;
- if (rbr_x > rbbx1) rbbx1 = rbr_x;
- if (rbr_y < rbby) rbby = rbr_y;
- if (rbr_y > rbby1) rbby1 = rbr_y;
-
- int rbbw = rbbx1 - rbbx;
- int rbbh = rbby1 - rbby;
-
- //System.out.println("(rbbx, rbby): " + rbbx + " " + rbby);
- //System.out.println("(rbbx1, rbby1): " + rbbx1 + " " + rbby1);
- //System.out.println("(rbbw, rbbh): " + rbbw + " " + rbbh);
-
-
- //rbbx--; rbby--; rbbw+=2; rbbh+=2;
-
-
- // Ensure we haven't increased the size of the image
-
- /*
- int x = rbbx + rbbw - 1, y = rbby + rbbh - 1;
- if (rbbx < 0) rbbx = 0;
- if (rbbx > columns_ - 1 ) rbbx = columns_ - 1;
- if (rbby < 0) rbby = 0;
- if (rbby > rows_ - 1) rbby = rows_ - 1;
- */
-
- /*
-
- if (x < 0) x = 0;
- if (x > columns_ - 1) x = columns_ - 1;
- if (y < 0) y = 0;
- if (y > rows_ - 1) y = rows_ - 1;
-
- if (x < rbbx) x = rbbx;
- if (y < rbby) y = rbby;
- rbbw = (x - rbbx) + 1;
- rbbh = (y - rbby) + 1;
-
- */
-
- rotx_ = rbbx;
- roty_ = rbby;
- rotheight_ = rbbh;
- rotwidth_ = rbbw;
-
- //System.out.println("(rotx,roty): " + rotx_ + " " +
- // roty_);
- //System.out.println("(rotwidth,rotheight): " + rotwidth_ + " " +
- // rotheight_);
- //System.out.println("(columns,rows): " + columns_ +
- // " " + rows_);
-
-
- raster_ = new int[columns_*rows_];
- consumer.setDimensions(rotwidth_, rotheight_);
- }
-
-
- public void imageComplete(int status)
- {
- if (status == IMAGEERROR || status == IMAGEABORTED)
- {
- consumer.imageComplete(status);
- System.out.println("Image Error: " + status);
- return;
- }
-
- // For each pixel in the dimensions of the rotated image, if the
- // inverse rotation falls in the bounds of the original image. If
- // it does, compute and store an appropriate color, otherwise skip
- // it.
-
- System.gc();
-
- double xf, yf, px, py, apx, apy;
- int[] pixels = new int[rotwidth_*rotheight_];
- int ox, oy, ox1, oy1, index, pixel;
- double cx = (columns_ - 1) / 2;
- double cy = (rows_ - 1) / 2;
- double rotrad = angle_ * Math.PI / 180.0, ang, d;
- int p0r = 0, p0g = 0, p0b = 0,
- p1r = 0, p1g = 0,p1b = 0,
- p2r = 0, p2g = 0, p2b = 0,
- p3r = 0, p3g = 0, p3b = 0, lcv, lcv2;
- int rv,gv,bv, alpha;
- double rd,gd,bd, p0wgt = 0,
- p1wgt = 0, p2wgt = 0, p3wgt = 0, xfrac, yfrac;
-
- profile_timer_.start();
-
- lcv = roty_ + rotheight_;
- lcv2 = rotx_ + rotwidth_;
- for (int y = roty_, i = 0; y < lcv; y++)
- {
- for (int x = rotx_; x < lcv2; x++, i++)
- {
- // Inverse rotate the point (x,y)
- // Inlining the call to rotatePoint
- xf = (double)x;
- yf = (double)y;
- d = Math.sqrt((xf - cx) * (xf - cx) + (yf - cy) * (yf - cy));
-
- if ((xf - cx) != 0.0)
- {
- ang = Math.atan((cy-yf)/(xf-cx));
- if ((xf - cx) < 0)
- ang += Math.PI;
- }
- else
- {
- if ((yf - cy) > 0.0)
- ang = (Math.PI * 3.0) / 2;
- else
- ang = Math.PI / 2;
- }
-
- xf = cx + (d * Math.cos(ang - rotrad));
- yf = cy - (d * Math.sin(ang - rotrad));
- // end inline
-
- // Cheat a little
- if (xf < 0.0 && xf > -0.5) xf = 0.0;
- if (yf < 0.0 && yf > -0.5) yf = 0.0;
-
- ox = (int)Math.floor(xf);
- oy = (int)Math.floor(yf);
-
- if ((ox >= 0) && (oy >= 0) &&
- (ox < columns_) && (oy < rows_) )
- {
- // The color will be a linear combination of the colors of
- // the center pixel, its left or right neighbor, its top
- // or bottom neighbor, and its corner neighbor. Which
- // neighbors are used is determined by the position of
- // the fractional part of xf, xy within the 1-unit square
- // of the pixel.
-
- /* compute px,py: fractional offset from center of pixel (x.5,y.5) */
- xfrac = xf - ox; /* 0 - .9999 */
- yfrac = yf - oy;
- px = ((xfrac >= .5) ? (xfrac - .5) : (-.5 + xfrac));
- py = ((yfrac >= .5) ? (yfrac - .5) : (-.5 + yfrac));
- apx = ((px < 0) ? -px : px);
- apy = ((py < 0) ? -py : py);
-
- /* get neighbor colors: p0col, p1col, p2col, p3col */
- ox1 = ox + ((px < 0.0) ? -1 : 1);
- oy1 = oy + ((py < 0.0) ? -1 : 1);
-
- index = oy * columns_ + ox;
- pixel = raster_[index];
- alpha = (pixel >> 24) & 0xff;
- p0r = (pixel >> 16) & 0xff;
- p0g = (pixel >> 8) & 0xff;
- p0b = pixel & 0xff;
-
- if (ox1 >= 0 && ox1 < columns_)
- {
- index = oy*columns_ + ox1;
- pixel = raster_[index];
- p1r = (pixel >> 16) & 0xff;
- p1g = (pixel >> 8) & 0xff;
- p1b = pixel & 0xff;
- p1wgt = apx * (1.0 - apy);
- }
- else { p1r=p1g=p1b=0; p1wgt = 0.0; }
-
- if (oy1 >= 0 && oy1 < rows_)
- {
- index = oy1*columns_ + ox;
- pixel = raster_[index];
- p2r = (pixel >> 16) & 0xff;
- p2g = (pixel >> 8) & 0xff;
- p2b = pixel & 0xff;
- p2wgt = apx * (1.0 - apy);
- }
- else { p2r=p2g=p2b=0; p2wgt = 0.0; }
-
- if (ox1 >= 0 && ox1 < columns_ &&
- oy1 >= 0 && oy1 < rows_)
- {
- index = oy1 * columns_ + ox1;
- pixel = raster_[index];
- p3r = (pixel >> 16) & 0xff;
- p3g = (pixel >> 8) & 0xff;
- p3b = pixel & 0xff;
- p3wgt = apx * (1.0 - apy);
- }
- else { p3r=p3g=p3b=0; p3wgt = 0.0; }
-
- p1wgt = p1wgt * .7; /* black art */
- p2wgt = p2wgt * .7;
- p3wgt = p3wgt * .7;
-
- p0wgt = 1.0 - (p1wgt + p2wgt + p3wgt);
-
- /* okay, compute and store resulting color */
- rd = p0r * p0wgt + p1r * p1wgt + p2r * p2wgt + p3r * p3wgt;
- gd = p0g * p0wgt + p1g * p1wgt + p2g * p2wgt + p3g * p3wgt;
- bd = p0b * p0wgt + p1b * p1wgt + p2b * p2wgt + p3b * p3wgt;
-
- rv = (int) (rd + 0.5);
- gv = (int) (gd + 0.5);
- bv = (int) (bd + 0.5);
-
- if (rv < 0) rv = 0;
- if (gv < 0) gv = 0;
- if (bv < 0) bv = 0 ;
-
- if (rv > 255) rv = 255;
- if (gv > 255) gv = 255;
- if (bv > 255) bv = 255;
-
- pixels[i] = (alpha << 24) | (rv << 16) | (gv << 8) | bv;
- }
- }
- }
-
- profile_timer_.stop();
-
- consumer.setPixels(0, 0, rotwidth_, rotheight_, defaultRGB_,
- pixels, 0, rotwidth_);
-
- consumer.imageComplete(status);
- }
-
- private final static DoublePoint rotatePoint(int x, int y,
- double cx, double cy, double rad)
- {
- /* rotate point x, y 'rad' radians around cx, cy, return rx, ry */
- double d, xf, yf, ang, rx, ry;
-
- xf = (double)x;
- yf = (double)y;
-
- // d = distance from the point to the center
- d = Math.sqrt((xf - cx) * (xf - cx) + (yf - cy) * (yf - cy));
-
- if ((xf - cx) != 0.0)
- {
- // Compute the angle between the axis and the point in radians
- // using the inverse tangent function.
- ang = Math.atan((cy-yf)/(xf-cx));
-
- // If the x value falls below the axis the angle is between
- // PI and 2*PI.
- if ((xf - cx) < 0)
- ang += Math.PI;
- }
- else
- {
- // The point is on the positive y-axis so its angle is 3/2*PI
- // I'm guessing this the cooridnate system is flipped in
- // screen graphics.
- if ((yf - cy) > 0.0)
- ang = (Math.PI * 3.0) / 2;
- else
- ang = Math.PI / 2;
- }
-
- rx = cx + (d * Math.cos(ang + rad));
- ry = cy - (d * Math.sin(ang + rad));
-
- return new DoublePoint(rx, ry);
- }
-}
-
-class DoublePoint
-{
- public double x_;
- public double y_;
-
- DoublePoint(double x, double y)
- {
- x_ = x;
- y_ = y;
- }
-}