1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
// $Id$
#ifndef ACE_SVC_HANDLER_C
#define ACE_SVC_HANDLER_C
#define ACE_BUILD_DLL
#include "ace/Svc_Handler.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Object_Manager.h"
#include "ace/Strategies.h"
#if !defined (__ACE_INLINE__)
#include "ace/Svc_Handler.i"
#endif /* __ACE_INLINE__ */
#include "ace/Dynamic.h"
ACE_RCSID(ace, Svc_Handler, "$Id$")
#define PR_ST_1 ACE_PEER_STREAM_1
#define PR_ST_2 ACE_PEER_STREAM_2
template <PR_ST_1, ACE_SYNCH_DECL> void *
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::operator new (size_t n)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::operator new");
ACE_Dynamic *const dynamic_instance = ACE_Dynamic::instance ();
if (dynamic_instance == 0)
{
// If this ACE_ASSERT fails, it may be due to running of out TSS
// keys. Try using ACE_HAS_TSS_EMULATION, or increasing
// ACE_DEFAULT_THREAD_KEYS if already using TSS emulation.
ACE_ASSERT (dynamic_instance != 0);
ACE_throw_bad_alloc;
}
else
{
// Allocate the memory and store it (usually in thread-specific
// storage, depending on config flags).
dynamic_instance->set ();
return ::new char[n];
}
}
template <PR_ST_1, ACE_SYNCH_DECL> void
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::destroy (void)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::destroy");
// Only delete ourselves if we're not owned by a module and have
// been allocated dynamically.
if (this->mod_ == 0 && this->dynamic_ && this->closing_ == 0)
// Will call the destructor, which automatically calls <shutdown>.
// Note that if we are *not* allocated dynamically then the
// destructor will call <shutdown> automatically when it gets run
// during cleanup.
delete this;
}
template <PR_ST_1, ACE_SYNCH_DECL> void
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::operator delete (void *obj)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::delete");
// You cannot delete a 'void*' (X3J16/95-0087 5.3.5.3), but we know
// the pointer was created using new char[] (see operator new code),
// so we use a cast:
char *tmp = (char *) obj;
::delete [] tmp;
}
// Default constructor.
template <PR_ST_1, ACE_SYNCH_DECL>
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::ACE_Svc_Handler (ACE_Thread_Manager *tm,
ACE_Message_Queue<ACE_SYNCH_USE> *mq,
ACE_Reactor *reactor)
: ACE_Task<ACE_SYNCH_USE> (tm, mq),
closing_ (0),
recycler_ (0),
recycling_act_ (0)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::ACE_Svc_Handler");
this->reactor (reactor);
// This clever idiom transparently checks if we were allocated
// dynamically. This information is used by the <destroy> method to
// decide if we need to delete <this>... The idiom is based on a
// paper by Michael van Rooyen (mrooyen@cellnet.co.uk) that appeared
// in the April '96 issue of the C++ Report. We've spruced it up to
// work correctly in multi-threaded programs by using our ACE_TSS
// class.
this->dynamic_ = ACE_Dynamic::instance ()->is_dynamic ();
if (this->dynamic_ != 0)
// Make sure to reset the flag.
ACE_Dynamic::instance ()->reset ();
}
// Default behavior for a ACE_Svc_Handler object is to be registered
// with the ACE_Reactor (thereby ensuring single threading).
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::open (void *)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::open");
#if defined (ACE_DEBUGGING)
ASYS_TCHAR buf[BUFSIZ];
ACE_PEER_STREAM_ADDR client_addr;
if (this->peer_.get_remote_addr (client_addr) == -1)
ACE_ERROR_RETURN ((LM_ERROR,
ASYS_TEXT ("%p\n"),
ASYS_TEXT ("get_remote_addr")),
-1);
else if (client_addr.addr_to_string (buf, sizeof buf) == -1)
ACE_ERROR_RETURN ((LM_ERROR,
ASYS_TEXT ("%p\n"),
ASYS_TEXT ("can't obtain peer's address")),
-1);
ACE_DEBUG ((LM_DEBUG,
ASYS_TEXT ("connected to %s on fd %d\n"),
buf,
this->peer_.get_handle ()));
#endif /* ACE_DEBUGGING */
if (this->reactor ()
&& this->reactor ()->register_handler
(this,
ACE_Event_Handler::READ_MASK) == -1)
ACE_ERROR_RETURN ((LM_ERROR,
ASYS_TEXT ("%p\n"),
ASYS_TEXT ("unable to register client handler")),
-1);
return 0;
}
// Perform termination activities.
template <PR_ST_1, ACE_SYNCH_DECL> void
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::shutdown (void)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::shutdown");
// Deregister this handler with the ACE_Reactor.
if (this->reactor ())
{
ACE_Reactor_Mask mask = ACE_Event_Handler::ALL_EVENTS_MASK |
ACE_Event_Handler::DONT_CALL;
// Make sure there are no timers.
this->reactor ()->cancel_timer (this);
if (this->peer ().get_handle () != ACE_INVALID_HANDLE)
// Remove self from reactor.
this->reactor ()->remove_handler (this, mask);
}
// Remove self from the recycler.
if (this->recycler ())
this->recycler ()->purge (this->recycling_act_);
this->peer ().close ();
}
template <PR_ST_1, ACE_SYNCH_DECL> void
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::cleanup_hint (void)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::cleanup_hint");
// Remove as hint.
if (this->recycler ())
this->recycler ()->cleanup_hint (this->recycling_act_);
}
template <PR_ST_1, ACE_SYNCH_DECL> void
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::dump (void) const
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::dump");
this->peer_.dump ();
ACE_DEBUG ((LM_DEBUG,
"dynamic_ = %d\n",
this->dynamic_));
ACE_DEBUG ((LM_DEBUG,
"closing_ = %d\n",
this->closing_));
ACE_DEBUG ((LM_DEBUG,
"recycler_ = %d\n",
this->recycler_));
ACE_DEBUG ((LM_DEBUG,
"recycling_act_ = %d\n",
this->recycling_act_));
}
template <PR_ST_1, ACE_SYNCH_DECL> ACE_PEER_STREAM &
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::peer (void) const
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::peer");
return (ACE_PEER_STREAM &) this->peer_;
}
// Extract the underlying I/O descriptor.
template <PR_ST_1, ACE_SYNCH_DECL> ACE_HANDLE
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::get_handle (void) const
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::get_handle");
return this->peer_.get_handle ();
}
// Set the underlying I/O descriptor.
template <PR_ST_1, ACE_SYNCH_DECL> void
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::set_handle (ACE_HANDLE h)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::set_handle");
this->peer_.set_handle (h);
}
template <PR_ST_1, ACE_SYNCH_DECL>
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::~ACE_Svc_Handler (void)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::~ACE_Svc_Handler");
if (this->closing_ == 0)
{
// We're closing down now, so make sure not to call ourselves
// recursively via other calls to handle_close() (e.g., from the
// Timer_Queue).
this->closing_ = 1;
this->shutdown ();
}
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::handle_close (ACE_HANDLE,
ACE_Reactor_Mask)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::handle_close");
this->destroy ();
return 0;
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::handle_timeout (const ACE_Time_Value &,
const void *)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::handle_timeout");
return this->handle_close ();
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::close (unsigned long)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::close");
return this->handle_close ();
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::init (int argc, ASYS_TCHAR *argv[])
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::init");
ACE_UNUSED_ARG (argc);
ACE_UNUSED_ARG (argv);
return -1;
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::fini (void)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::fini");
return -1;
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::info (ASYS_TCHAR **, size_t) const
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::info");
return -1;
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::idle (u_long flags)
{
if (this->recycler ())
return this->recycler ()->cache (this->recycling_act_);
else
return this->close (flags);
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycle_state (ACE_Recyclable_State new_state)
{
if (this->recycler ())
return this->recycler ()->recycle_state (this->recycling_act_,
new_state);
return 0;
}
template <PR_ST_1, ACE_SYNCH_DECL> ACE_Recyclable_State
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycle_state (void) const
{
if (this->recycler ())
return this->recycler ()->recycle_state (this->recycling_act_);
return ACE_RECYCLABLE_UNKNOWN;
}
template <PR_ST_1, ACE_SYNCH_DECL> void
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycler (ACE_Connection_Recycling_Strategy *recycler,
const void *recycling_act)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycler");
this->recycler_ = recycler;
this->recycling_act_ = recycling_act;
}
template <PR_ST_1, ACE_SYNCH_DECL> ACE_Connection_Recycling_Strategy *
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycler (void) const
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycler");
return this->recycler_;
}
template <PR_ST_1, ACE_SYNCH_DECL> const void *
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycling_act (void) const
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycling_act");
return this->recycling_act_;
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycle (void *)
{
ACE_TRACE ("ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::recycle");
// By default, the object is ready and willing to be recycled.
return 0;
}
template <PR_ST_1, ACE_SYNCH_DECL>
ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::~ACE_Buffered_Svc_Handler (void)
{
this->flush ();
}
template <PR_ST_1, ACE_SYNCH_DECL>
ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::ACE_Buffered_Svc_Handler (ACE_Thread_Manager *tm,
ACE_Message_Queue<ACE_SYNCH_USE> *mq,
ACE_Reactor *reactor,
size_t maximum_buffer_size,
ACE_Time_Value *timeout)
: ACE_Svc_Handler<PR_ST_2, ACE_SYNCH_USE> (tm, mq, reactor),
maximum_buffer_size_ (maximum_buffer_size),
current_buffer_size_ (0),
timeoutp_ (timeout)
{
ACE_TRACE ("ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::ACE_Buffered_Svc_Handler");
if (this->timeoutp_ != 0)
{
this->interval_ = *timeout;
this->next_timeout_ = ACE_OS::gettimeofday () + this->interval_;
}
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::put (ACE_Message_Block *mb,
ACE_Time_Value *tv)
{
ACE_GUARD_RETURN (ACE_SYNCH_MUTEX_T, m, this->msg_queue ()->lock (), -1);
// Enqueue <mb> onto the message queue.
if (this->putq (mb, tv) == -1)
return -1;
else
{
// Update the current number of bytes on the queue.
this->current_buffer_size_ += mb->total_size ();
// Flush the buffer when the number of bytes exceeds the maximum
// buffer size or when the timeout period has elapsed.
if (this->current_buffer_size_ >= this->maximum_buffer_size_
|| (this->timeoutp_ != 0
&& this->next_timeout_ <= ACE_OS::gettimeofday ()))
return this->flush ();
else
return 0;
}
}
// Flush the buffer.
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::flush (void)
{
ACE_GUARD_RETURN (ACE_SYNCH_MUTEX_T, m, this->msg_queue ()->lock (), -1);
ACE_Message_Block *entry = 0;
iovec iov[IOV_MAX];
size_t i = 0;
int result = 0;
// Iterate over all the <ACE_Message_Block>s in the
// <ACE_Message_Queue> and prepare them to be written out.
for (ACE_Message_Queue_Iterator<ACE_SYNCH_USE> iterator (*this->msg_queue ());
iterator.next (entry) != 0
&& result == 0;
iterator.advance ())
{
// Iterate over all the <Message_Block>s in a chain, including
// continuations.
for (ACE_Message_Block *temp = entry;
temp != 0;
temp = temp->cont ())
{
iov[i].iov_len = temp->length ();
iov[i].iov_base = temp->rd_ptr ();
i++;
// Flush the <iovec>s when we've reached the maximum size
// for the platform.
if (i == IOV_MAX)
{
#if defined (ACE_DEBUGGING)
ACE_DEBUG ((LM_DEBUG,
"sending data (inside loop, i = %d)\n",
i));
#endif /* ACE_DEBUGGING */
// Send off the data.
if (this->peer ().sendv_n (iov,
i) == -1)
{
result = -1;
break;
}
i = 0;
}
}
}
// Take care of any remaining <iovec>s.
if (i > 0 && result != -1)
{
if (this->peer ().sendv_n (iov, i) == -1)
result = -1;
#if defined (ACE_DEBUGGING)
ACE_DEBUG ((LM_DEBUG,
"sending data (final flush, i = %d)\n",
i));
#endif /* ACE_DEBUGGING */
}
// Remove all the <ACE_Message_Block>s in the <ACE_Message_Queue>
// and <release> their memory.
while (this->msg_queue ()->is_empty () == 0)
{
if (this->msg_queue ()->dequeue_head (entry) == -1)
break;
entry->release ();
}
if (this->timeoutp_ != 0)
// Update the next timeout period by adding the interval.
this->next_timeout_ += this->interval_;
this->current_buffer_size_ = 0;
return result;
}
template <PR_ST_1, ACE_SYNCH_DECL> void
ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::dump (void) const
{
ACE_TRACE ("ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::dump");
ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::dump ();
ACE_DEBUG ((LM_DEBUG,
"maximum_buffer_size_ = %d\n",
this->maximum_buffer_size_));
ACE_DEBUG ((LM_DEBUG,
"current_buffer_size_ = %d\n",
this->current_buffer_size_));
if (this->timeoutp_ != 0)
ACE_DEBUG ((LM_DEBUG,
"next_timeout_.sec = %d, next_timeout_.usec = %d\n",
this->next_timeout_.sec (),
this->next_timeout_.usec ()));
else
ACE_DEBUG ((LM_DEBUG,
"timeoutp_ == NULL"));
}
template <PR_ST_1, ACE_SYNCH_DECL> int
ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::handle_timeout (const ACE_Time_Value &,
const void *)
{
ACE_TRACE ("ACE_Buffered_Svc_Handler<PR_ST_2, ACE_SYNCH_USE>::handle_timeout");
return 0;
}
#undef PR_ST_1
#undef PR_ST_2
#endif /* ACE_SVC_HANDLER_C */
|