summaryrefslogtreecommitdiff
path: root/ace/Message_Block.h
blob: d09c5111c88ce34cf9d3afbb7f12d469b77c725b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
/* -*- C++ -*- */

//=============================================================================
/**
 *  @file    Message_Block.h
 *
 *  $Id$
 *
 *  @author Douglas C. Schmidt <schmidt@cs.wustl.edu>
 */
//=============================================================================


#include "ace/ACE.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#ifndef ACE_MESSAGE_BLOCK_H
#define ACE_MESSAGE_BLOCK_H
#include "ace/pre.h"

#include "ace/Malloc.h"

// Forward declaration.
class ACE_Data_Block;
class ACE_Lock;
class ACE_Time_Value;

/**
 * @class ACE_Message_Block
 *
 * @brief Stores messages for use throughout ACE (particularly
 * <ACE_Message_Queue>).
 *
 * An <ACE_Message_Block> is modeled after the message data
 * structures used in System V STREAMS.  Its purpose is to
 * enable efficient manipulation of arbitrarily-large messages
 * without much incurring memory copying overhead.  Here are the
 * main characteristics of an <ACE_Message_Block>:
 * 1. Contains a pointer to a reference-counted
 *    <ACE_Data_Block>, which in turn points to the actual data
 *    buffer.  This allows very flexible and efficient sharing of
 *    data by multiple <ACE_Message_Block>s.
 * 2. One or more <ACE_Message_Blocks> can be linked to form a
 *    ``fragment chain.''
 * 3. <ACE_Message_Blocks> can be linked together by <prev_> and
 *    <next_> pointers to form a queue of messages (e.g., this is how
 *    <ACE_Message_Queue> works).
 */
class ACE_Export ACE_Message_Block
{
public:
  friend class ACE_Data_Block;

  enum
  {
    // = Data and proto
    /// regular datacol messages (regular and priority)
    MB_DATA     = 0x01,
    /// protocol control
    MB_PROTO    = 0x02,

    // = Control messag
    /// line breakes (regular and priority)
    MB_BREAK    = 0x03,
    /// pass file pointer
    MB_PASSFP   = 0x04,
    /// post an event to an event queue
    MB_EVENT    = 0x05,
    /// generate process signal
    MB_SIG      = 0x06,
    /// ioctl; set/get params
    MB_IOCTL    = 0x07,
    /// set various stream head options
    MB_SETOPTS  = 0x08,

    // = Control messag
    /// acknowledge ioctles (high priority; go to head of queue)
    MB_IOCACK   = 0x81,
    /// negative ioctl acknowledge
    MB_IOCNAK   = 0x82,
    /// priority proto message
    MB_PCPROTO  = 0x83,
    /// generate process signal
    MB_PCSIG    = 0x84,
    /// generate read notification
    MB_READ     = 0x85,
    /// flush your queues
    MB_FLUSH    = 0x86,
    /// stop transmission immediately
    MB_STOP     = 0x87,
    /// restart transmission after stop
    MB_START    = 0x88,
    /// line disconnect
    MB_HANGUP   = 0x89,
    /// fatal error used to set u.u_error
    MB_ERROR    = 0x8a,
    /// post an event to an event queue
    MB_PCEVENT  = 0x8b,

    // Message class ma
    /// Normal priority messagessks
    MB_NORMAL   = 0x00,
    /// High priority control messages
    MB_PRIORITY = 0x80,
    /// User-defined control messages
    MB_USER     = 0x200
  };

  typedef int ACE_Message_Type;
  typedef u_long Message_Flags;

  enum
  {
    /// Don't delete the data on exit since we don't own it.
    DONT_DELETE = 01,
    /// user defined flags start here
    USER_FLAGS = 0x1000
  };

  // = Initialization and termination.
  /// Create an empty message.
  ACE_Message_Block (ACE_Allocator *message_block_allocator = 0);

  /// Create an <ACE_Message_Block> that owns the <ACE_Data_Block> *.
  ACE_Message_Block (ACE_Data_Block *,
                     ACE_Allocator *message_block_allocator = 0);

  /**
   * Create a Message Block that assumes ownership of <data> without
   * copying it (i.e., we don't delete it since we don't malloc it!).
   * Note that the <size> of the <Message_Block> will be <size>, but
   * the <length> will be 0 until <wr_ptr> is set.
   */
  ACE_Message_Block (const char *data,
                     size_t size = 0,
                     u_long priority = ACE_DEFAULT_MESSAGE_BLOCK_PRIORITY);

  /**
   * Create an initialized message of type <type> containing <size>
   * bytes.  The <cont> argument initializes the continuation field in
   * the <Message_Block>.  If <data> == 0 then we create and own the
   * <data>, using <allocator> to get the data if it's non-0.  If
   * <data> != 0 we assume ownership of the <data> (and don't delete
   * it).  If <locking_strategy> is non-0 then this is used to protect
   * regions of code that access shared state (e.g., reference
   * counting) from race conditions.  Note that the <size> of the
   * <Message_Block> will be <size>, but the <length> will be 0 until
   * <wr_ptr> is set.
   * The <data_block_allocator> is use to allocate the data blocks
   * while the <allocator_strategy> is used to allocate the buffers
   * contained by those.
   * The <message_block_allocator> is used to allocate new
   * <Message_Block> objects when a duplicate method is called.  If
   * a <message_block_allocator> is given, this <Message_Block> and
   * future <Message_Block> objects created by duplicate will be free'ed
   * into this allocator when they are released.  Note: if you use this
   * allocator, the <Message_Block> you created should have been created
   * using this allocator because it will be released to the same allocator.
   */
  ACE_Message_Block (size_t size,
                     ACE_Message_Type type = MB_DATA,
                     ACE_Message_Block *cont = 0,
                     const char *data = 0,
                     ACE_Allocator *allocator_strategy = 0,
                     ACE_Lock *locking_strategy = 0,
                     u_long priority = ACE_DEFAULT_MESSAGE_BLOCK_PRIORITY,
                     const ACE_Time_Value &execution_time = ACE_Time_Value::zero,
                     const ACE_Time_Value &deadline_time = ACE_Time_Value::max_time,
                     ACE_Allocator *data_block_allocator = 0,
                     ACE_Allocator *message_block_allocator = 0);

  /**
   * Create a Message Block that assumes ownership of <data> (i.e.,
   * doesn't delete it since it didn't malloc it!).  Note that the
   * <size> of the <Message_Block> will be <size>, but the <length>
   * will be 0 until <wr_ptr> is set.
   */
  int init (const char *data,
            size_t size = 0);

  /**
   * Create an initialized message of type <type> containing <size>
   * bytes.  The <cont> argument initializes the continuation field in
   * the <Message_Block>.  If <data> == 0 then we create and own the
   * <data>, using <allocator> to get the data if it's non-0.  If
   * <data> != 0 we assume ownership of the <data> (and don't delete
   * it).  If <locking_strategy> is non-0 then this is used to protect
   * regions of code that access shared state (e.g., reference
   * counting) from race conditions.  Note that the <size> of the
   * <Message_Block> will be <size>, but the <length> will be 0 until
   * <wr_ptr> is set.
   * The <data_block_allocator> is use to allocate the data blocks
   * while the <allocator_strategy> is used to allocate the buffers
   * contained by those.
   */
  int init (size_t size,
            ACE_Message_Type type = MB_DATA,
            ACE_Message_Block *cont = 0,
            const char *data = 0,
            ACE_Allocator *allocator_strategy = 0,
            ACE_Lock *locking_strategy = 0,
            u_long priority = ACE_DEFAULT_MESSAGE_BLOCK_PRIORITY,
            const ACE_Time_Value &execution_time = ACE_Time_Value::zero,
            const ACE_Time_Value &deadline_time = ACE_Time_Value::max_time,
            ACE_Allocator *data_block_allocator = 0,
            ACE_Allocator *message_block_allocator = 0);

  /**
   * Delete all the resources held in the message.
   *
   * Note that <release> is designed to release the continuation
   * chain; the destructor is not. See <release> for details.
   */
  virtual ~ACE_Message_Block (void);

  // = Message Type accessors and mutators.

  /// Get type of the message.
  ACE_Message_Type msg_type (void) const;

  /// Set type of the message.
  void msg_type (ACE_Message_Type type);

  /// Find out what type of message this is.
  int is_data_msg (void) const;

  /// Find out what class of message this is (there are two classes,
  /// <normal> messages and <high-priority> messages).
  ACE_Message_Type msg_class (void) const;

  // = Message flag accessors and mutators.
  /// Bitwise-or the <more_flags> into the existing message flags and
  /// return the new value.
  Message_Flags set_flags (Message_Flags more_flags);

  /// Clear the message flag bits specified in <less_flags> and return
  /// the new value.
  Message_Flags clr_flags (Message_Flags less_flags);

  /// Get the current message flags.
  Message_Flags flags (void) const;

  /// Get priority of the message.
  u_long msg_priority (void) const;

  /// Set priority of the message.
  void msg_priority (u_long priority);

  /// Get execution time associated with the message.
  const ACE_Time_Value &msg_execution_time (void) const;

  /// Set execution time associated with the message.
  void msg_execution_time (const ACE_Time_Value &et);

  /// Get absolute time of deadline associated with the message.
  const ACE_Time_Value &msg_deadline_time (void) const;

  /// Set absolute time of deadline associated with the message.
  void msg_deadline_time (const ACE_Time_Value &dt);

  // = Deep copy and shallow copy methods.

  /// Return an exact "deep copy" of the message, i.e., create fresh
  /// new copies of all the Data_Blocks and continuations.
  virtual ACE_Message_Block *clone (Message_Flags mask = 0) const;

  /// Return a "shallow" copy that increments our reference count by 1.
  ACE_Message_Block *duplicate (void) const;

  /**
   * Return a "shallow" copy that increments our reference count by 1.
   * This is similar to CORBA's <_duplicate> method, which is useful
   * if you want to eliminate lots of checks for NULL <mb> pointers
   * before calling <_duplicate> on them.
   */
  static ACE_Message_Block *duplicate (const ACE_Message_Block *mb);

  /**
   * Decrease the shared ACE_Data_Block's reference count by 1.  If the
   * ACE_Data_Block's reference count goes to 0, it is deleted.
   * In all cases, this ACE_Message_Block is deleted - it must have come
   * from the heap, or there will be trouble.
   *
   * <release> is designed to release the continuation chain; the
   * destructor is not.  If we make the destructor release the
   * continuation chain by calling <release> or delete on the message
   * blocks in the continuation chain, the following code will not
   * work since the message block in the continuation chain is not off
   * the heap:
   *
   *  ACE_Message_Block mb1 (1024);
   *  ACE_Message_Block mb2 (1024);
   *
   *  mb1.cont (&mb2);
   *
   * And hence, call <release> on a dynamically allocated message
   * block. This will release all the message blocks in the
   * continuation chain.  If you call delete or let the message block
   * fall off the stack, cleanup of the message blocks in the
   * continuation chain becomes the responsibility of the user.
   */
  ACE_Message_Block *release (void);

  /**
   * This behaves like the non-static method <release>, except that it
   * checks if <mb> is 0.  This is similar to <CORBA::release>, which
   * is useful if you want to eliminate lots of checks for NULL
   * pointers before calling <release> on them.  Returns <mb>.
   */
  static ACE_Message_Block *release (ACE_Message_Block *mb);

  // = Operations on Message data

  /**
   * Copies <n> bytes from <buf> into the Message_Block starting at
   * the <wr_ptr> offset.  Return 0 and increment <wr_ptr> by <n> if
   * the method succeeds.  Returns -1 if the size of the message is
   * too small, i.e., for this to work correct, <end> must be >=
   * <wr_ptr>.
   */
  int copy (const char *buf, size_t n);

  /**
   * Copies <buf> into the Message_Block starting at the <wr_ptr>
   * offset.  This call assumees that <buf> is NUL-terminated.  Return
   * 0 and increment <wr_ptr> by <ACE_OS::strlen (buf) + 1> if the
   * method succeeds.  Returns -1 if the size of the message is too
   * small, i.e., for this to work correct, <end> must be >= <wr_ptr>.
   */
  int copy (const char *buf);

  /// Normalizes data in the top-level <Message_Block> to align with the base,
  /// i.e., it "shifts" the data pointed to by <rd_ptr> down to the <base> and
  /// then readjusts <rt_ptr> to point to <base> and <wr_ptr> to point
  /// to <base> + the length of the moved data.  
  void crunch (void);

  /// Resets the Message Block data to contain nothing, i.e., sets the
  /// read and write pointers to align with the base.
  void reset (void);

  /// Get message data.
  char *base (void) const;

  /// Set message data (doesn't reallocate).
  void base (char *data,
             size_t size,
             Message_Flags = DONT_DELETE);

  /// Return a pointer to 1 past the end of the allocated data in a message.
  char *end (void) const;

  /**
   * Return a pointer to 1 past the end of the allotted data in a message.
   * Allotted data may be less than allocated data  if a value smaller than
   * capacity() to is passed to size().
   */
  char *mark (void) const;

  /**
   * Get the read pointer.
   * Set the read pointer to <ptr>.
   * Set the read pointer ahead <n> bytes.
   */
  char *rd_ptr (void) const;
  void rd_ptr (char *ptr);
  void rd_ptr (size_t n);

  /**
   * Get the write pointer.
   * Set the write pointer to <ptr>.
   * Set the write pointer ahead <n> bytes.  This is used to compute
   * the <length> of a message.
   */
  char *wr_ptr (void) const;
  void wr_ptr (char *ptr);
  void wr_ptr (size_t n);

  /** @name Message length and size operations
   *
   * Message length is (wr_ptr - rd_ptr).
   *
   * Message size is capacity of the message, including data outside
   * the [rd_ptr,wr_ptr] range.
   */
  //@{
  /// Get the length of the message
  size_t length (void) const;

  /// Set the length of the message
  void length (size_t n);

  /// Get the length of the <Message_Block>s, including chained
  /// <Message_Block>s.
  size_t total_length (void) const;

  /// Get the total number of bytes in all <Message_Block>s, including
  /// chained <Message_Block>s.
  size_t total_size (void) const;

  /// Get the number of bytes in the top-level <Message_Block> (i.e.,
  /// does not consider the bytes in chained <Message_Block>s).
  size_t size (void) const;

  /**
   * Set the number of bytes in the top-level <Message_Block>,
   * reallocating space if necessary.  However, the <rd_ptr_> and
   * <wr_ptr_> remain at the original offsets into the buffer, even if
   * it is reallocated.  Returns 0 if successful, else -1.
   */
  int size (size_t length);

  /// Get the number of allocated bytes in all <Message_Block>, including
  /// chained <Message_Block>s.
  size_t total_capacity (void) const;

  /// Get the number of allocated bytes in the top-level <Message_Block>.
  size_t capacity (void) const;

  /// Get the number of bytes available after the <wr_ptr_> in the
  /// top-level <Message_Block>.
  size_t space (void) const;
  //@}

  // = <ACE_Data_Block> methods.

  /**
   * Get a pointer to the data block. Note that the <ACE_Message_Block>
   * still references the block; this call does not change the reference
   * count.
   */
  ACE_Data_Block *data_block (void) const;

  /**
   * Set a new data block pointer. The original <ACE_Data_Block> is released
   * as a result of this call. If you need to keep the original block, call
   * <replace_data_block> instead. Upon return, this <ACE_Message_Block>
   * holds a pointer to the new <ACE_Data_Block>, taking over the reference
   * you held on it prior to the call.
   */
  void data_block (ACE_Data_Block *);

  /// Set a new data block pointer. A pointer to the original <ACE_Data_Block>
  /// is returned, and not released (as it is with <data_block>).
  ACE_Data_Block *replace_data_block (ACE_Data_Block*);

  // = The continuation field chains together composite messages.
  /// Get the continuation field.
  /// Set the continuation field.
  ACE_Message_Block *cont (void) const;
  void cont (ACE_Message_Block *);

  // = Pointer to the <Message_Block> directly ahead in the <ACE_Message_Queue>.
  /// Get link to next message.
  /// Set link to next message.
  ACE_Message_Block *next (void) const;
  void next (ACE_Message_Block *);

  // = Pointer to the <Message_Block> directly behind in the <ACE_Message_Queue>.
  /// Get link to prev message.
  /// Set link to prev message.
  ACE_Message_Block *prev (void) const;
  void prev (ACE_Message_Block *);

  // = The locking strategy prevents race conditions.
  /// Get the locking strategy.
  /// Set a new locking strategy and return the hold one.
  ACE_Lock *locking_strategy (void);
  ACE_Lock *locking_strategy (ACE_Lock *);

  /// Get the current reference count.
  int reference_count (void) const;

  /// Dump the state of an object.
  void dump (void) const;

  /// Declare the dynamic allocation hooks.
  ACE_ALLOC_HOOK_DECLARE;

protected:
  // = Internal initialization methods.
  /// Perform the actual initialization.
  ACE_Message_Block (size_t size,
                     ACE_Message_Type type,
                     ACE_Message_Block *cont,
                     const char *data,
                     ACE_Allocator *allocator_strategy,
                     ACE_Lock *locking_strategy,
                     Message_Flags flags,
                     u_long priority,
                     const ACE_Time_Value &execution_time,
                     const ACE_Time_Value &deadline_time,
                     ACE_Data_Block *db,
                     ACE_Allocator *data_block_allocator,
                     ACE_Allocator *message_block_allocator);

  /// Internal release implementation
  /// Returns 1 if the data block has to be destroyed.
  int release_i (ACE_Lock *lock);

  /// Perform the actual initialization.
  int init_i (size_t size,
              ACE_Message_Type type,
              ACE_Message_Block *cont,
              const char *data,
              ACE_Allocator *allocator_strategy,
              ACE_Lock *locking_strategy,
              Message_Flags flags,
              u_long priority,
              const ACE_Time_Value &execution_time,
              const ACE_Time_Value &deadline_time,
              ACE_Data_Block *db,
              ACE_Allocator *data_block_allocator,
              ACE_Allocator *message_block_allocator);

  /// Pointer to beginning of next read.
  size_t rd_ptr_;

  /// Pointer to beginning of next write.
  size_t wr_ptr_;

  /// Priority of message.
  u_long priority_;

#if defined (ACE_HAS_TIMED_MESSAGE_BLOCKS)
  /// execution time associated with the message
  ACE_Time_Value execution_time_;

  /// absolute deadline time for message
  ACE_Time_Value deadline_time_;
#endif /* ACE_HAS_TIMED_MESSAGE_BLOCKS */

  // = Links to other ACE_Message_Block *s.
  /// Pointer to next message block in the chain.
  ACE_Message_Block *cont_;

  /// Pointer to next message in the list.
  ACE_Message_Block *next_;

  /// Pointer to previous message in the list.
  ACE_Message_Block *prev_;

  /// Pointer to the reference counted data structure that contains the
  /// actual memory buffer.
  ACE_Data_Block *data_block_;

  /// The allocator used to destroy ourselves when release is called
  /// and create new message blocks on duplicate.
  ACE_Allocator *message_block_allocator_;

private:
  // = Disallow these operations for now (use <clone> instead).
  ACE_Message_Block &operator= (const ACE_Message_Block &);
  ACE_Message_Block (const ACE_Message_Block &);
};

/**
 * @class ACE_Data_Block
 *
 * @brief Stores the data payload that is accessed via one or more
 * <ACE_Message_Block>s.
 *
 * This data structure is reference counted to maximize
 * sharing.  It also contains the <locking_strategy_> (which
 * protects the reference count from race conditions in
 * concurrent programs) and the <allocation_strategy_> (which
 * determines what memory pool is used to allocate the memory).
 */
class ACE_Export ACE_Data_Block
{
public:
  // = Initialization and termination methods.
  /// Default "do-nothing" constructor.
  ACE_Data_Block (void);

  /// Initialize.
  ACE_Data_Block (size_t size,
                  ACE_Message_Block::ACE_Message_Type msg_type,
                  const char *msg_data,
                  ACE_Allocator *allocator_strategy,
                  ACE_Lock *locking_strategy,
                  ACE_Message_Block::Message_Flags flags,
                  ACE_Allocator *data_block_allocator);

  /// Delete all the resources held in the message.
  virtual ~ACE_Data_Block (void);

  /// Get type of the message.
  ACE_Message_Block::ACE_Message_Type msg_type (void) const;

  /// Set type of the message.
  void msg_type (ACE_Message_Block::ACE_Message_Type type);

  /// Get message data pointer
  char *base (void) const;

  /// Set message data pointer (doesn't reallocate).
  void base (char *data,
             size_t size,
             ACE_Message_Block::Message_Flags mflags = ACE_Message_Block::DONT_DELETE);

  /// Return a pointer to 1 past the end of the allocated data in a message.
  char *end (void) const;

  /**
   * Return a pointer to 1 past the end of the allotted data in a message.
   * The allotted data may be less than allocated data if <size()> is passed
   * an argument less than <capacity()>.
   */
  char *mark (void) const;

  // = Message size is the total amount of space alloted.

  /// Get the total amount of allotted space in the message.  The amount of
  /// allotted space may be less than allocated space.
  size_t size (void) const;

  /// Set the total amount of space in the message.  Returns 0 if
  /// successful, else -1.
  int size (size_t length);

  /// Get the total amount of allocated space.
  size_t capacity (void) const;

  /**
   * Return an exact "deep copy" of the message, i.e., create fresh
   * new copies of all the Data_Blocks and continuations.
   * Notice that Data_Blocks can act as "Prototypes", i.e. derived
   * classes can override this method and create instances of
   * themselves.
   */
  virtual ACE_Data_Block *clone (ACE_Message_Block::Message_Flags mask = 0) const;

  /**
   * As clone above, but it does not copy the contents of the buffer,
   * i.e., create a new Data_Block of the same dynamic type, with the
   * same allocator, locking_strategy, and with the same amount of
   * storage available but the buffer is unitialized.
   */
  virtual ACE_Data_Block *clone_nocopy (ACE_Message_Block::Message_Flags mask = 0) const;

  /// Return a "shallow" copy that increments our reference count by 1.
  ACE_Data_Block *duplicate (void);

  /**
   * Decrease the shared reference count by 1.  If the reference count
   * is > 0 then return this; else if reference count == 0 then delete
   * <this> and <mb> and return 0.  Behavior is undefined if reference
   * count < 0.
   */
  ACE_Data_Block *release (ACE_Lock *lock = 0);

  // = Message flag accessors and mutators.
  /// Bitwise-or the <more_flags> into the existing message flags and
  /// return the new value.
  ACE_Message_Block::Message_Flags set_flags (ACE_Message_Block::Message_Flags more_flags);

  /// Clear the message flag bits specified in <less_flags> and return
  /// the new value.
  ACE_Message_Block::Message_Flags clr_flags (ACE_Message_Block::Message_Flags less_flags);

  /// Get the current message flags.
  ACE_Message_Block::Message_Flags flags (void) const;

  /// Obtain the allocator strategy.
  ACE_Allocator *allocator_strategy (void) const;

  // = The locking strategy prevents race conditions.
  /// Get the locking strategy.
  /// Set a new locking strategy and return the hold one.
  ACE_Lock *locking_strategy (void);
  ACE_Lock *locking_strategy (ACE_Lock *);

  /// Dump the state of an object.
  void dump (void) const;

  /// Get the current reference count.
  int reference_count (void) const;

  /// Get the allocator used to create this object
  ACE_Allocator *data_block_allocator (void) const;

protected:
  /// Internal release implementation
  ACE_Data_Block *release_i (void);

  /**
   * Decrease the reference count, but don't delete the object.
   * Returns 0 if the object should be removed.
   * If <lock> is equal to the locking strategy then we assume that
   * the lock is beign held by the current thread; this is used to
   * release all the data blocks in a chain while holding a single
   * lock.
   */
  friend class ACE_Message_Block;
  ACE_Data_Block *release_no_delete (ACE_Lock *lock);

  /// Type of message.
  ACE_Message_Block::ACE_Message_Type type_;

  /// Current size of message block.
  size_t cur_size_;

  /// Total size of buffer.
  size_t max_size_;

  /// Misc flags (e.g., DONT_DELETE and USER_FLAGS).
  ACE_Message_Block::Message_Flags flags_;

  /// Pointer to beginning of message payload.
  char *base_;

  // = Strategies.
  /**
   * Pointer to the allocator defined for this <ACE_Data_Block>.  Note
   * that this pointer is shared by all owners of this
   * <ACE_Data_Block>.
   */
  ACE_Allocator *allocator_strategy_;

  /**
   * Pointer to the locking strategy defined for this
   * <ACE_Data_Block>.  This is used to protect regions of code that
   * access shared <ACE_Data_Block> state.  Note that this lock is
   * shared by all owners of the <ACE_Data_Block>'s data.
   */
  ACE_Lock *locking_strategy_;

  /**
   * Reference count for this <ACE_Data_Block>, which is used to avoid
   * deep copies (i.e., <clone>).  Note that this pointer value is
   * shared by all owners of the <Data_Block>'s data, i.e., all the
   * <ACE_Message_Block>s.
   */
  int reference_count_;

  /// The allocator use to destroy ourselves.
  ACE_Allocator *data_block_allocator_;

private:
  // = Disallow these operations.
  ACE_Data_Block &operator= (const ACE_Data_Block &);
  ACE_Data_Block (const ACE_Data_Block &);
};

/**
 * @class ACE_Dynamic_Message_Strategy
 *
 * @brief An abstract base class which provides dynamic priority
 * evaluation methods for use by the <ACE_Dynamic_Message_Queue>
 * class or any other class which needs to manage the priorities
 * of a collection of <ACE_Message_Block>s dynamically.
 *
 * Methods for deadline and laxity based priority evaluation are
 * provided.  These methods assume a specific partitioning of
 * the message priority number into a higher order dynamic bit
 * field and a lower order static priority bit field.  The
 * default partitioning assumes an unsigned dynamic message
 * priority field of 22 bits and an unsigned static message
 * priority field of 10 bits.  This corresponds to the initial
 * values of the static class members.  To provide a different
 * partitioning, assign a different set of values to the static
 * class memebers before using the static member functions.
 */
class ACE_Export ACE_Dynamic_Message_Strategy
{
public:

  // = Message priority status

  // Values are defined as bit flags so that status combinations may
  // be specified easily.

  enum Priority_Status
  {
    /// message can still make its deadline
    PENDING     = 0x01,
    /// message cannot make its deadline
    LATE        = 0x02,
    /// message is so late its priority is undefined
    BEYOND_LATE = 0x04,
    /// mask to match any priority status
    ANY_STATUS  = 0x07
  };

  /// ctor
  ACE_Dynamic_Message_Strategy (u_long static_bit_field_mask,
                                u_long static_bit_field_shift,
                                u_long dynamic_priority_max,
                                u_long dynamic_priority_offset);

  /// virtual dtor
  virtual ~ACE_Dynamic_Message_Strategy (void);

  /// Updates the message's priority and returns its priority status.
  Priority_Status priority_status (ACE_Message_Block &mb,
                                   const ACE_Time_Value &tv);

  /// Get static bit field mask.
  u_long static_bit_field_mask (void) const;

  /// Set static bit field mask.
  void static_bit_field_mask (u_long);

  /// Get left shift value to make room for static bit field.
  u_long static_bit_field_shift (void) const;

  /// Set left shift value to make room for static bit field.
  void static_bit_field_shift (u_long);

  /// Get maximum supported priority value.
  u_long dynamic_priority_max (void) const;

  /// Set maximum supported priority value.
  void dynamic_priority_max (u_long);

  /// Get offset to boundary between signed range and unsigned range.
  u_long dynamic_priority_offset (void) const;

  /// Set offset to boundary between signed range and unsigned range.
  void dynamic_priority_offset (u_long);

  /// Dump the state of the strategy.
  virtual void dump (void) const;

protected:
  /// Hook method for dynamic priority conversion.
  virtual void convert_priority (ACE_Time_Value &priority,
                                 const ACE_Message_Block &mb) = 0;

  /// This is a bit mask with all ones in the static bit field.
  u_long static_bit_field_mask_;

  /**
   * This is a left shift value to make room for static bit field:
   * this value should be the logarithm base 2 of
   * (static_bit_field_mask_ + 1).
   */
  u_long static_bit_field_shift_;

  /// Maximum supported priority value.
  u_long dynamic_priority_max_;

  /// Offset to boundary between signed range and unsigned range.
  u_long dynamic_priority_offset_;

  /// Maximum late time value that can be represented.
  ACE_Time_Value max_late_;

  /// Minimum pending time value that can be represented.
  ACE_Time_Value min_pending_;

  /// Time value by which to shift pending priority.
  ACE_Time_Value pending_shift_;
};

/**
 * @class ACE_Deadline_Message_Strategy
 *
 * @brief Deadline based message priority strategy.
 *
 * Assigns dynamic message priority according to time to deadline.  The
 * message priority is divided into high and low order bit fields.  The
 * high order bit field is used for dynamic message priority, which is
 * updated whenever the convert_priority (...) method is called.  The
 * low order bit field is used for static message priority and is left
 * unchanged.  The partitioning of the priority value into high and low
 * order bit fields is done according to the arguments passed to the
 * strategy object's constructor.
 */
class ACE_Export ACE_Deadline_Message_Strategy : public ACE_Dynamic_Message_Strategy
{
public:
  /// Ctor, with all arguments defaulted.
  ACE_Deadline_Message_Strategy (u_long static_bit_field_mask = 0x3FFUL,       // 2^(10) - 1
                                 u_long static_bit_field_shift = 10,           // 10 low order bits
                                 u_long dynamic_priority_max = 0x3FFFFFUL,     // 2^(22)-1
                                 u_long dynamic_priority_offset = 0x200000UL); // 2^(22-1)

  /// Virtual dtor.
  virtual ~ACE_Deadline_Message_Strategy (void);

  /// Dynamic priority conversion function based on time to deadline.
  virtual void convert_priority (ACE_Time_Value &priority,
                                 const ACE_Message_Block &mb);

  /// Dump the state of the strategy.
  virtual void dump (void) const;
};

/**
 * @class ACE_Laxity_Message_Strategy
 *
 * @brief Laxity based message priority strategy.
 *
 * Assigns dynamic message priority according to laxity (time to
 * deadline minus worst case execution time).  The message priority is
 * divided into high and low order bit fields.  The high order
 * bit field is used for dynamic message priority, which is
 * updated whenever the convert_priority (...) method is called.  The
 * low order bit field is used for static message priority and is left
 * unchanged.  The partitioning of the priority value into high and low
 * order bit fields is done according to the arguments passed to the
 * strategy object's constructor.
 */
class ACE_Export ACE_Laxity_Message_Strategy : public ACE_Dynamic_Message_Strategy
{
public:
  /// Ctor, with all arguments defaulted.
  ACE_Laxity_Message_Strategy (u_long static_bit_field_mask = 0x3FFUL,       // 2^(10) - 1
                               u_long static_bit_field_shift = 10,           // 10 low order bits
                               u_long dynamic_priority_max = 0x3FFFFFUL,     // 2^(22)-1
                               u_long dynamic_priority_offset = 0x200000UL); // 2^(22-1)

  /// virtual dtor.
  virtual ~ACE_Laxity_Message_Strategy (void);

  /// Dynamic priority conversion function based on laxity.
  virtual void convert_priority (ACE_Time_Value &priority,
                                 const ACE_Message_Block &mb);

  /// Dump the state of the strategy.
  virtual void dump (void) const;
};

#if defined (__ACE_INLINE__)
#include "ace/Message_Block.i"
#endif /* __ACE_INLINE__ */

#include "ace/Message_Block_T.h"
#include "ace/post.h"
#endif /* ACE_MESSAGE_BLOCK_H */