summaryrefslogtreecommitdiff
path: root/ace/Future.cpp
blob: 8e64cf0973374274c1353676098f0f2fd8993263 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Future.cpp
// $Id$

#define ACE_BUILD_DLL

#if !defined (ACE_FUTURE_CPP)
#define ACE_FUTURE_CPP

#include "ace/Future.h"

#if defined (ACE_HAS_THREADS)

// Dump the state of an object.

template <class T> void 
ACE_Future_Rep<T>::dump (void) const
{
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACE_DEBUG ((LM_DEBUG,
	      "ref_count_ = %d\n",
	      this->ref_count_));
  ACE_DEBUG ((LM_INFO,"value_: \n"));
  if (this->value_)
    ACE_DEBUG ((LM_DEBUG," (NON-NULL)\n"));
  else
    ACE_DEBUG ((LM_DEBUG," (NULL)\n"));
  ACE_DEBUG ((LM_INFO,"value_ready_: \n"));
  this->value_ready_.dump ();
  ACE_DEBUG ((LM_INFO,"value_ready_mutex_: \n"));
  this->value_ready_mutex_.dump ();
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}

template <class T> 
ACE_Future_Rep<T>::ACE_Future_Rep (void)
  : value_ (0),
    ref_count_ (0),
    value_ready_ (this->value_ready_mutex_)
{
}

template <class T> 
ACE_Future_Rep<T>::~ACE_Future_Rep (void)
{
  delete this->value_;
  this->value_ = 0;
}

template <class T> int
ACE_Future_Rep<T>::ready (void)
{
  return this->value_ != 0;
}

template <class T> int
ACE_Future_Rep<T>::set (const T &r)
{
  // If the value is already produced, ignore it...
  if (this->value_ == 0)
    {
      ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->value_ready_mutex_, -1));
      // Otherwise, create a new result value.  Note the use of the
      // Double-checked locking pattern to avoid multiple allocations.

      if (this->value_ == 0)
	ACE_NEW_RETURN (this->value_, T (r), -1);

      // Signal all the waiting threads.
      return this->value_ready_.broadcast ();

      // Destructor releases the lock.
    }
  return 0;
}

template <class T> int
ACE_Future_Rep<T>::get (T &value, ACE_Time_Value *tv)
{
  // If the value is already produced, return it.
  if (this->value_ == 0)
    {
      ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->value_ready_mutex_, -1));

      // If the value is not yet defined we must block until the
      // producer writes to it.

      while (this->value_ == 0) 
	{
	  // Perform a timed wait.
	  if (this->value_ready_.wait (tv) == -1)
	    return -1;
	}
      // Destructor releases the lock.
    }

  value = *this->value_;
  return 0;
}

template <class T>
ACE_Future_Rep<T>::operator T ()
{
  // If the value is already produced, return it.
  if (this->value_ == 0)
    {
      // constructor of ace_mon acquires the mutex
      ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->value_ready_mutex_, 0));

      // If the value is not yet defined we must block until the
      // producer writes to it.

      while (this->value_ == 0) 
	{
	  // wait forever
	  if (this->value_ready_.wait () == -1)
	    return 0;
	}

      // Destructor releases the mutex

    }

  return *this->value_;
}


template <class T> 
ACE_Future<T>::ACE_Future (void)
  : future_rep_ (0)
{
}

template <class T>
ACE_Future<T>::ACE_Future (const ACE_Future<T> &r)
{

  // copy constructor:
  //
  // bind <this> to the same <ACE_Future_Rep> as <r>.

  // @@ not really clear if this is needed... after all this
  // ACE_Future is just being instantiated...
  ACE_MT (ACE_GUARD (ACE_Thread_Mutex, ace_mon, this->mutex_));

  // acquire the mutex on <r>. We have to make sure
  // that <r> does not delete its future_rep_...

  ACE_MT (ACE_GUARD (ACE_Thread_Mutex, r_mon, (ACE_Thread_Mutex &) r.mutex_));

  // Check if 'r' has already a ACE_Future_rep bound to it.
  if (r.future_rep_ == 0) 
    this->future_rep_ = r.create_rep_i ();
  else 
    // ACE_Future_rep exists already, we can just link to it.
    this->future_rep_ = r.future_rep_;

  this->future_rep_->ref_count_++;

}

template <class T>
ACE_Future<T>::ACE_Future (const T &r)
{
  ACE_DEBUG ((LM_DEBUG," (%t) funny constructor\n"));
  ACE_MT (ACE_GUARD (ACE_Thread_Mutex, ace_mon, this->mutex_));
  this->create_rep_i ()->set (r);
}

template <class T> 
ACE_Future<T>::~ACE_Future (void)
{
  ACE_MT (ACE_GUARD (ACE_Thread_Mutex, ace_mon, this->mutex_));

  if (this->future_rep_)
    {
      this->future_rep_->ref_count_--;

      if (this->future_rep_->ref_count_ == 0)
	{
	  delete this->future_rep_;
	  this->future_rep_ = 0;
	}
    }

}

template <class T> int 
ACE_Future<T>::operator== (const ACE_Future<T> &r) const
{
  return r.future_rep_ == this->future_rep_;
}

template <class T> int 
ACE_Future<T>::operator!= (const ACE_Future<T> &r) const
{
  return r.future_rep_ != this->future_rep_;
}

template <class T> int
ACE_Future<T>::cancel (const T &r)
{
  ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->mutex_, -1));

  // If this ACE_Future is already attached to a ACE_Future_Rep,
  // detach it (maybe delete the ACE_Future_Rep).
  if (this->future_rep_) 
    {
      this->future_rep_->ref_count_--;

      if (this->future_rep_->ref_count_ == 0)
	delete this->future_rep_;
    }

  // Make a new ACE_Future_Rep and immediately assign 
  // the new value to it.
  this->create_rep_i ();
  return this->future_rep_->set (r);
}

template <class T> int
ACE_Future<T>::set (const T &r) 
{
  if (this->future_rep_)
    // Give the pointer to the result to the ACE_Future_Rep.
    return this->future_rep_->set (r);
  else
    // @@ Maybe this should return a special value to indicate that
    // there's no <ACE_Future_Rep> yet?
    return 0; 
}

template <class T> ACE_Future_Rep<T> * 
ACE_Future<T>::create_rep_i (void) const
{
  // Should only be called internally with locks held.
  ACE_NEW_RETURN (((ACE_Future<T> *) this)->future_rep_, ACE_Future_Rep<T>, 0);
  this->future_rep_->ref_count_ = 1;
  return this->future_rep_;
}

template <class T> int
ACE_Future<T>::ready (void)
{
  // We're ready if the ACE_Future_rep is ready...
  if (this->future_rep_)
    return this->future_rep_->ready ();
  else
    return 0;
}

template <class T> int
ACE_Future<T>::get (T &value, ACE_Time_Value *tv)
{
  ACE_MT (ACE_GUARD_RETURN (ACE_Thread_Mutex, ace_mon, this->mutex_, -1));

  if (this->future_rep_ == 0) 
    // Oops, we have to create a ACE_Future_Rep first.
    this->create_rep_i ();

  // We return the ACE_Future_rep.
  return this->future_rep_->get (value, tv);
}

template <class T>
ACE_Future<T>::operator T ()
{
  // note that this will fail (and COREDUMP!) 
  // if future_rep_ == 0 !
  //
  // but...
  // this is impossible unless somebody is so stupid to
  // try something like this:
  //
  // Future<T> futT;
  // T t;
  // t = futT;

  // perform type conversion on Future_Rep.
  return *future_rep_;
}

template <class T> void
ACE_Future<T>::operator = (const ACE_Future<T> &r) 
{
  // assignment:
  //
  //  bind <this> to the same <ACE_Future_Rep> as <r>.

  ACE_MT (ACE_GUARD (ACE_Thread_Mutex, ace_mon, this->mutex_));

  // if there is already a <ACE_Future_Rep> we have
  // to disconnect from it...
  if (this->future_rep_) 
    {
      // Disconnect from the <ACE_Future_Rep>.
      this->future_rep_->ref_count_--;

      if (this->future_rep_->ref_count_ == 0)
	delete this->future_rep_;
    }

  // Acquire the mutex on <r>. We have to make sure
  // that <r> does not delete it's future_rep_...

  ACE_MT (ACE_GUARD (ACE_Thread_Mutex, r_mon, (ACE_Thread_Mutex &) r.mutex_));

  // Check if 'r' has already a ACE_Future_rep bound to it.
  if (r.future_rep_ == 0) 
    this->future_rep_ = r.create_rep_i ();
  else 
    // ACE_Future_rep exists already, we can just link to it.
    this->future_rep_ = r.future_rep_;

  this->future_rep_->ref_count_++;
}

template <class T> void 
ACE_Future<T>::dump (void) const
{
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));

  if (this->future_rep_)
    this->future_rep_->dump ();

  this->mutex_.dump ();
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}

template <class T> void *
ACE_Future<T>::operator new (size_t)
{
  return 0;
}

template <class T> void 
ACE_Future<T>::operator delete (void *)
{
}

template <class T> void
ACE_Future<T>::operator &()
{
}

#if defined (ACE_TEMPLATES_REQUIRE_SPECIALIZATION)
template class ACE_Atomic_Op<ACE_Thread_Mutex, int>;
#endif /* ACE_TEMPLATES_REQUIRE_SPECIALIZATION */

#endif /* ACE_HAS_THREADS */
#endif /* ACE_FUTURE_CPP */