1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
//=============================================================================
/**
* @file SV_Shared_Memory_Test.cpp
*
* This is a simple test of <ACE_SV_Shared_Memory> and
* <ACE_Malloc> using the <ACE_Shared_Memory_Pool>. The test
* forks two processes and then executes client and server
* allowing them to exchange data using shared memory. No user
* input is required as far as command line arguments are
* concerned.
*
* @author Prashant Jain <pjain@cs.wustl.edu> and Douglas C. Schmidt <d.schmidt@vanderbilt.edu>
*/
//=============================================================================
#include "test_config.h"
#include "ace/Malloc_T.h"
#include "ace/Shared_Memory_Pool.h"
#include "ace/SV_Semaphore_Simple.h"
#include "ace/SV_Semaphore_Complex.h"
#include "ace/OS_NS_unistd.h"
#if defined (ACE_HAS_SYSV_IPC) && !defined(ACE_LACKS_SYSV_SHMEM)
// The shared memory allocator, which uses up the ACE_DEFAULT_SEM_KEY.
// We hide the allocator inside this function so that it doesn't get
// constructed until after the ACE_Object_Manager gets constructed,
// even with ACE_HAS_NONSTATIC_OBJECT_MANAGER.
static
ACE_Malloc<ACE_SHARED_MEMORY_POOL, ACE_SV_Semaphore_Simple> &
myallocator ()
{
static ACE_Malloc<ACE_SHARED_MEMORY_POOL,
ACE_SV_Semaphore_Simple> myallocator;
return myallocator;
}
// Create some more keys that are different from the
// ACE_DEFAULT_SEM_KEY used by the allocator.
static const int SEM_KEY_1 = ACE_DEFAULT_SEM_KEY + 1;
static const int SEM_KEY_2 = ACE_DEFAULT_SEM_KEY + 2;
static const int SHMSZ = 27;
static const char SHMDATA[SHMSZ] = "abcdefghijklmnopqrstuvwxyz";
static ACE_SV_Semaphore_Complex *parent_mutex = 0;
static ACE_SV_Semaphore_Complex *parent_synch = 0;
static int
parent (char *shm)
{
// This for loop executes in a critical section proteced by
// <parent_mutex>.
for (int i = 0; i < SHMSZ; i++)
shm[i] = SHMDATA[i];
int result;
result = parent_mutex->release ();
ACE_TEST_ASSERT (result != -1);
result = parent_synch->acquire ();
ACE_TEST_ASSERT (result != -1);
result = myallocator ().remove ();
ACE_TEST_ASSERT (result != -1);
result = parent_mutex->remove ();
ACE_TEST_ASSERT (result != -1);
result = parent_synch->remove ();
ACE_TEST_ASSERT (result != -1);
return 0;
}
static int
child (char *shm)
{
int result;
ACE_SV_Semaphore_Complex mutex;
// This semaphore is initially created with a count of 0, i.e., it
// is "locked."
result = mutex.open (SEM_KEY_1,
ACE_SV_Semaphore_Complex::ACE_CREATE,
0);
ACE_TEST_ASSERT (result != -1);
ACE_SV_Semaphore_Complex synch;
// This semaphore is initially created with a count of 0, i.e., it
// is "locked."
result = synch.open (SEM_KEY_2,
ACE_SV_Semaphore_Complex::ACE_CREATE,
0);
ACE_TEST_ASSERT (result != -1);
// Perform "busy waiting" here until we acquire the semaphore. This
// isn't really a good design -- it's just to illustrate that you
// can do non-blocking acquire() calls with the ACE System V
// semaphore wrappers.
while ((result = mutex.tryacquire ()) == -1)
if (errno == EAGAIN)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%P) spinning in child!\n")));
else
{
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("(%P) child mutex.tryacquire")));
ACE_TEST_ASSERT (result != -1);
}
for (int i = 0; i < SHMSZ; i++)
ACE_TEST_ASSERT (SHMDATA[i] == shm[i]);
result = synch.release ();
ACE_TEST_ASSERT (result != -1);
return 0;
}
#endif /* ACE_HAS_SYSV_IPC */
int
run_main (int, ACE_TCHAR *[])
{
ACE_START_TEST (ACE_TEXT ("SV_Shared_Memory_Test"));
#if defined (ACE_HAS_SYSV_IPC) && !defined (ACE_LACKS_FORK) && \
!defined(ACE_LACKS_SYSV_SHMEM)
// Check whether allocator was initialized.
if (myallocator ().bad ())
{
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("Unable to initialize allocator\n")),
-1);
}
char *shm = reinterpret_cast<char *> (myallocator ().malloc (SHMSZ));
// Create the mutex and synch before spawning the child process, to
// avoid race condition between their creation in the parent and use
// in the child.
ACE_NEW_RETURN (parent_mutex,
ACE_SV_Semaphore_Complex,
-1);
ACE_NEW_RETURN (parent_synch,
ACE_SV_Semaphore_Complex,
-1);
// This semaphore is initially created with a count of 0, i.e., it
// is "locked."
int result = parent_mutex->open (SEM_KEY_1,
ACE_SV_Semaphore_Complex::ACE_CREATE,
0);
ACE_TEST_ASSERT (result != -1);
// This semaphore is initially created with a count of 0, i.e., it
// is "locked."
result = parent_synch->open (SEM_KEY_2,
ACE_SV_Semaphore_Complex::ACE_CREATE,
0);
ACE_TEST_ASSERT (result != -1);
switch (ACE_OS::fork (ACE_TEXT ("SV_Shared_Memory_Test.cpp")))
{
case -1:
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("(%P) fork failed\n")),
-1);
/* NOTREACHED */
case 0:
child (shm);
break;
default:
parent (shm);
delete parent_mutex;
delete parent_synch;
break;
}
#else
ACE_ERROR ((LM_INFO,
ACE_TEXT ("SYSV IPC, SYSV SHMEM, or fork ")
ACE_TEXT ("are not supported on this platform\n")));
#endif /* ACE_HAS_SYSV_IPC */
ACE_END_TEST;
return 0;
}
|