1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
// FILE_IO.cpp
// $Id$
#define ACE_BUILD_DLL
#include "ace/FILE_IO.h"
#if defined (ACE_LACKS_INLINE_FUNCTIONS)
#include "ace/FILE_IO.i"
#endif
ACE_RCSID(ace, FILE_IO, "$Id$")
ACE_ALLOC_HOOK_DEFINE(ACE_FILE_IO)
void
ACE_FILE_IO::dump (void) const
{
ACE_TRACE ("ACE_FILE_IO::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
this->addr_.dump ();
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
// Simple-minded do nothing constructor.
ACE_FILE_IO::ACE_FILE_IO (void)
{
ACE_TRACE ("ACE_FILE_IO::ACE_FILE_IO");
}
// Send N char *ptrs and int lengths. Note that the char *'s precede
// the ints (basically, an varargs version of writev). The count N is
// the *total* number of trailing arguments, *not* a couple of the
// number of tuple pairs!
ssize_t
ACE_FILE_IO::send (size_t n, ...) const
{
ACE_TRACE ("ACE_FILE_IO::send");
va_list argp;
size_t total_tuples = n / 2;
ACE_IO_Vector_Base *iovp;
#if defined (ACE_HAS_ALLOCA)
iovp = (ACE_IO_Vector_Base *) alloca (total_tuples * sizeof (ACE_IO_Vector_Base));
#else
ACE_NEW_RETURN (iovp, ACE_IO_Vector_Base[total_tuples], -1);
#endif /* !defined (ACE_HAS_ALLOCA) */
va_start (argp, n);
for (size_t i = 0; i < total_tuples; i++)
{
iovp[i].iov_base = va_arg (argp, char *);
iovp[i].iov_len = va_arg (argp, int);
}
ssize_t result = ACE_OS::writev (this->get_handle (), iovp, total_tuples);
#if !defined (ACE_HAS_ALLOCA)
delete [] iovp;
#endif /* !defined (ACE_HAS_ALLOCA) */
va_end (argp);
return result;
}
// This is basically an interface to ACE_OS::readv, that doesn't use
// the struct iovec explicitly. The ... can be passed as an arbitrary
// number of (char *ptr, int len) tuples. However, the count N is the
// *total* number of trailing arguments, *not* a couple of the number
// of tuple pairs!
ssize_t
ACE_FILE_IO::recv (size_t n, ...) const
{
ACE_TRACE ("ACE_FILE_IO::recv");
va_list argp;
size_t total_tuples = n / 2;
ACE_IO_Vector_Base *iovp;
#if defined (ACE_HAS_ALLOCA)
iovp = (ACE_IO_Vector_Base *) alloca (total_tuples * sizeof (ACE_IO_Vector_Base));
#else
ACE_NEW_RETURN (iovp, ACE_IO_Vector_Base[total_tuples], -1);
#endif /* !defined (ACE_HAS_ALLOCA) */
va_start (argp, n);
for (size_t i = 0; i < total_tuples; i++)
{
iovp[i].iov_base = va_arg (argp, char *);
iovp[i].iov_len = va_arg (argp, int);
}
ssize_t result = ACE_OS::readv (this->get_handle (), iovp, total_tuples);
#if !defined (ACE_HAS_ALLOCA)
delete [] iovp;
#endif /* !defined (ACE_HAS_ALLOCA) */
va_end (argp);
return result;
}
// Return the local endpoint address.
int
ACE_FILE_IO::get_local_addr (ACE_Addr &addr) const
{
ACE_TRACE ("ACE_FILE_IO::get_local_addr");
// Perform the downcast since <addr> had better be an
// <ACE_FILE_Addr>.
ACE_FILE_Addr *file_addr = ACE_dynamic_cast (ACE_FILE_Addr *, &addr);
if (file_addr == 0)
return -1;
else
{
*file_addr = this->addr_;
return 0;
}
}
// Return the address of the remotely connected peer (if there is
// one).
int
ACE_FILE_IO::get_remote_addr (ACE_Addr &addr) const
{
ACE_TRACE ("ACE_FILE_IO::get_remote_addr");
return this->get_local_addr (addr);
}
|