1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
// Timer_Heap.cpp
// $Id$
#define ACE_BUILD_DLL
#include "ace/Timer_Heap.h"
ACE_Timer_Heap_Iterator::ACE_Timer_Heap_Iterator (ACE_Timer_Heap &heap)
: timer_heap_ (heap)
{
ACE_TRACE ("ACE_Timer_Heap_Iterator::ACE_Timer_Heap_Iterator");
}
int
ACE_Timer_Heap_Iterator::next (ACE_Timer_Node *&node,
const ACE_Time_Value &cur_time)
{
ACE_TRACE ("ACE_Timer_Heap_Iterator::next");
if (this->timer_heap_.cur_size_ == 0
|| this->timer_heap_.heap_[0]->timer_value_ > cur_time)
return 0;
else
{
// Remove the first item and restore the heap property.
node = this->timer_heap_.remove (0);
return 1;
}
}
ACE_Timer_Heap::ACE_Timer_Heap (size_t size,
int preallocate)
: max_size_ (size),
cur_size_ (0),
iterator_ (*this),
timer_ids_freelist_ (0),
preallocated_nodes_ (0),
preallocated_nodes_freelist_ (0)
{
ACE_TRACE ("ACE_Timer_Heap::ACE_Timer_Heap");
// Create the heap array.
ACE_NEW (this->heap_, ACE_Timer_Node *[size]);
// Create the parallel
ACE_NEW (this->timer_ids_, int[size]);
// Initialize the "freelist," which uses negative values to
// distinguish freelist elements from "pointers" into the <heap_>
// array.
for (size_t i = 0; i < size; i++)
this->timer_ids_[i] = -(i + 1);
if (preallocate)
{
ACE_NEW (this->preallocated_nodes_,
ACE_Timer_Node[size]);
// Form the freelist by linking the next_ pointers together.
for (size_t j = 1; j < size; j++)
this->preallocated_nodes_[j - 1].next_ =
&this->preallocated_nodes_[j];
// NULL-terminate the freelist.
this->preallocated_nodes_[size - 1].next_ = 0;
// Assign the freelist pointer to the front of the list.
this->preallocated_nodes_freelist_ =
&this->preallocated_nodes_[0];
}
}
ACE_Timer_Heap::~ACE_Timer_Heap (void)
{
ACE_TRACE ("ACE_Timer_Heap::~ACE_Timer_Heap");
delete [] this->heap_;
delete [] this->timer_ids_;
delete [] this->preallocated_nodes_;
}
int
ACE_Timer_Heap::pop_freelist (void)
{
ACE_TRACE ("ACE_Timer_Heap::pop_freelist");
int new_id = this->timer_ids_freelist_;
// The freelist values in the <timer_ids_> are negative, so we need
// to negate them to get the next freelist "pointer."
this->timer_ids_freelist_ = -this->timer_ids_[this->timer_ids_freelist_];
return new_id;
}
void
ACE_Timer_Heap::push_freelist (int old_id)
{
ACE_TRACE ("ACE_Timer_Heap::push_freelist");
// The freelist values in the <timer_ids_> are negative, so we need
// to negate them to get the next freelist "pointer."
this->timer_ids_[old_id] = -this->timer_ids_freelist_;
this->timer_ids_freelist_ = old_id;
}
int
ACE_Timer_Heap::timer_id (void)
{
ACE_TRACE ("ACE_Timer_Heap::timer_id");
// Return the next item off the freelist and use it as the timer id.
return this->pop_freelist ();
}
// Checks if queue is empty.
int
ACE_Timer_Heap::is_empty (void) const
{
ACE_TRACE ("ACE_Timer_Heap::is_empty");
return this->cur_size_ == 0;
}
ACE_Timer_Queue_Iterator &
ACE_Timer_Heap::get_iterator (void)
{
return this->iterator_;
}
// Returns earliest time in a non-empty queue.
const ACE_Time_Value &
ACE_Timer_Heap::earliest_time (void) const
{
ACE_TRACE ("ACE_Timer_Heap::earliest_time");
return this->heap_[0]->timer_value_;
}
void
ACE_Timer_Heap::dump (void) const
{
ACE_TRACE ("ACE_Timer_Heap::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, "\nmax_size_ = %d", this->max_size_));
ACE_DEBUG ((LM_DEBUG, "\ncur_size_ = %d", this->cur_size_));
ACE_DEBUG ((LM_DEBUG, "\nheap_ = \n"));
for (size_t i = 0; i < this->cur_size_; i++)
{
ACE_DEBUG ((LM_DEBUG, "%d\n", i));
this->heap_[i]->dump ();
}
ACE_DEBUG ((LM_DEBUG, "\ntimer_ids_ = \n"));
for (size_t j = 0; j < this->cur_size_; j++)
ACE_DEBUG ((LM_DEBUG, "%d\t%d\n", j, this->timer_ids_[j]));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
}
ACE_Timer_Node *
ACE_Timer_Heap::remove (size_t index)
{
ACE_Timer_Node *result = this->heap_[index];
// Return this timer id to the freelist.
this->push_freelist (result->timer_id_);
// Decrement the size of the heap by one since we're removing the
// "index"th node.
this->cur_size_--;
// Only try to reheapify if we're not deleting the last entry.
if (index < this->cur_size_)
{
// Move the end node to the location being removed.
this->heap_[index] = this->heap_[this->cur_size_];
// Update the corresponding slot in the parallel <timer_ids>
// array.
this->timer_ids_[this->heap_[this->cur_size_]->timer_id_] = index;
ACE_Timer_Node *moved_node = this->heap_[index];
// If we're at the top there's no place to go but down!
if (index == 0)
this->reheap_down (moved_node, 1);
// If the moved_node->time_value_ is smaller than its parent it
// needs be moved up the heap.
else if (moved_node->timer_value_ < this->heap_[(index - 1) / 2]->timer_value_)
this->reheap_up (moved_node);
// Call <reheap_down>, which will reheapify if the
// moved_node->time_value_ is larger than either of its children
// (who start at location <index + index>).
else
this->reheap_down (moved_node, index + index);
}
return result;
}
void
ACE_Timer_Heap::reheap_down (ACE_Timer_Node *moved_node,
size_t child_index)
{
int parent = 0;
// Restore the heap property after a deletion.
for (size_t child = child_index;
child < this->cur_size_;
child += child + 1) // Multiple child by 2 and add 1.
{
// Choose the smaller of the two children.
if (child + 1 < this->cur_size_
&& this->heap_[child + 1]->timer_value_ < this->heap_[child]->timer_value_)
child++;
// Perform a swap if the child has a larger timeout value than
// the front node.
if (this->heap_[child]->timer_value_ < moved_node->timer_value_)
{
// Insert the child node into its new location in the heap.
this->heap_[parent] = this->heap_[child];
// Update the corresponding slot in the parallel <timer_ids>
// array.
this->timer_ids_[this->heap_[child]->timer_id_] = parent;
parent = child;
}
else
break;
}
// Insert moved_node into its final resting place.
this->heap_[parent] = moved_node;
// Update the corresponding slot in the parallel <timer_ids>
// array.
this->timer_ids_[moved_node->timer_id_] = parent;
}
void
ACE_Timer_Heap::insert (ACE_Timer_Node *new_node)
{
this->reheap_up (new_node);
this->cur_size_++;
}
void
ACE_Timer_Heap::reheap_up (ACE_Timer_Node *new_node)
{
int parent;
int child = this->cur_size_;
// Restore the heap property after an insertion.
while (child > 0)
{
parent = (child - 1) / 2;
// If the parent node is great than the new node we need to swap
// them.
if (new_node->timer_value_ < this->heap_[parent]->timer_value_)
{
// Insert the parent node into its new location in the heap.
this->heap_[child] = this->heap_[parent];
// Update the corresponding slot in the parallel <timer_ids>
// array.
this->timer_ids_[this->heap_[parent]->timer_id_] = child;
child = parent;
}
else
break;
}
// Insert the new node into its proper resting place in the heap.
this->heap_[child] = new_node;
// Update the corresponding slot in the parallel <timer_ids> array.
this->timer_ids_[new_node->timer_id_] = child;
}
// Reschedule a periodic timer. This function must be called with the
// mutex lock held.
void
ACE_Timer_Heap::reschedule (ACE_Timer_Node *expired)
{
ACE_TRACE ("ACE_Timer_Heap::reschedule");
// Restore the heap property.
this->insert (expired);
}
ACE_Timer_Node *
ACE_Timer_Heap::alloc_node (void)
{
ACE_Timer_Node *temp;
// Only allocate a node if we are *not* using the preallocated heap.
if (this->preallocated_nodes_ == 0)
ACE_NEW_RETURN (temp,
ACE_Timer_Node,
0);
else
{
temp = this->preallocated_nodes_freelist_;
// Remove the element from the freelist.
this->preallocated_nodes_freelist_ =
this->preallocated_nodes_freelist_->next_;
}
return temp;
}
void
ACE_Timer_Heap::free_node (ACE_Timer_Node *node)
{
// Only free up a node if we are *not* using the preallocated heap.
if (this->preallocated_nodes_ == 0)
delete node;
else
{
node->next_ = this->preallocated_nodes_freelist_;
this->preallocated_nodes_freelist_ = node;
}
}
// Insert a new handler that expires at time future_time; if interval
// is > 0, the handler will be reinvoked periodically.
int
ACE_Timer_Heap::schedule (ACE_Event_Handler *handler,
const void *arg,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval)
{
ACE_TRACE ("ACE_Timer_Heap::schedule");
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, -1));
if (this->cur_size_ < this->max_size_)
{
// Obtain the next unique sequence number.
int timer_id = this->timer_id ();
// Obtain the memory to the new node.
ACE_Timer_Node *temp = this->alloc_node ();
if (temp)
{
// Use operator placement new.
new (temp) ACE_Timer_Node (handler,
arg,
future_time,
interval,
0,
timer_id);
this->insert (temp);
return timer_id;
}
}
// Failure return.
errno = ENOMEM;
return -1;
}
// Locate and remove the single <ACE_Event_Handler> with a value of
// <timer_id> from the timer queue.
int
ACE_Timer_Heap::cancel (int timer_id,
const void **arg)
{
ACE_TRACE ("ACE_Timer_Heap::cancel");
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, -1));
// Locate the ACE_Timer_Node that corresponds to the timer_id.
int timer_node_slot = this->timer_ids_[timer_id];
if (timer_id != this->heap_[timer_node_slot]->timer_id_)
{
ACE_ASSERT (timer_id == this->heap_[timer_node_slot]->timer_id_);
return 0;
}
else
{
ACE_Timer_Node *temp = this->remove (timer_node_slot);
if (arg != 0)
*arg = temp->arg_;
this->free_node (temp);
return 1;
}
}
// Locate and remove all values of <handler> from the timer queue.
int
ACE_Timer_Heap::cancel (ACE_Event_Handler *handler)
{
ACE_TRACE ("ACE_Timer_Heap::cancel");
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon, this->lock_, -1));
int number_of_cancellations = 0;
// Try to locate the ACE_Timer_Node that matches the timer_id.
for (size_t i = 0;
i < this->cur_size_;
)
{
if (this->heap_[i]->handler_ == handler)
{
ACE_Timer_Node *temp = this->remove (i);
this->free_node (temp);
number_of_cancellations++;
}
else
i++;
}
return number_of_cancellations;
}
|