summaryrefslogtreecommitdiff
path: root/ace/RB_Tree.cpp
blob: 7a95a2776621d290d98c26db5c8c9b9f367819e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
// $Id$

// RB_Tree.cpp

#ifndef ACE_RB_TREE_C
#define ACE_RB_TREE_C

#include "ace/RB_Tree.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

#if !defined (__ACE_INLINE__)
#include "ace/RB_Tree.i"
#endif /* __ACE_INLINE__ */

ACE_RCSID(ace, RB_Tree, "$Id$")

// Constructor.

template <class EXT_ID, class INT_ID>
ACE_RB_Tree_Node<EXT_ID, INT_ID>::ACE_RB_Tree_Node (const EXT_ID &k, const INT_ID &t)
  : k_ (k),
    t_ (t),
    color_ (RED),
    parent_ (0),
    left_ (0),
    right_ (0)
{
  ACE_TRACE ("ACE_RB_Tree_Node<EXT_ID, INT_ID>::ACE_RB_Tree_Node (const EXT_ID &k, const INT_ID &t)");
}


// Destructor.

template <class EXT_ID, class INT_ID>
ACE_RB_Tree_Node<EXT_ID, INT_ID>::~ACE_RB_Tree_Node (void)
{
  ACE_TRACE ("ACE_RB_Tree_Node<EXT_ID, INT_ID>::~ACE_RB_Tree_Node");

  // Delete left sub-tree.
  delete left_;

  // Delete right sub_tree.
  delete right_;
}

// Constructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree (ACE_Allocator *alloc)
  : allocator_ (alloc),
    root_ (0),
    current_size_ (0)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::"
             "ACE_RB_Tree (ACE_Allocator *alloc)");
  if (this->open (alloc) == -1)
    ACE_ERROR ((LM_ERROR,
                ACE_TEXT ("ACE_RB_Tree::ACE_RB_Tree\n")));
}

// Copy constructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &rbt)
  : allocator_ (rbt.allocator_),
    root_ (0),
    current_size_ (0)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::"
             "ACE_RB_Tree (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &rbt)");
  ACE_WRITE_GUARD (ACE_LOCK, ace_mon, this->lock_);

  // Make a deep copy of the passed tree.
  ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> iter(rbt);

  for (iter.first ();

       iter.is_done () == 0; iter.next ())
    insert_i (*(iter.key ()),
              *(iter.item ()));
}

// Destructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::~ACE_RB_Tree ()
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::~ACE_RB_Tree");

  // Use the locked public method, to be totally safe, as the class
  // can be used with an allocator and placement new.
  this->close ();
}

// Assignment operator.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> void
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::operator = (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &rbt)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::operator =");
  ACE_WRITE_GUARD (ACE_LOCK, ace_mon, this->lock_);

  // Clear out the existing tree.
  close_i ();

  // Make a deep copy of the passed tree.
  ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> iter(rbt);

  for (iter.first ();
       iter.is_done () == 0;
       iter.next ())
    insert_i (*(iter.key ()),
              *(iter.item ()));

  // Use the same allocator as the rhs.
  allocator_ = rbt.allocator_;
}

// Less than comparison function for keys, default functor
// implementation returns 1 if k1 < k2, 0 otherwise.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> int
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::lessthan (const EXT_ID &k1, const EXT_ID &k2)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::lessthan");
  return this->compare_keys_ (k1, k2);
}

// Method for right rotation of the tree about a given node.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>  void
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_rotate_right (ACE_RB_Tree_Node<EXT_ID, INT_ID> * x)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_rotate_right");

  if (! x)
    ACE_ERROR ((LM_ERROR,
                ACE_TEXT ("%p\n"),
                ACE_TEXT ("\nerror: x is a null pointer in ")
                ACE_TEXT ("ACE_RB_Tree<EXT_ID, INT_ID>::RB_rotate_right\n")));
  else if (! (x->left()))
    ACE_ERROR ((LM_ERROR,
                ACE_TEXT ("%p\n"),
                ACE_TEXT ("\nerror: x->left () is a null pointer in ")
                ACE_TEXT ("ACE_RB_Tree<EXT_ID, INT_ID>::RB_rotate_right\n")));
  else
    {
      ACE_RB_Tree_Node<EXT_ID, INT_ID> * y;
      y = x->left ();
      x->left (y->right ());
      if (y->right ())
        y->right ()->parent (x);
      y->parent (x->parent ());
      if (x->parent ())
        {
          if (x == x->parent ()->right ())
            x->parent ()->right (y);
          else
            x->parent ()->left (y);
        }
      else
        root_ = y;
      y->right (x);
      x->parent (y);
    }
}

// Method for left rotation of the tree about a given node.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> void
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_rotate_left (ACE_RB_Tree_Node<EXT_ID, INT_ID> * x)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_rotate_left");

  if (! x)
    ACE_ERROR ((LM_ERROR,
                ACE_TEXT ("%p\n"),
                ACE_TEXT ("\nerror: x is a null pointer in ")
                ACE_TEXT ("ACE_RB_Tree<EXT_ID, INT_ID>::RB_rotate_left\n")));
  else if (! (x->right()))
    ACE_ERROR ((LM_ERROR,
                ACE_TEXT ("%p\n"),
                ACE_TEXT ("\nerror: x->right () is a null pointer ")
                ACE_TEXT ("in ACE_RB_Tree<EXT_ID, INT_ID>::RB_rotate_left\n")));
  else
    {
      ACE_RB_Tree_Node<EXT_ID, INT_ID> * y;
      y = x->right ();
      x->right (y->left ());
      if (y->left ())
        y->left ()->parent (x);
      y->parent (x->parent ());
      if (x->parent ())
        {
          if (x == x->parent ()->left ())
            x->parent ()->left (y);
          else
            x->parent ()->right (y);
        }
      else
        root_ = y;
      y->left (x);
      x->parent (y);
    }
}

// Method for restoring Red-Black properties after deletion.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>  void
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_delete_fixup (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_delete_fixup");

  while (x != 0
         && x->parent ()
         && x->color () == ACE_RB_Tree_Node_Base::BLACK)
    {
      if (x == x->parent ()->left ())
        {
          ACE_RB_Tree_Node<EXT_ID, INT_ID> *w = x->parent ()->right ();
          if (w && w->color () == ACE_RB_Tree_Node_Base::RED)
            {
              w->color (ACE_RB_Tree_Node_Base::BLACK);
              x->parent ()->color (ACE_RB_Tree_Node_Base::RED);
              RB_rotate_left (x->parent ());
              w = x->parent ()->right ();
            }
          // CLR pp. 263 says that nil nodes are implicitly colored BLACK
          if ((w) &&
              (!w->left ()
               || w->left ()->color () == ACE_RB_Tree_Node_Base::BLACK)
              && (!w->right ()
                  || w->right ()->color () == ACE_RB_Tree_Node_Base::BLACK))
            {
              w->color (ACE_RB_Tree_Node_Base::RED);
              x = x->parent ();
            }
          else
            {
              // CLR pp. 263 says that nil nodes are implicitly colored BLACK
              if (w &&
                  (!w->right ()
                   || w->right ()->color () == ACE_RB_Tree_Node_Base::BLACK))
                {
                  if (w->left ())
                    w->left ()->color (ACE_RB_Tree_Node_Base::BLACK);
                  w->color (ACE_RB_Tree_Node_Base::RED);
                  RB_rotate_right (w);
                  w = x->parent ()->right ();
                }
              if (w)
                {
                  w->color (x->parent ()->color ());
                  if (w->right ())
                    w->right ()->color (ACE_RB_Tree_Node_Base::BLACK);
                }
              x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK);
              RB_rotate_left (x->parent ());
              x = root_;
            }
        }
      else
        {
          ACE_RB_Tree_Node<EXT_ID, INT_ID> *w = x->parent ()->left ();
          if (w && w->color () == ACE_RB_Tree_Node_Base::RED)
            {
              w->color (ACE_RB_Tree_Node_Base::BLACK);
              x->parent ()->color (ACE_RB_Tree_Node_Base::RED);
              RB_rotate_right (x->parent ());
              w = x->parent ()->left ();
            }
          // CLR pp. 263 says that nil nodes are implicitly colored BLACK
          if (w &&
              (!w->left ()
               || w->left ()->color () == ACE_RB_Tree_Node_Base::BLACK)
              && (!w->right ()
                  || w->right ()->color () == ACE_RB_Tree_Node_Base::BLACK))
            {
              w->color (ACE_RB_Tree_Node_Base::RED);
              x = x->parent ();
            }
          else
            {
              // CLR pp. 263 says that nil nodes are implicitly colored BLACK
              if (w &&
                  (!w->left ()
                   || w->left ()->color () == ACE_RB_Tree_Node_Base::BLACK))
                {
                  w->color (ACE_RB_Tree_Node_Base::RED);
                  if (w->right ())
                    w->right ()->color (ACE_RB_Tree_Node_Base::BLACK);
                  RB_rotate_left (w);
                  w = x->parent ()->left ();
                }
              if (w)
                {
                  w->color (x->parent ()->color ());
                  if (w->left ())
                    w->left ()->color (ACE_RB_Tree_Node_Base::BLACK);
                }
              x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK);
              RB_rotate_right (x->parent ());
              x = root_;
            }
        }
    }

  if (x)
    x->color (ACE_RB_Tree_Node_Base::BLACK);
}

// Return a pointer to a matching node if there is one, a pointer to
// the node under which to insert the item if the tree is not empty
// and there is no such match, or 0 if the tree is empty.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> ACE_RB_Tree_Node<EXT_ID, INT_ID> *
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::find_node (const EXT_ID &k, ACE_RB_Tree_Base::RB_SearchResult &result)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::find_node");

  // Start at the root.
  ACE_RB_Tree_Node<EXT_ID, INT_ID> *current = root_;

  while (current)
    {
      // While there are more nodes to examine.
      if (this->lessthan (current->key (), k))
        {
          // If the search key is greater than the current node's key.
          if (current->right ())
            // If the right subtree is not empty, search to the right.
            current = current->right ();
          else
            {
              // If the right subtree is empty, we're done searching,
              // and are positioned to the left of the insertion point.
              result = LEFT;
              break;
            }
        }
      else if (this->lessthan (k, current->key ()))
        {
          // Else if the search key is less than the current node's key.
          if (current->left ())
            // If the left subtree is not empty, search to the left.
            current = current->left ();
          else
            {
              // If the left subtree is empty, we're done searching,
              // and are positioned to the right of the insertion point.
              result = RIGHT;
              break;
            }
        }
      else
        {
          // If the keys match exactly, we're done as well.
          result = EXACT;
          break;
        }
    }

  return current;
}

// Rebalance the tree after insertion of a node.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> void
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_rebalance (ACE_RB_Tree_Node<EXT_ID, INT_ID> * x)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_rebalance");

  ACE_RB_Tree_Node<EXT_ID, INT_ID> *y = 0;

  while (x &&
         x->parent ()
         && x->parent ()->color () == ACE_RB_Tree_Node_Base::RED)
    {
      if (! x->parent ()->parent ())
        {
          // If we got here, something is drastically wrong!
          ACE_ERROR ((LM_ERROR,
                      ACE_TEXT ("%p\n"),
                      ACE_TEXT ("\nerror: parent's parent is null in ")
                      ACE_TEXT ("ACE_RB_Tree<EXT_ID, INT_ID>::RB_rebalance\n")));
          return;
        }

      if (x->parent () == x->parent ()->parent ()->left ())
        {
          y = x->parent ()->parent ()->right ();
          if (y && y->color () == ACE_RB_Tree_Node_Base::RED)
            {
              // Handle case 1 (see CLR book, pp. 269).
              x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK);
              y->color (ACE_RB_Tree_Node_Base::BLACK);
              x->parent ()->parent ()->color (ACE_RB_Tree_Node_Base::RED);
              x = x->parent ()->parent ();
            }
          else
            {
              if (x == x->parent ()->right ())
                {
                  // Transform case 2 into case 3 (see CLR book, pp. 269).
                  x = x->parent ();
                  RB_rotate_left (x);
                }

              // Handle case 3 (see CLR book, pp. 269).
              x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK);
              x->parent ()->parent ()->color (ACE_RB_Tree_Node_Base::RED);
              RB_rotate_right (x->parent ()->parent ());
            }
        }
      else
        {
          y = x->parent ()->parent ()->left ();
          if (y && y->color () == ACE_RB_Tree_Node_Base::RED)
            {
              // Handle case 1 (see CLR book, pp. 269).
              x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK);
              y->color (ACE_RB_Tree_Node_Base::BLACK);
              x->parent ()->parent ()->color (ACE_RB_Tree_Node_Base::RED);
              x = x->parent ()->parent ();
            }
          else
            {
              if (x == x->parent ()->left ())
                {
                  // Transform case 2 into case 3 (see CLR book, pp. 269).
                  x = x->parent ();
                  RB_rotate_right (x);
                }

              // Handle case 3 (see CLR book, pp. 269).
              x->parent ()->color (ACE_RB_Tree_Node_Base::BLACK);
              x->parent ()->parent ()->color (ACE_RB_Tree_Node_Base::RED);
              RB_rotate_left (x->parent ()->parent ());
            }
        }
    }
}

// Method to find the successor node of the given node in the tree.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> ACE_RB_Tree_Node<EXT_ID, INT_ID> *
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_tree_successor (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x) const
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_tree_successor");

  if (x->right ())
    return RB_tree_minimum (x->right ());

  ACE_RB_Tree_Node<EXT_ID, INT_ID> *y = x->parent ();
  while ((y) && (x == y->right ()))
    {
      x = y;
      y = y->parent ();
    }

  return y;
}

// Method to find the predecessor node of the given node in the tree.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> ACE_RB_Tree_Node<EXT_ID, INT_ID> *
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_tree_predecessor (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x) const
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_tree_predecessor");

  if (x->left ())
    return RB_tree_maximum (x->left ());

  ACE_RB_Tree_Node<EXT_ID, INT_ID> *y = x->parent ();

  while ((y) && (x == y->left ()))
    {
      x = y;
      y = y->parent ();
    }

  return y;
}

// Method to find the minimum node of the subtree rooted at the given node.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> ACE_RB_Tree_Node<EXT_ID, INT_ID> *
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_tree_minimum (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x) const
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_tree_minimum");

  while ((x) && (x->left ()))
    x = x->left ();

  return x;
}

// Method to find the maximum node of the subtree rooted at the given node.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> ACE_RB_Tree_Node<EXT_ID, INT_ID> *
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_tree_maximum (ACE_RB_Tree_Node<EXT_ID, INT_ID> *x) const
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::RB_tree_maximum");

  while ((x) && (x->right ()))
    x = x->right ();

  return x;
}

// Close down an RB_Tree.  this method should only be called with
// locks already held.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> int
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::close_i ()
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::close_i");

  delete root_;
  current_size_ = 0;
  root_ = 0;

  return 0;
}

// Returns a pointer to the item corresponding to the given key, or 0
// if it cannot find the key in the tree.  This method should only be
// called with locks already held.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> int
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::find_i (const EXT_ID &k,
                                                             ACE_RB_Tree_Node<EXT_ID, INT_ID>* &entry)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::find_i");

  // Try to find a match.
  RB_SearchResult result = LEFT;
  ACE_RB_Tree_Node<EXT_ID, INT_ID> *current = find_node (k, result);

  if (current && result == EXACT)
    {
      // Found an exact match: return a pointer to the node.
      entry = current;
      return 0;
    }
  else
    // The node is not there.
    return -1;
}

// Inserts a *copy* of the key and the item into the tree: both the
// key type EXT_ID and the item type INT_ID must have well defined
// semantics for copy construction and < comparison.  This method
// returns a pointer to the inserted item copy, or 0 if an error
// occurred.  NOTE: if an identical key already exists in the tree, no
// new item is created, and the returned pointer addresses the
// existing item associated with the existing key.  This method should
// only be called with locks already held.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> INT_ID *
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::insert_i (const EXT_ID &k, const INT_ID &t)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::insert_i (const EXT_ID &k, const INT_ID &t)");

  // Find the closest matching node, if there is one.
  RB_SearchResult result = LEFT;
  ACE_RB_Tree_Node<EXT_ID, INT_ID> *current = find_node (k, result);
  if (current)
    {
      // If the keys match, just return a pointer to the node's item.
      if (result == EXACT)
        return &current->item ();

      // Otherwise if we're to the left of the insertion point, insert
      // into the right subtree.
      else if (result == LEFT)
        {
          if (current->right ())
            // If there is already a right subtree, complain.
            ACE_ERROR_RETURN ((LM_ERROR,
                               ACE_TEXT ("%p\n"),
                               ACE_TEXT ("\nright subtree already present in ")
                               ACE_TEXT ("ACE_RB_Tree<EXT_ID, INT_ID>::insert_i\n")),
                              0);
          else
            {
              // The right subtree is empty: insert new node there.
              ACE_RB_Tree_Node<EXT_ID, INT_ID> *tmp = 0;

              ACE_NEW_RETURN (tmp,
                              (ACE_RB_Tree_Node<EXT_ID, INT_ID>) (k, t),
                              0);
              current->right (tmp);

              // If the node was successfully inserted, set its
              // parent, rebalance the tree, color the root black, and
              // return a pointer to the inserted item.
              INT_ID *item = &(current->right ()->item ());
              current->right ()->parent (current);
              RB_rebalance (current->right ());
              root_->color (ACE_RB_Tree_Node_Base::BLACK);
              ++current_size_;
              return item;
            }
        }
      // Otherwise, we're to the right of the insertion point, so
      // insert into the left subtree.
      else // (result == RIGHT)
        {
          if (current->left ())
            // If there is already a left subtree, complain.
            ACE_ERROR_RETURN ((LM_ERROR,
                               ACE_TEXT ("%p\n"),
                               ACE_TEXT ("\nleft subtree already present in ")
                               ACE_TEXT ("ACE_RB_Tree<EXT_ID, INT_ID>::insert_i\n")),
                              0);
          else
            {
              // The left subtree is empty: insert new node there.
              ACE_RB_Tree_Node<EXT_ID, INT_ID> *tmp = 0;
              ACE_NEW_RETURN (tmp,
                              (ACE_RB_Tree_Node<EXT_ID, INT_ID>) (k, t),
                              0);
              current->left (tmp);

              // If the node was successfully inserted, set its
              // parent, rebalance the tree, color the root black, and
              // return a pointer to the inserted item.
              INT_ID *item = &current->left ()->item ();
              current->left ()->parent (current);
              RB_rebalance (current->left ());
              root_->color (ACE_RB_Tree_Node_Base::BLACK);
              ++current_size_;
              return item;
            }
        }
    }
  else
    {
      // The tree is empty: insert at the root and color the root
      // black.
      ACE_NEW_RETURN (root_,
                      (ACE_RB_Tree_Node<EXT_ID, INT_ID>) (k, t),
                      0);
      if (root_)
        {
          root_->color (ACE_RB_Tree_Node_Base::BLACK);
          ++current_size_;
          return &root_->item ();
        }
    }
  return 0;
}

// Inserts a *copy* of the key and the item into the tree: both the
// key type EXT_ID and the item type INT_ID must have well defined
// semantics for copy construction.  The default implementation also
// requires that the key type support well defined < semantics.  This
// method passes back a pointer to the inserted (or existing) node,
// and the search status.  If the node already exists, the method
// returns 1.  If the node does not exist, and a new one is
// successfully created, and the method returns 0.  If there was an
// error, the method returns -1.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> int
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::insert_i (const EXT_ID &k,
                                                               const INT_ID &t,
                                                               ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::insert_i (const EXT_ID &k, const INT_ID &t, "
             "ACE_RB_Tree_Node<EXT_ID, INT_ID> *&entry)");

  // Find the closest matching node, if there is one.
  RB_SearchResult result = LEFT;
  ACE_RB_Tree_Node<EXT_ID, INT_ID> *current = find_node (k, result);
  if (current)
    {
      // If the keys match, just return a pointer to the node's item.
      if (result == EXACT)
        {
          entry = current;
          return 1;
        }
      // Otherwise if we're to the left of the insertion
      // point, insert into the right subtree.
      else if (result == LEFT)
        {
          if (current->right ())
            {
              // If there is already a right subtree, complain.
              ACE_ERROR_RETURN ((LM_ERROR,
                                 ACE_TEXT ("%p\n"),
                                 ACE_TEXT ("\nright subtree already present in ")
                                 ACE_TEXT ("ACE_RB_Tree<EXT_ID, INT_ID>::insert_i\n")),
                                -1);
            }
          else
            {
              // The right subtree is empty: insert new node there.
              ACE_RB_Tree_Node<EXT_ID, INT_ID> *tmp = 0;
              ACE_NEW_RETURN (tmp,
                              (ACE_RB_Tree_Node<EXT_ID, INT_ID>) (k, t),
                              -1);
              current->right (tmp);

              // If the node was successfully inserted, set its parent, rebalance
              // the tree, color the root black, and return a pointer to the
              // inserted item.
              entry = current->right ();
              current->right ()->parent (current);
              RB_rebalance (current->right ());
              root_->color (ACE_RB_Tree_Node_Base::BLACK);
              ++current_size_;
              return 0;
            }
        }
      // Otherwise, we're to the right of the insertion point, so
      // insert into the left subtree.
      else // (result == RIGHT)
        {
          if (current->left ())
            // If there is already a left subtree, complain.
            ACE_ERROR_RETURN ((LM_ERROR,
                               ACE_TEXT ("%p\n"),
                               ACE_TEXT ("\nleft subtree already present in ")
                               ACE_TEXT ("ACE_RB_Tree<EXT_ID, INT_ID>::insert_i\n")),
                              -1);
          else
            {
              // The left subtree is empty: insert new node there.
              ACE_RB_Tree_Node<EXT_ID, INT_ID> *tmp = 0;
              ACE_NEW_RETURN (tmp,
                              (ACE_RB_Tree_Node<EXT_ID, INT_ID>) (k, t),
                              -1);
              current->left (tmp);
              // If the node was successfully inserted, set its
              // parent, rebalance the tree, color the root black, and
              // return a pointer to the inserted item.
              entry = current->left ();
              current->left ()->parent (current);
              RB_rebalance (current->left ());
              root_->color (ACE_RB_Tree_Node_Base::BLACK);
              ++current_size_;
              return 0;
            }
        }
    }
  else
    {
      // The tree is empty: insert at the root and color the root black.
      ACE_NEW_RETURN (root_,
                      (ACE_RB_Tree_Node<EXT_ID, INT_ID>) (k, t),
                      -1);
      root_->color (ACE_RB_Tree_Node_Base::BLACK);
      ++current_size_;
      entry = root_;
      return 0;
    }
}

// Removes the item associated with the given key from the tree and
// destroys it.  Returns 1 if it found the item and successfully
// destroyed it, 0 if it did not find the item, or -1 if an error
// occurred.  This method should only be called with locks already
// held.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>  int
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::remove_i (const EXT_ID &k, INT_ID &i)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::remove_i (const EXT_ID &k, INT_ID &i)");

  // Find a matching node, if there is one.
  ACE_RB_Tree_Node<EXT_ID, INT_ID> *z;
  RB_SearchResult result = LEFT;
  z = find_node (k, result);

  // If there is a matching node: remove and destroy it.
  if (z && result == EXACT)
    {
      // Return the internal id stored in the deleted node.
      i = z->item ();
      return -1 == this->remove_i (z) ? -1 : 1;
    }
  else
  {
    // No matching node was found: return 0.
    return 0;
  }
}

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>  int
ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::remove_i (ACE_RB_Tree_Node<EXT_ID, INT_ID> *z)
{
  ACE_TRACE ("ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::remove_i (ACE_RB_Tree_Node<EXT_ID, INT_ID> *z)");

  // Delete the node and reorganize the tree to satisfy the Red-Black
  // properties.

  ACE_RB_Tree_Node<EXT_ID, INT_ID> *x;
  ACE_RB_Tree_Node<EXT_ID, INT_ID> *y;

  if (z->left () && z->right ())
    y = RB_tree_successor (z);
  else
    y = z;

  if (y->left ())
    x = y->left ();
  else
    x = y->right ();

  if (x)
    x->parent (y->parent ());

  if (y->parent ())
    {
      if (y == y->parent ()->left ())
        y->parent ()->left (x);
      else
        y->parent ()->right (x);
    }
  else
    root_ = x;

  if (y != z)
    {
      // Copy the elements of y into z.
      z->key () = y->key ();
      z->item () = y->item ();
    }

  // CLR pp. 263 says that nil nodes are implicitly colored BLACK
  if (!y || y->color () == ACE_RB_Tree_Node_Base::BLACK)
    RB_delete_fixup (x);

  y->parent (0);
  y->right (0);
  y->left (0);
  delete y;
  --current_size_;

  return 0;
}

ACE_ALLOC_HOOK_DEFINE(ACE_RB_Tree_Iterator_Base)

// Constructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree_Iterator_Base (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &tree,               int set_first)
  : tree_ (&tree), node_ (0)
{
  ACE_TRACE ("ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree_Iterator_Base (ACE_RB_Tree, int)");

  // Position the iterator at the first (or last) node in the tree.
  if (set_first)
    node_ = tree_->RB_tree_minimum (tree_->root_);
  else
    node_ = tree_->RB_tree_maximum (tree_->root_);
}

// Copy constructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree_Iterator_Base (const ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &iter)
  : tree_ (iter.tree_),
    node_ (iter.node_)
{
  ACE_TRACE ("ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree_Iterator_Base (ACE_RB_Tree_Iterator_Base)");
}

// Assignment operator.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK> void
ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::operator= (const ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &iter)
{
  ACE_TRACE ("ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::operator=");
  tree_ = iter.tree_;
  node_ = iter.node_;
}

// Destructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::~ACE_RB_Tree_Iterator_Base ()
{
  ACE_TRACE ("ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::~ACE_RB_Tree_Iterator_Base");
}

ACE_ALLOC_HOOK_DEFINE(ACE_RB_Tree_Iterator)

// Constructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree_Iterator (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &tree,
     int set_first)
  : ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> (tree, set_first)
{
  ACE_TRACE ("ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree_Iterator");
}

// Destructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::~ACE_RB_Tree_Iterator ()
{
  ACE_TRACE ("ACE_RB_Tree_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::~ACE_RB_Tree_Iterator");
}

ACE_ALLOC_HOOK_DEFINE(ACE_RB_Tree_Reverse_Iterator)

// Constructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree_Reverse_Iterator (const ACE_RB_Tree<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> &tree, int set_last)
  : ACE_RB_Tree_Iterator_Base<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK> (tree, set_last ? 0 : 1)
{
  ACE_TRACE ("ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::ACE_RB_Tree_Reverse_Iterator");
}

// Destructor.

template <class EXT_ID, class INT_ID, class COMPARE_KEYS, class ACE_LOCK>
ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::~ACE_RB_Tree_Reverse_Iterator ()
{
  ACE_TRACE ("ACE_RB_Tree_Reverse_Iterator<EXT_ID, INT_ID, COMPARE_KEYS, ACE_LOCK>::~ACE_RB_Tree_Reverse_Iterator");
}

#endif /* !defined (ACE_RB_TREE_C) */