summaryrefslogtreecommitdiff
path: root/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c
blob: 044919ffa76d567ca3d53f8394412660bb53ecd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/* $Id$ */
/** @file
 * IPRT - Ring-0 Memory Objects, Haiku.
 */

/*
 * Copyright (C) 2012-2020 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
 * VirtualBox OSE distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#include "the-haiku-kernel.h"

#include <iprt/memobj.h>
#include <iprt/mem.h>
#include <iprt/err.h>
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include "internal/memobj.h"


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * The Haiku version of the memory object structure.
 */
typedef struct RTR0MEMOBJHAIKU
{
    /** The core structure. */
    RTR0MEMOBJINTERNAL  Core;
    /** Area identifier */
    area_id             AreaId;
} RTR0MEMOBJHAIKU, *PRTR0MEMOBJHAIKU;


//MALLOC_DEFINE(M_IPRTMOBJ, "iprtmobj", "IPRT - R0MemObj");
#if 0
/**
 * Gets the virtual memory map the specified object is mapped into.
 *
 * @returns VM map handle on success, NULL if no map.
 * @param   pMem                The memory object.
 */
static vm_map_t rtR0MemObjHaikuGetMap(PRTR0MEMOBJINTERNAL pMem)
{
    switch (pMem->enmType)
    {
        case RTR0MEMOBJTYPE_PAGE:
        case RTR0MEMOBJTYPE_LOW:
        case RTR0MEMOBJTYPE_CONT:
            return kernel_map;

        case RTR0MEMOBJTYPE_PHYS:
        case RTR0MEMOBJTYPE_PHYS_NC:
            return NULL; /* pretend these have no mapping atm. */

        case RTR0MEMOBJTYPE_LOCK:
            return pMem->u.Lock.R0Process == NIL_RTR0PROCESS
            ? kernel_map
            : &((struct proc *)pMem->u.Lock.R0Process)->p_vmspace->vm_map;

        case RTR0MEMOBJTYPE_RES_VIRT:
            return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS
            ? kernel_map
            : &((struct proc *)pMem->u.ResVirt.R0Process)->p_vmspace->vm_map;

        case RTR0MEMOBJTYPE_MAPPING:
            return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS
            ? kernel_map
            : &((struct proc *)pMem->u.Mapping.R0Process)->p_vmspace->vm_map;

        default:
            return NULL;
    }
}
#endif


int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
    PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)pMem;
    int rc = B_OK;

    switch (pMemHaiku->Core.enmType)
    {
        case RTR0MEMOBJTYPE_PAGE:
        case RTR0MEMOBJTYPE_LOW:
        case RTR0MEMOBJTYPE_CONT:
        case RTR0MEMOBJTYPE_MAPPING:
        case RTR0MEMOBJTYPE_PHYS:
        case RTR0MEMOBJTYPE_PHYS_NC:
        {
            if (pMemHaiku->AreaId > -1)
                rc = delete_area(pMemHaiku->AreaId);

            AssertMsg(rc == B_OK, ("%#x", rc));
            break;
        }

        case RTR0MEMOBJTYPE_LOCK:
        {
            team_id team = B_SYSTEM_TEAM;

            if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
                team = ((team_id)pMemHaiku->Core.u.Lock.R0Process);

            rc = unlock_memory_etc(team, pMemHaiku->Core.pv, pMemHaiku->Core.cb, B_READ_DEVICE);
            AssertMsg(rc == B_OK, ("%#x", rc));
            break;
        }

        case RTR0MEMOBJTYPE_RES_VIRT:
        {
            team_id team = B_SYSTEM_TEAM;
            if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
                team = ((team_id)pMemHaiku->Core.u.Lock.R0Process);

            rc = vm_unreserve_address_range(team, pMemHaiku->Core.pv, pMemHaiku->Core.cb);
            AssertMsg(rc == B_OK, ("%#x", rc));
            break;
        }

        default:
            AssertMsgFailed(("enmType=%d\n", pMemHaiku->Core.enmType));
            return VERR_INTERNAL_ERROR;
    }

    return VINF_SUCCESS;
}


static int rtR0MemObjNativeAllocArea(PPRTR0MEMOBJINTERNAL ppMem, size_t cb,
                                     bool fExecutable, RTR0MEMOBJTYPE type, RTHCPHYS PhysHighest, size_t uAlignment)
{
    NOREF(fExecutable);

    int rc;
    void *pvMap         = NULL;
    const char *pszName = NULL;
    uint32 addressSpec  = B_ANY_KERNEL_ADDRESS;
    uint32 fLock        = ~0U;
    LogFlowFunc(("ppMem=%p cb=%u, fExecutable=%s, type=%08x, PhysHighest=%RX64 uAlignment=%u\n", ppMem,(unsigned)cb,
                 fExecutable ? "true" : "false", type, PhysHighest,(unsigned)uAlignment));

    switch (type)
    {
        case RTR0MEMOBJTYPE_PAGE:
            pszName = "IPRT R0MemObj Alloc";
            fLock = B_FULL_LOCK;
            break;
        case RTR0MEMOBJTYPE_LOW:
            pszName = "IPRT R0MemObj AllocLow";
            fLock = B_32_BIT_FULL_LOCK;
            break;
        case RTR0MEMOBJTYPE_CONT:
            pszName = "IPRT R0MemObj AllocCont";
            fLock = B_32_BIT_CONTIGUOUS;
            break;
#if 0
        case RTR0MEMOBJTYPE_MAPPING:
            pszName = "IPRT R0MemObj Mapping";
            fLock = B_FULL_LOCK;
            break;
#endif
        case RTR0MEMOBJTYPE_PHYS:
            /** @todo alignment  */
            if (uAlignment != PAGE_SIZE)
                return VERR_NOT_SUPPORTED;
            /** @todo r=ramshankar: no 'break' here?? */
        case RTR0MEMOBJTYPE_PHYS_NC:
            pszName = "IPRT R0MemObj AllocPhys";
            fLock   = (PhysHighest < _4G ? B_LOMEM : B_32_BIT_CONTIGUOUS);
            break;
#if 0
        case RTR0MEMOBJTYPE_LOCK:
            break;
#endif
        default:
            return VERR_INTERNAL_ERROR;
    }

    /* Create the object. */
    PRTR0MEMOBJHAIKU pMemHaiku;
    pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), type, NULL, cb, NULL);
    if (RT_UNLIKELY(!pMemHaiku))
        return VERR_NO_MEMORY;

    rc = pMemHaiku->AreaId = create_area(pszName, &pvMap, addressSpec, cb, fLock, B_READ_AREA | B_WRITE_AREA);
    if (pMemHaiku->AreaId >= 0)
    {
        physical_entry physMap[2];
        pMemHaiku->Core.pv = pvMap;   /* store start address */
        switch (type)
        {
            case RTR0MEMOBJTYPE_CONT:
                rc = get_memory_map(pvMap, cb, physMap, 2);
                if (rc == B_OK)
                    pMemHaiku->Core.u.Cont.Phys = physMap[0].address;
                break;

            case RTR0MEMOBJTYPE_PHYS:
            case RTR0MEMOBJTYPE_PHYS_NC:
                rc = get_memory_map(pvMap, cb, physMap, 2);
                if (rc == B_OK)
                {
                    pMemHaiku->Core.u.Phys.PhysBase = physMap[0].address;
                    pMemHaiku->Core.u.Phys.fAllocated = true;
                }
                break;

            default:
                break;
        }
        if (rc >= B_OK)
        {
            *ppMem = &pMemHaiku->Core;
            return VINF_SUCCESS;
        }

        delete_area(pMemHaiku->AreaId);
    }

    rtR0MemObjDelete(&pMemHaiku->Core);
    return RTErrConvertFromHaikuKernReturn(rc);
}


int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_PAGE, 0 /* PhysHighest */, 0 /* uAlignment */);
}


DECLHIDDEN(int) rtR0MemObjNativeAllocLarge(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, size_t cbLargePage, uint32_t fFlags,
                                           const char *pszTag)
{
    return rtR0MemObjFallbackAllocLarge(ppMem, cb, cbLargePage, fFlags, pszTag);
}


int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_LOW, 0 /* PhysHighest */, 0 /* uAlignment */);
}


int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_CONT, 0 /* PhysHighest */, 0 /* uAlignment */);
}

int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
    return rtR0MemObjNativeAllocArea(ppMem, cb, false, RTR0MEMOBJTYPE_PHYS, PhysHighest, uAlignment);
}


int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
    return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE);
}


int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy, const char *pszTag)
{
    AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
    LogFlowFunc(("ppMem=%p Phys=%08x cb=%u uCachePolicy=%x\n", ppMem, Phys,(unsigned)cb, uCachePolicy));

    /* Create the object. */
    PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_PHYS, NULL, cb, pszTag);
    if (!pMemHaiku)
        return VERR_NO_MEMORY;

    /* There is no allocation here, it needs to be mapped somewhere first. */
    pMemHaiku->AreaId = -1;
    pMemHaiku->Core.u.Phys.fAllocated = false;
    pMemHaiku->Core.u.Phys.PhysBase = Phys;
    pMemHaiku->Core.u.Phys.uCachePolicy = uCachePolicy;
    *ppMem = &pMemHaiku->Core;
    return VINF_SUCCESS;
}


/**
 * Worker locking the memory in either kernel or user maps.
 *
 * @returns IPRT status code.
 * @param   ppMem        Where to store the allocated memory object.
 * @param   pvStart      The starting address.
 * @param   cb           The size of the block.
 * @param   fAccess      The mapping protection to apply.
 * @param   R0Process    The process to map the memory to (use NIL_RTR0PROCESS
 *                       for the kernel)
 * @param   fFlags       Memory flags (B_READ_DEVICE indicates the memory is
 *                       intended to be written from a "device").
 */
static int rtR0MemObjNativeLockInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvStart, size_t cb, uint32_t fAccess,
                                     RTR0PROCESS R0Process, int fFlags)
{
    NOREF(fAccess);
    int rc;
    team_id TeamId = B_SYSTEM_TEAM;

    LogFlowFunc(("ppMem=%p pvStart=%p cb=%u fAccess=%x R0Process=%d fFlags=%x\n", ppMem, pvStart, cb, fAccess, R0Process,
                 fFlags));

    /* Create the object. */
    PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_LOCK, pvStart, cb, NULL);
    if (RT_UNLIKELY(!pMemHaiku))
        return VERR_NO_MEMORY;

    if (R0Process != NIL_RTR0PROCESS)
        TeamId = (team_id)R0Process;
    rc = lock_memory_etc(TeamId, pvStart, cb, fFlags);
    if (rc == B_OK)
    {
        pMemHaiku->AreaId = -1;
        pMemHaiku->Core.u.Lock.R0Process = R0Process;
        *ppMem = &pMemHaiku->Core;
        return VINF_SUCCESS;
    }
    rtR0MemObjDelete(&pMemHaiku->Core);
    return RTErrConvertFromHaikuKernReturn(rc);
}


int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
{
    return rtR0MemObjNativeLockInMap(ppMem, (void *)R3Ptr, cb, fAccess, R0Process, B_READ_DEVICE);
}


int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
    return rtR0MemObjNativeLockInMap(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS, B_READ_DEVICE);
}


#if 0
/** @todo Reserve address space */
/**
 * Worker for the two virtual address space reservers.
 *
 * We're leaning on the examples provided by mmap and vm_mmap in vm_mmap.c here.
 */
static int rtR0MemObjNativeReserveInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment,
                                        RTR0PROCESS R0Process)
{
    int rc;
    team_id TeamId = B_SYSTEM_TEAM;

    LogFlowFunc(("ppMem=%p pvFixed=%p cb=%u uAlignment=%u R0Process=%d\n", ppMem, pvFixed, (unsigned)cb, uAlignment, R0Process));

    if (R0Process != NIL_RTR0PROCESS)
    team = (team_id)R0Process;

    /* Check that the specified alignment is supported. */
    if (uAlignment > PAGE_SIZE)
    return VERR_NOT_SUPPORTED;

    /* Create the object. */
    PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_RES_VIRT, NULL, cb);
    if (!pMemHaiku)
    return VERR_NO_MEMORY;

    /* Ask the kernel to reserve the address range. */
    //XXX: vm_reserve_address_range ?
    return VERR_NOT_SUPPORTED;
}
#endif


int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment, const char *pszTag)
{
    RT_NOREF(ppMem, pvFixed, cb, uAlignment, pszTag);
    return VERR_NOT_SUPPORTED;
}


int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
                                RTR0PROCESS R0Process, const char *pszTag)
{
    RT_NOREF(ppMem, R3PtrFixed, cb, uAlignment, R0Process, pszTag);
    return VERR_NOT_SUPPORTED;
}


int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
                              unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
{
    PRTR0MEMOBJHAIKU pMemToMapHaiku = (PRTR0MEMOBJHAIKU)pMemToMap;
    PRTR0MEMOBJHAIKU pMemHaiku;
    area_id area = -1;
    void *pvMap = pvFixed;
    uint32 uAddrSpec = B_EXACT_ADDRESS;
    uint32 fProtect = 0;
    int rc = VERR_MAP_FAILED;
    AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
    AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
#if 0
    /** @todo r=ramshankar: Wrong format specifiers, fix later! */
    dprintf("%s(%p, %p, %p, %d, %x, %u, %u)\n", __FUNCTION__, ppMem, pMemToMap, pvFixed, uAlignment,
            fProt, offSub, cbSub);
#endif
    /* Check that the specified alignment is supported. */
    if (uAlignment > PAGE_SIZE)
        return VERR_NOT_SUPPORTED;

    /* We can't map anything to the first page, sorry. */
    if (pvFixed == 0)
        return VERR_NOT_SUPPORTED;

    if (fProt & RTMEM_PROT_READ)
        fProtect |= B_KERNEL_READ_AREA;
    if (fProt & RTMEM_PROT_WRITE)
        fProtect |= B_KERNEL_WRITE_AREA;

    /*
     * Either the object we map has an area associated with, which we can clone,
     * or it's a physical address range which we must map.
     */
    if (pMemToMapHaiku->AreaId > -1)
    {
        if (pvFixed == (void *)-1)
            uAddrSpec = B_ANY_KERNEL_ADDRESS;

        rc = area = clone_area("IPRT R0MemObj MapKernel", &pvMap, uAddrSpec, fProtect, pMemToMapHaiku->AreaId);
        LogFlow(("rtR0MemObjNativeMapKernel: clone_area uAddrSpec=%d fProtect=%x AreaId=%d rc=%d\n", uAddrSpec, fProtect,
                 pMemToMapHaiku->AreaId, rc));
    }
    else if (pMemToMapHaiku->Core.enmType == RTR0MEMOBJTYPE_PHYS)
    {
        /* map_physical_memory() won't let you choose where. */
        if (pvFixed != (void *)-1)
            return VERR_NOT_SUPPORTED;
        uAddrSpec = B_ANY_KERNEL_ADDRESS;

        rc = area = map_physical_memory("IPRT R0MemObj MapKernelPhys", (phys_addr_t)pMemToMapHaiku->Core.u.Phys.PhysBase,
                                        pMemToMapHaiku->Core.cb, uAddrSpec, fProtect, &pvMap);
    }
    else
        return VERR_NOT_SUPPORTED;

    if (rc >= B_OK)
    {
        /* Create the object. */
        pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), RTR0MEMOBJTYPE_MAPPING, pvMap,
                                                    pMemToMapHaiku->Core.cb, pszTag);
        if (RT_UNLIKELY(!pMemHaiku))
            return VERR_NO_MEMORY;

        pMemHaiku->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
        pMemHaiku->Core.pv = pvMap;
        pMemHaiku->AreaId = area;
        *ppMem = &pMemHaiku->Core;
        return VINF_SUCCESS;
    }
    rc = VERR_MAP_FAILED;

    /** @todo finish the implementation. */

    rtR0MemObjDelete(&pMemHaiku->Core);
    return rc;
}


int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
                            unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub, const char *pszTag)
{
#if 0
    /*
     * Check for unsupported stuff.
     */
    AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
    AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
    if (uAlignment > PAGE_SIZE)
        return VERR_NOT_SUPPORTED;
    AssertMsgReturn(!offSub && !cbSub, ("%#zx %#zx\n", offSub, cbSub), VERR_NOT_SUPPORTED); /** @todo implement sub maps */

    int                rc;
    PRTR0MEMOBJHAIKU pMemToMapHaiku = (PRTR0MEMOBJHAIKU)pMemToMap;
    struct proc       *pProc            = (struct proc *)R0Process;
    struct vm_map     *pProcMap         = &pProc->p_vmspace->vm_map;

    /* calc protection */
    vm_prot_t       ProtectionFlags = 0;
    if ((fProt & RTMEM_PROT_NONE) == RTMEM_PROT_NONE)
    ProtectionFlags = VM_PROT_NONE;
    if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ)
    ProtectionFlags |= VM_PROT_READ;
    if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE)
    ProtectionFlags |= VM_PROT_WRITE;
    if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC)
    ProtectionFlags |= VM_PROT_EXECUTE;

    /* calc mapping address */
    PROC_LOCK(pProc);
    vm_offset_t AddrR3 = round_page((vm_offset_t)pProc->p_vmspace->vm_daddr + lim_max(pProc, RLIMIT_DATA));
    PROC_UNLOCK(pProc);

    /* Insert the object in the map. */
    rc = vm_map_find(pProcMap,              /* Map to insert the object in */
                     NULL,                  /* Object to map */
                     0,                     /* Start offset in the object */
                     &AddrR3,               /* Start address IN/OUT */
                     pMemToMap->cb,         /* Size of the mapping */
                     TRUE,                  /* Whether a suitable address should be searched for first */
                     ProtectionFlags,       /* protection flags */
                     VM_PROT_ALL,           /* Maximum protection flags */
                     0);                    /* Copy on write */

    /* Map the memory page by page into the destination map. */
    if (rc == KERN_SUCCESS)
    {
        size_t         cPages       = pMemToMap->cb >> PAGE_SHIFT;;
        pmap_t         pPhysicalMap = pProcMap->pmap;
        vm_offset_t    AddrR3Dst    = AddrR3;

        if (   pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS
            || pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS_NC
            || pMemToMap->enmType == RTR0MEMOBJTYPE_PAGE)
        {
            /* Mapping physical allocations */
            Assert(cPages == pMemToMapHaiku->u.Phys.cPages);

            /* Insert the memory page by page into the mapping. */
            for (uint32_t iPage = 0; iPage < cPages; iPage++)
            {
                vm_page_t pPage = pMemToMapHaiku->u.Phys.apPages[iPage];

                MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE);
                AddrR3Dst += PAGE_SIZE;
            }
        }
        else
        {
            /* Mapping cont or low memory types */
            vm_offset_t AddrToMap = (vm_offset_t)pMemToMap->pv;

            for (uint32_t iPage = 0; iPage < cPages; iPage++)
            {
                vm_page_t pPage = PHYS_TO_VM_PAGE(vtophys(AddrToMap));

                MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE);
                AddrR3Dst += PAGE_SIZE;
                AddrToMap += PAGE_SIZE;
            }
        }
    }

    if (RT_SUCCESS(rc))
    {
        /*
         * Create a mapping object for it.
         */
        PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), RTR0MEMOBJTYPE_MAPPING,
                                                                     (void *)AddrR3, pMemToMap->cb, pszTag);
        if (pMemHaiku)
        {
            Assert((vm_offset_t)pMemHaiku->Core.pv == AddrR3);
            pMemHaiku->Core.u.Mapping.R0Process = R0Process;
            *ppMem = &pMemHaiku->Core;
            return VINF_SUCCESS;
        }

        rc = vm_map_remove(pProcMap, ((vm_offset_t)AddrR3), ((vm_offset_t)AddrR3) + pMemToMap->cb);
        AssertMsg(rc == KERN_SUCCESS, ("Deleting mapping failed\n"));
    }
#else
    RT_NOREF(ppMem, pMemToMap, R3PtrFixed, uAlignment, fProt, R0Process, offSub, cbSub, pszTag);
#endif
    return VERR_NOT_SUPPORTED;
}


int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
    return VERR_NOT_SUPPORTED;
}


RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
    PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)pMem;
    status_t rc;

    /** @todo r=ramshankar: Validate objects */

    LogFlow(("rtR0MemObjNativeGetPagePhysAddr: pMem=%p enmType=%x iPage=%u\n", pMem, pMemHaiku->Core.enmType,(unsigned)iPage));

    switch (pMemHaiku->Core.enmType)
    {
        case RTR0MEMOBJTYPE_LOCK:
        {
            team_id        TeamId = B_SYSTEM_TEAM;
            physical_entry aPhysMap[2];
            int32          cPhysMap = 2;    /** @todo r=ramshankar: why not use RT_ELEMENTS? */

            if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
                TeamId = (team_id)pMemHaiku->Core.u.Lock.R0Process;
            void *pb = pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);

            rc = get_memory_map_etc(TeamId, pb, B_PAGE_SIZE, aPhysMap, &cPhysMap);
            if (rc < B_OK || cPhysMap < 1)
                return NIL_RTHCPHYS;

            return aPhysMap[0].address;
        }

#if 0
        case RTR0MEMOBJTYPE_MAPPING:
        {
            vm_offset_t pb = (vm_offset_t)pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);

            if (pMemHaiku->Core.u.Mapping.R0Process != NIL_RTR0PROCESS)
            {
                struct proc    *pProc     = (struct proc *)pMemHaiku->Core.u.Mapping.R0Process;
                struct vm_map  *pProcMap  = &pProc->p_vmspace->vm_map;
                pmap_t pPhysicalMap       = pProcMap->pmap;

                return pmap_extract(pPhysicalMap, pb);
            }
            return vtophys(pb);
        }
#endif
        case RTR0MEMOBJTYPE_CONT:
            return pMemHaiku->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);

        case RTR0MEMOBJTYPE_PHYS:
            return pMemHaiku->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);

        case RTR0MEMOBJTYPE_LOW:
        case RTR0MEMOBJTYPE_PAGE:
        case RTR0MEMOBJTYPE_PHYS_NC:
        {
            team_id        TeamId = B_SYSTEM_TEAM;
            physical_entry aPhysMap[2];
            int32          cPhysMap = 2;    /** @todo r=ramshankar: why not use RT_ELEMENTS? */

            void *pb = pMemHaiku->Core.pv + (iPage << PAGE_SHIFT);
            rc = get_memory_map_etc(TeamId, pb, B_PAGE_SIZE, aPhysMap, &cPhysMap);
            if (rc < B_OK || cPhysMap < 1)
                return NIL_RTHCPHYS;

            return aPhysMap[0].address;
        }

        case RTR0MEMOBJTYPE_RES_VIRT:
        default:
            return NIL_RTHCPHYS;
    }
}