summaryrefslogtreecommitdiff
path: root/ace/High_Res_Timer.cpp
blob: cd139d8efb2aabebc1fb9d78c3f8c461951d76ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// $Id$

#include "ace/High_Res_Timer.h"

#if !defined (__ACE_INLINE__)
#include "ace/High_Res_Timer.i"
#endif /* __ACE_INLINE__ */

#include "ace/Stats.h"

ACE_RCSID(ace, High_Res_Timer, "$Id$")

ACE_ALLOC_HOOK_DEFINE(ACE_High_Res_Timer)

// For Intel platforms, a scale factor is required for
// ACE_OS::gethrtime.  We'll still set this to one to prevent division
// by zero errors.
#if (defined (ACE_WIN32) || defined (ACE_HAS_POWERPC_TIMER) || \
     defined (ACE_HAS_PENTIUM) || defined (ACE_HAS_ALPHA_TIMER)) && \
    !defined (ACE_HAS_HI_RES_TIMER)

# include "ace/Synch.h"
# include "ace/Object_Manager.h"

  // Initialize the global_scale_factor_ to 1.  The first
  // ACE_High_Res_Timer instance construction will override this
  // value.
  /* static */
  ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = 1u;

#else  /* ! (ACE_WIN32 || ACE_HAS_POWERPC_TIMER || \
             ACE_HAS_PENTIUM || ACE_HAS_ALPHA_TIMER)  ||
          ACE_HAS_HI_RES_TIMER */
  // A scale_factor of 1000 converts nanosecond ticks to microseconds.
  // That is, on these platforms, 1 tick == 1 nanosecond.
  /* static */
  ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = 1000u;
#endif /* ! (ACE_WIN32 || ACE_HAS_POWERPC_TIMER || \
             ACE_HAS_PENTIUM || ACE_HAS_ALPHA_TIMER)  ||
          ACE_HAS_HI_RES_TIMER */

// This is used to tell if the global_scale_factor_ has been
// set, and if high resolution timers are supported.
/* static */
int ACE_High_Res_Timer::global_scale_factor_status_ = 0;


#if defined (linux)
// Determine the apparent CPU clock speed from /proc/cpuinfo
ACE_UINT32
ACE_High_Res_Timer::get_cpuinfo (void)
{
  ACE_UINT32 scale_factor = 1u;

  // Get the BogoMIPS from /proc/cpuinfo.  It works fine on Alpha and
  // Pentium Pro.  For other CPUs, it will be necessary to interpret
  // the BogoMips, as described in the BogoMips mini-HOWTO.  Note that
  // this code assumes an order to the /proc/cpuinfo contents.  The
  // BogoMips rating had better come after CPU type and model info.
#if !defined (__alpha__)
  int supported = 0;
#endif /* __alpha__ */

  FILE *cpuinfo = ACE_OS::fopen ("/proc/cpuinfo", "r");

  if (cpuinfo != 0)
    {
      ACE_TCHAR buf[128];

      // ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\nReading /proc/cpuinfo...")));

      while (ACE_OS::fgets (buf, sizeof buf, cpuinfo))
        {
#if defined (__alpha__)
          ACE_UINT32 whole;
          ACE_UINT32 fractional;
          if (::sscanf (buf,
                        "BogoMIPS : %d.%d\n",
                        &whole,
                        &fractional) == 2
              || ::sscanf (buf,
                           "bogomips : %d.%d\n",
                           &whole,
                           &fractional) == 2)
            {
              scale_factor = whole;
              break;
            }
#else
          double bmips = 1;
          ACE_TCHAR arg[128];

          // CPU type?
          if (::sscanf (buf, "cpu : %s\n", arg) == 1)
            {
              // If this is an Alpha chip, then the BogoMips rating is
              // usable...
              if (ACE_OS::strncmp (arg,
                                   "Alpha",
                                   5) == 0)
                {
                  supported = 1;
                  // ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT (" recognized Alpha chip...")));
                }
            }
          // Pentium CPU model?
          else if (supported == 0
                   && ::sscanf (buf, "model : Pentium %s\n", arg) == 1)
            {
              // But if we don't have the right kind of Intel chip,
              // just quit.
              if (ACE_OS::strcmp (arg, "II") == 0
                  || ACE_OS::strcmp (arg, "Pro") == 0)
                {
                  supported = 1;
                  // ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT (" recognized Pentium Pro/II chip...")));
                }
            }
          else if (::sscanf (buf, "bogomips : %lf\n", &bmips) == 1
                   || ::sscanf (buf, "BogoMIPS : %lf\n", &bmips) == 1)
            {
              if (supported)
                {
                  scale_factor = (ACE_UINT32) (bmips + 0.5);
                  // ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT (" setting the clock scale factor to %u"), scale_factor));
                }
#if 0
              else
                {
                  ACE_DEBUG ((LM_DEBUG,
                              ACE_LIB_TEXT ("\nThe BogoMIPS metric is not supported on this platform"
                                         "\n\tReport the results of the clock calibration and"
                                         "\n\tthe contents of /proc/cpuinfo to the ace-users mailing list")));
                }
#endif /* 0 */
              break;
            }
#endif /* __alpha__ */
        }

      // ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT (" (done)\n")));

      ACE_OS::fclose (cpuinfo);
    }

  return scale_factor;
}
#endif /* linux */

ACE_UINT32
ACE_High_Res_Timer::global_scale_factor (void)
{
#if (defined (ACE_WIN32) || defined (ACE_HAS_POWERPC_TIMER) || \
     defined (ACE_HAS_PENTIUM) || defined (ACE_HAS_ALPHA_TIMER)) && \
    !defined (ACE_HAS_HI_RES_TIMER) && \
    ((defined (ACE_WIN32) && !defined (ACE_HAS_WINCE)) || \
     defined (ghs) || defined (__GNUG__) || defined (__KCC))
  // Check if the global scale factor needs to be set, and do if so.
  if (ACE_High_Res_Timer::global_scale_factor_status_ == 0)
    {
      // Grab ACE's static object lock.  This doesn't have anything to
      // do with static objects; it's just a convenient lock to use.
      ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon,
                                *ACE_Static_Object_Lock::instance (), 0));

      // Double check
      if (ACE_High_Res_Timer::global_scale_factor_status_ == 0)
        {
#         if defined (ACE_WIN32)
            LARGE_INTEGER freq;
            if (::QueryPerformanceFrequency (&freq))
              {
                ACE_High_Res_Timer::global_scale_factor_status_ = 1;

                // We have a high-res timer
#             if defined (ghs)
                ACE_UINT64 uint64_freq(freq.u.LowPart, (ACE_UINT32) freq.u.HighPart);
                ACE_High_Res_Timer::global_scale_factor
                  (uint64_freq / (ACE_UINT32) ACE_ONE_SECOND_IN_USECS);
#             else
                ACE_High_Res_Timer::global_scale_factor
                  (ACE_static_cast (unsigned int,
                                    freq.QuadPart / ACE_HR_SCALE_CONVERSION));
#             endif // (ghs)
              }
            else
              // High-Res timers not supported
              ACE_High_Res_Timer::global_scale_factor_status_ = -1;

            return ACE_High_Res_Timer::global_scale_factor_;

#         elif defined (linux)
            ACE_High_Res_Timer::global_scale_factor (ACE_High_Res_Timer::get_cpuinfo ());
#         endif /* ! ACE_WIN32 && ! (linux && __alpha__) */

#         if !defined (ACE_WIN32)
          if (ACE_High_Res_Timer::global_scale_factor_ == 1u)
            // Failed to retrieve CPU speed from system, so calculate it.
            ACE_High_Res_Timer::calibrate ();
#         endif // (ACE_WIN32)
        }
    }

  ACE_High_Res_Timer::global_scale_factor_status_ = 1;
#endif /* (ACE_WIN32 || ACE_HAS_POWERPC_TIMER || \
           ACE_HAS_PENTIUM || ACE_HAS_ALPHA_TIMER) && \
          ! ACE_HAS_HIGH_RES_TIMER &&
          ((WIN32 && ! WINCE) || ghs || __GNUG__) */

  return ACE_High_Res_Timer::global_scale_factor_;
}

ACE_High_Res_Timer::ACE_High_Res_Timer (void)
{
  ACE_TRACE ("ACE_High_Res_Timer::ACE_High_Res_Timer");

  this->reset ();

  // Make sure that the global scale factor is set.
  (void) global_scale_factor ();
}

ACE_UINT32
ACE_High_Res_Timer::calibrate (const ACE_UINT32 usec,
                               const u_int iterations)
{
  const ACE_Time_Value sleep_time (0, usec);
  ACE_Stats delta_hrtime;
  // In units of 100 usec, to avoid overflow.
  ACE_Stats actual_sleeps;

  for (u_int i = 0;
       i < iterations;
       ++i)
    {
      const ACE_Time_Value actual_start =
        ACE_OS::gettimeofday ();
      const ACE_hrtime_t start =
        ACE_OS::gethrtime ();
      ACE_OS::sleep (sleep_time);
      const ACE_hrtime_t stop =
        ACE_OS::gethrtime ();
      const ACE_Time_Value actual_delta =
        ACE_OS::gettimeofday () - actual_start;

      // Store the sample.
      delta_hrtime.sample (ACE_U64_TO_U32 (stop - start));
      actual_sleeps.sample (actual_delta.msec () * 100u);
    }

  // Calculate the mean value of the samples, with no fractional
  // precision.  Use it for the global scale factor.
  ACE_Stats_Value ticks (0);
  delta_hrtime.mean (ticks);

  ACE_Stats_Value actual_sleep (0);
  actual_sleeps.mean (actual_sleep);

  // The addition of 5 below rounds instead of truncates.
  const ACE_UINT32 scale_factor =
    (ticks.whole () / actual_sleep.whole () + 5) /
    10u /* usec/100 usec */;
  ACE_High_Res_Timer::global_scale_factor (scale_factor);

  return scale_factor;
}

void
ACE_High_Res_Timer::dump (void) const
{
  ACE_TRACE ("ACE_High_Res_Timer::dump");

  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACE_DEBUG ((LM_DEBUG, ACE_LIB_TEXT ("\nglobal_scale_factor_: %u\n"),
             global_scale_factor ()));
#if defined (ACE_LACKS_LONGLONG_T)
  ACE_DEBUG ((LM_DEBUG,
             ACE_LIB_TEXT (":\nstart_.hi ():     %8x; start_.lo ():      %8x;\n")
             ACE_LIB_TEXT ("end_.hi ():       %8x; end_.lo ():        %8x;\n")
             ACE_LIB_TEXT ("total_.hi ():     %8x; total_.lo ():      %8x;\n")
             ACE_LIB_TEXT ("start_incr_.hi () %8x; start_incr_.lo (): %8x;\n"),
             start_.hi (), start_.lo (),
             end_.hi (), end_.lo (),
             total_.hi (), total_.lo (),
             start_incr_.hi (), start_incr_.lo ()));
#else  /* ! ACE_LACKS_LONGLONG_T */
  ACE_DEBUG ((LM_DEBUG,
             ACE_LIB_TEXT (":\nstart_.hi ():     %8x; start_.lo ():      %8x;\n")
             ACE_LIB_TEXT ("end_.hi ():       %8x; end_.lo ():        %8x;\n")
             ACE_LIB_TEXT ("total_.hi ():     %8x; total_.lo ():      %8x;\n")
             ACE_LIB_TEXT ("start_incr_.hi () %8x; start_incr_.lo (): %8x;\n"),
             ACE_CU64_TO_CU32 (start_ >> 32),
             ACE_CU64_TO_CU32 (start_ & 0xfffffffful),
             ACE_CU64_TO_CU32 (end_ >> 32),
             ACE_CU64_TO_CU32 (end_ & 0xfffffffful),
             ACE_CU64_TO_CU32 (total_ >> 32),
             ACE_CU64_TO_CU32 (total_ & 0xfffffffful),
             ACE_CU64_TO_CU32 (start_incr_ >> 32),
             ACE_CU64_TO_CU32 (start_incr_ & 0xfffffffful)));
#endif /* ! ACE_LACKS_LONGLONG_T */
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}

void
ACE_High_Res_Timer::reset (void)
{
  ACE_TRACE ("ACE_High_Res_Timer::reset");

  start_ = 0;
  end_ = 0;
  total_ = 0;
  start_incr_ = 0;
}

void
ACE_High_Res_Timer::elapsed_time (ACE_Time_Value &tv) const
{
  hrtime_to_tv (tv, end_ - start_);
}

#if defined (ACE_HAS_POSIX_TIME)
// Note... Win32 does not have ACE_HAS_POSIX_TIME, so the scale factor
// does not need to take into account the different units on Win32.

void
ACE_High_Res_Timer::elapsed_time (struct timespec &elapsed_time) const
{
  // This implementation should be cleaned up.

  // Just grab the nanoseconds.  That is, leave off all values above
  // microsecond.  This equation is right!  Don't mess with me!  (It
  // first strips off everything but the portion less than 1 usec.
  // Then it converts that to nanoseconds by dividing by the scale
  // factor to convert to usec, and multiplying by 1000.)  The cast
  // avoids a MSVC 4.1 compiler warning about narrowing.
  u_long nseconds = ACE_static_cast (u_long,
                                     (this->end_ - this->start_) %
                                       global_scale_factor () * 1000u /
                                       global_scale_factor ());

  // Get just the microseconds (dropping any left over nanoseconds).
  ACE_UINT32 useconds = (ACE_UINT32) ((this->end_ - this->start_) / global_scale_factor ());

#if ! defined(ACE_HAS_BROKEN_TIMESPEC_MEMBERS)
  elapsed_time.tv_sec = (time_t) (useconds / ACE_ONE_SECOND_IN_USECS);
  // Transforms one second in microseconds into nanoseconds.
  elapsed_time.tv_nsec = (time_t) ((useconds % ACE_ONE_SECOND_IN_USECS) * 1000u + nseconds);
#else
  elapsed_time.ts_sec = (time_t) (useconds / ACE_ONE_SECOND_IN_USECS);
  // Transforms one second in microseconds into nanoseconds.
  elapsed_time.ts_nsec = (time_t) ((useconds % ACE_ONE_SECOND_IN_USECS) * 1000u + nseconds);
#endif /* ACE_HAS_BROKEN_TIMESPEC_MEMBERS */
}
#endif /* ACE_HAS_POSIX_TIME */

void
ACE_High_Res_Timer::elapsed_time_incr (ACE_Time_Value &tv) const
{
  hrtime_to_tv (tv, total_);
}

void
ACE_High_Res_Timer::elapsed_time (ACE_hrtime_t &nanoseconds) const
{
  // Please do _not_ rearrange this equation.  It is carefully
  // designed and tested to avoid overflow on machines that don't have
  // native 64-bit ints.
#if defined (ACE_WIN32)
  nanoseconds = (this->end_ - this->start_)
                * (1000000u / ACE_High_Res_Timer::global_scale_factor ());
#else
  nanoseconds = (this->end_ - this->start_)
                * (1000u / ACE_High_Res_Timer::global_scale_factor ());
#endif /* ACE_WIN32 */
}

void
ACE_High_Res_Timer::elapsed_time_incr (ACE_hrtime_t &nanoseconds) const
{
  // Same as above.
#if defined (ACE_WIN32)
  nanoseconds = this->total_
                / ACE_High_Res_Timer::global_scale_factor () * 1000000u;
#else
  nanoseconds = this->total_
                / ACE_High_Res_Timer::global_scale_factor () * 1000u;
#endif
}

#if !defined (ACE_HAS_WINCE)
void
ACE_High_Res_Timer::print_ave (const ACE_TCHAR *str,
                               const int count,
                               ACE_HANDLE handle) const
{
  ACE_TRACE ("ACE_High_Res_Timer::print_ave");

  // Get the total number of nanoseconds elapsed.
  ACE_hrtime_t total_nanoseconds;
  this->elapsed_time (total_nanoseconds);

  // Separate to seconds and nanoseconds.
  u_long total_secs =
    ACE_static_cast (u_long,
                     total_nanoseconds / (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
  ACE_UINT32 extra_nsecs =
    ACE_static_cast (ACE_UINT32,
                     total_nanoseconds % (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);

  ACE_TCHAR buf[100];
  if (count > 1)
    {
      ACE_hrtime_t avg_nsecs = total_nanoseconds / (ACE_UINT32) count;
      ACE_OS::sprintf (buf,
                       ACE_LIB_TEXT (" count = %d, total (secs %lu, usecs %u), avg usecs = %lu\n"),
                       count,
                       total_secs,
                       (extra_nsecs + 500u) / 1000u,
                       (u_long) ((avg_nsecs + 500u) / 1000u));
    }
  else
    ACE_OS::sprintf (buf,
                     ACE_LIB_TEXT (" total %3lu.%06lu secs\n"),
                     total_secs,
                     (extra_nsecs + 500lu) / 1000lu);

  ACE_OS::write (handle,
                 str,
                 ACE_OS::strlen (str));
  ACE_OS::write (handle,
                 buf,
                 ACE_OS::strlen (buf));
}

void
ACE_High_Res_Timer::print_total (const ACE_TCHAR *str,
                                 const int count,
                                 ACE_HANDLE handle) const
{
  ACE_TRACE ("ACE_High_Res_Timer::print_total");

  // Get the total number of nanoseconds elapsed.
  ACE_hrtime_t total_nanoseconds;
  this->elapsed_time (total_nanoseconds);

  // Separate to seconds and nanoseconds.
  u_long total_secs =
    (u_long) (total_nanoseconds / (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
  ACE_UINT32 extra_nsecs =
    (ACE_UINT32) (total_nanoseconds % (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);

  ACE_TCHAR buf[100];
  if (count > 1)
    {
      ACE_hrtime_t avg_nsecs = this->total_ / (ACE_UINT32) count;

      ACE_OS::sprintf (buf,
                       ACE_LIB_TEXT (" count = %d, total (secs %lu, usecs %u), avg usecs = %lu\n"),
                       count,
                       total_secs,
                       (extra_nsecs + 500u) / 1000u,
                       (u_long) ((avg_nsecs + 500u) / 1000u));
    }
  else
    ACE_OS::sprintf (buf,
                     ACE_LIB_TEXT (" total %3lu.%06u secs\n"),
                     total_secs,
                     (extra_nsecs + 500u) / 1000u);

  ACE_OS::write (handle,
                 str,
                 ACE_OS::strlen (str));
  ACE_OS::write (handle,
                 buf,
                 ACE_OS::strlen (buf));
}
#endif /* !ACE_HAS_WINCE */

int
ACE_High_Res_Timer::get_env_global_scale_factor (const ACE_TCHAR *env)
{
#if !defined (ACE_HAS_WINCE)
  if (env != 0)
    {
      const ACE_TCHAR *env_value = ACE_OS::getenv (env);
      if (env_value != 0)
        {
          int value = ACE_OS::atoi (env_value);
          if (value > 0)
            {
              ACE_High_Res_Timer::global_scale_factor (value);
              return 0;
            }
        }
    }
#else
  ACE_UNUSED_ARG (env);
#endif /* !ACE_HAS_WINCE */
  return -1;
}