summaryrefslogtreecommitdiff
path: root/src/VBox/Runtime/r0drv/memobj-r0drv.cpp
blob: 006ca81d06332c7e43dc8f310f63a79d1ae193bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/* $Id$ */
/** @file
 * IPRT - Ring-0 Memory Objects, Common Code.
 */

/*
 * Copyright (C) 2006-2020 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
 * VirtualBox OSE distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#define LOG_GROUP RTLOGGROUP_DEFAULT /// @todo RTLOGGROUP_MEM
#define RTMEM_NO_WRAP_TO_EF_APIS /* circular dependency otherwise. */
#include <iprt/memobj.h>
#include "internal/iprt.h"

#include <iprt/alloc.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/log.h>
#include <iprt/mp.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include <iprt/thread.h>

#include "internal/memobj.h"


/**
 * Internal function for allocating a new memory object.
 *
 * @returns The allocated and initialized handle.
 * @param   cbSelf      The size of the memory object handle. 0 mean default size.
 * @param   enmType     The memory object type.
 * @param   pv          The memory object mapping.
 * @param   cb          The size of the memory object.
 * @param   pszTag      The tag string.
 */
DECLHIDDEN(PRTR0MEMOBJINTERNAL) rtR0MemObjNew(size_t cbSelf, RTR0MEMOBJTYPE enmType, void *pv, size_t cb, const char *pszTag)
{
    PRTR0MEMOBJINTERNAL pNew;

    /* validate the size */
    if (!cbSelf)
        cbSelf = sizeof(*pNew);
    Assert(cbSelf >= sizeof(*pNew));
    Assert(cbSelf == (uint32_t)cbSelf);
    AssertMsg(RT_ALIGN_Z(cb, PAGE_SIZE) == cb, ("%#zx\n", cb));

    /*
     * Allocate and initialize the object.
     */
    pNew = (PRTR0MEMOBJINTERNAL)RTMemAllocZ(cbSelf);
    if (pNew)
    {
        pNew->u32Magic  = RTR0MEMOBJ_MAGIC;
        pNew->cbSelf    = (uint32_t)cbSelf;
        pNew->enmType   = enmType;
        pNew->fFlags    = 0;
        pNew->cb        = cb;
        pNew->pv        = pv;
#ifdef DEBUG
        pNew->pszTag    = pszTag;
#else
        RT_NOREF_PV(pszTag);
#endif
    }
    return pNew;
}


/**
 * Deletes an incomplete memory object.
 *
 * This is for cleaning up after failures during object creation.
 *
 * @param   pMem    The incomplete memory object to delete.
 */
DECLHIDDEN(void) rtR0MemObjDelete(PRTR0MEMOBJINTERNAL pMem)
{
    if (pMem)
    {
        ASMAtomicUoWriteU32(&pMem->u32Magic, ~RTR0MEMOBJ_MAGIC);
        pMem->enmType = RTR0MEMOBJTYPE_END;
        RTMemFree(pMem);
    }
}


/**
 * Links a mapping object to a primary object.
 *
 * @returns IPRT status code.
 * @retval  VINF_SUCCESS on success.
 * @retval  VINF_NO_MEMORY if we couldn't expand the mapping array of the parent.
 * @param   pParent     The parent (primary) memory object.
 * @param   pChild      The child (mapping) memory object.
 */
static int rtR0MemObjLink(PRTR0MEMOBJINTERNAL pParent, PRTR0MEMOBJINTERNAL pChild)
{
    uint32_t i;

    /* sanity */
    Assert(rtR0MemObjIsMapping(pChild));
    Assert(!rtR0MemObjIsMapping(pParent));

    /* expand the array? */
    i = pParent->uRel.Parent.cMappings;
    if (i >= pParent->uRel.Parent.cMappingsAllocated)
    {
        void *pv = RTMemRealloc(pParent->uRel.Parent.papMappings,
                                (i + 32) * sizeof(pParent->uRel.Parent.papMappings[0]));
        if (!pv)
            return VERR_NO_MEMORY;
        pParent->uRel.Parent.papMappings = (PPRTR0MEMOBJINTERNAL)pv;
        pParent->uRel.Parent.cMappingsAllocated = i + 32;
        Assert(i == pParent->uRel.Parent.cMappings);
    }

    /* do the linking. */
    pParent->uRel.Parent.papMappings[i] = pChild;
    pParent->uRel.Parent.cMappings++;
    pChild->uRel.Child.pParent = pParent;

    return VINF_SUCCESS;
}


/**
 * Checks if this is mapping or not.
 *
 * @returns true if it's a mapping, otherwise false.
 * @param   MemObj      The ring-0 memory object handle.
 */
RTR0DECL(bool) RTR0MemObjIsMapping(RTR0MEMOBJ MemObj)
{
    /* Validate the object handle. */
    PRTR0MEMOBJINTERNAL pMem;
    AssertPtrReturn(MemObj, false);
    pMem = (PRTR0MEMOBJINTERNAL)MemObj;
    AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), false);
    AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), false);

    /* hand it on to the inlined worker. */
    return rtR0MemObjIsMapping(pMem);
}
RT_EXPORT_SYMBOL(RTR0MemObjIsMapping);


/**
 * Gets the address of a ring-0 memory object.
 *
 * @returns The address of the memory object.
 * @returns NULL if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
 * @param   MemObj  The ring-0 memory object handle.
 */
RTR0DECL(void *) RTR0MemObjAddress(RTR0MEMOBJ MemObj)
{
    /* Validate the object handle. */
    PRTR0MEMOBJINTERNAL pMem;
    if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
        return NULL;
    AssertPtrReturn(MemObj, NULL);
    pMem = (PRTR0MEMOBJINTERNAL)MemObj;
    AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NULL);
    AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NULL);

    /* return the mapping address. */
    return pMem->pv;
}
RT_EXPORT_SYMBOL(RTR0MemObjAddress);


/**
 * Gets the ring-3 address of a ring-0 memory object.
 *
 * This only applies to ring-0 memory object with ring-3 mappings of some kind, i.e.
 * locked user memory, reserved user address space and user mappings. This API should
 * not be used on any other objects.
 *
 * @returns The address of the memory object.
 * @returns NIL_RTR3PTR if the handle is invalid or if it's not an object with a ring-3 mapping.
 *          Strict builds will assert in both cases.
 * @param   MemObj  The ring-0 memory object handle.
 */
RTR0DECL(RTR3PTR) RTR0MemObjAddressR3(RTR0MEMOBJ MemObj)
{
    PRTR0MEMOBJINTERNAL pMem;

    /* Validate the object handle. */
    if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
        return NIL_RTR3PTR;
    AssertPtrReturn(MemObj, NIL_RTR3PTR);
    pMem = (PRTR0MEMOBJINTERNAL)MemObj;
    AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTR3PTR);
    AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTR3PTR);
    if (RT_UNLIKELY(    (   pMem->enmType != RTR0MEMOBJTYPE_MAPPING
                         || pMem->u.Mapping.R0Process == NIL_RTR0PROCESS)
                    &&  (   pMem->enmType != RTR0MEMOBJTYPE_LOCK
                         || pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
                    &&  (   pMem->enmType != RTR0MEMOBJTYPE_PHYS_NC
                         || pMem->u.Lock.R0Process == NIL_RTR0PROCESS)
                    &&  (   pMem->enmType != RTR0MEMOBJTYPE_RES_VIRT
                         || pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS)))
        return NIL_RTR3PTR;

    /* return the mapping address. */
    return (RTR3PTR)pMem->pv;
}
RT_EXPORT_SYMBOL(RTR0MemObjAddressR3);


/**
 * Gets the size of a ring-0 memory object.
 *
 * The returned value may differ from the one specified to the API creating the
 * object because of alignment adjustments.  The minimal alignment currently
 * employed by any API is PAGE_SIZE, so the result can safely be shifted by
 * PAGE_SHIFT to calculate a page count.
 *
 * @returns The object size.
 * @returns 0 if the handle is invalid (asserts in strict builds) or if there isn't any mapping.
 * @param   MemObj  The ring-0 memory object handle.
 */
RTR0DECL(size_t) RTR0MemObjSize(RTR0MEMOBJ MemObj)
{
    PRTR0MEMOBJINTERNAL pMem;

    /* Validate the object handle. */
    if (RT_UNLIKELY(MemObj == NIL_RTR0MEMOBJ))
        return 0;
    AssertPtrReturn(MemObj, 0);
    pMem = (PRTR0MEMOBJINTERNAL)MemObj;
    AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), 0);
    AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), 0);
    AssertMsg(RT_ALIGN_Z(pMem->cb, PAGE_SIZE) == pMem->cb, ("%#zx\n", pMem->cb));

    /* return the size. */
    return pMem->cb;
}
RT_EXPORT_SYMBOL(RTR0MemObjSize);


/**
 * Get the physical address of an page in the memory object.
 *
 * @returns The physical address.
 * @returns NIL_RTHCPHYS if the object doesn't contain fixed physical pages.
 * @returns NIL_RTHCPHYS if the iPage is out of range.
 * @returns NIL_RTHCPHYS if the object handle isn't valid.
 * @param   MemObj  The ring-0 memory object handle.
 * @param   iPage   The page number within the object.
 */
/* Work around gcc bug 55940 */
#if defined(__GNUC__) && defined(RT_ARCH_X86) && (__GNUC__ * 100 + __GNUC_MINOR__) == 407
 __attribute__((__optimize__ ("no-shrink-wrap")))
#endif
RTR0DECL(RTHCPHYS) RTR0MemObjGetPagePhysAddr(RTR0MEMOBJ MemObj, size_t iPage)
{
    /* Validate the object handle. */
    PRTR0MEMOBJINTERNAL pMem;
    size_t cPages;
    AssertPtrReturn(MemObj, NIL_RTHCPHYS);
    pMem = (PRTR0MEMOBJINTERNAL)MemObj;
    AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, NIL_RTHCPHYS);
    AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, NIL_RTHCPHYS);
    AssertMsgReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, ("%p: %#x\n", pMem, pMem->u32Magic), NIL_RTHCPHYS);
    AssertMsgReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, ("%p: %d\n", pMem, pMem->enmType), NIL_RTHCPHYS);
    cPages = (pMem->cb >> PAGE_SHIFT);
    if (iPage >= cPages)
    {
        /* permit: while (RTR0MemObjGetPagePhysAddr(pMem, iPage++) != NIL_RTHCPHYS) {} */
        if (iPage == cPages)
            return NIL_RTHCPHYS;
        AssertReturn(iPage < (pMem->cb >> PAGE_SHIFT), NIL_RTHCPHYS);
    }

    /*
     * We know the address of physically contiguous allocations and mappings.
     */
    if (pMem->enmType == RTR0MEMOBJTYPE_CONT)
        return pMem->u.Cont.Phys + iPage * PAGE_SIZE;
    if (pMem->enmType == RTR0MEMOBJTYPE_PHYS)
        return pMem->u.Phys.PhysBase + iPage * PAGE_SIZE;

    /*
     * Do the job.
     */
    return rtR0MemObjNativeGetPagePhysAddr(pMem, iPage);
}
RT_EXPORT_SYMBOL(RTR0MemObjGetPagePhysAddr);


/**
 * Frees a ring-0 memory object.
 *
 * @returns IPRT status code.
 * @retval  VERR_INVALID_HANDLE if
 * @param   MemObj          The ring-0 memory object to be freed. NULL is accepted.
 * @param   fFreeMappings   Whether or not to free mappings of the object.
 */
RTR0DECL(int) RTR0MemObjFree(RTR0MEMOBJ MemObj, bool fFreeMappings)
{
    /*
     * Validate the object handle.
     */
    PRTR0MEMOBJINTERNAL pMem;
    int rc;

    if (MemObj == NIL_RTR0MEMOBJ)
        return VINF_SUCCESS;
    AssertPtrReturn(MemObj, VERR_INVALID_HANDLE);
    pMem = (PRTR0MEMOBJINTERNAL)MemObj;
    AssertReturn(pMem->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
    AssertReturn(pMem->enmType > RTR0MEMOBJTYPE_INVALID && pMem->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
    RT_ASSERT_PREEMPTIBLE();

    /*
     * Deal with mappings according to fFreeMappings.
     */
    if (    !rtR0MemObjIsMapping(pMem)
        &&  pMem->uRel.Parent.cMappings > 0)
    {
        /* fail if not requested to free mappings. */
        if (!fFreeMappings)
            return VERR_MEMORY_BUSY;

        while (pMem->uRel.Parent.cMappings > 0)
        {
            PRTR0MEMOBJINTERNAL pChild = pMem->uRel.Parent.papMappings[--pMem->uRel.Parent.cMappings];
            pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings] = NULL;

            /* sanity checks. */
            AssertPtr(pChild);
            AssertFatal(pChild->u32Magic == RTR0MEMOBJ_MAGIC);
            AssertFatal(pChild->enmType > RTR0MEMOBJTYPE_INVALID && pChild->enmType < RTR0MEMOBJTYPE_END);
            AssertFatal(rtR0MemObjIsMapping(pChild));

            /* free the mapping. */
            rc = rtR0MemObjNativeFree(pChild);
            if (RT_FAILURE(rc))
            {
                Log(("RTR0MemObjFree: failed to free mapping %p: %p %#zx; rc=%Rrc\n", pChild, pChild->pv, pChild->cb, rc));
                pMem->uRel.Parent.papMappings[pMem->uRel.Parent.cMappings++] = pChild;
                return rc;
            }

            pChild->u32Magic++;
            pChild->enmType = RTR0MEMOBJTYPE_END;
            RTMemFree(pChild);
        }
    }

    /*
     * Free this object.
     */
    rc = rtR0MemObjNativeFree(pMem);
    if (RT_SUCCESS(rc))
    {
        /*
         * Ok, it was freed just fine. Now, if it's a mapping we'll have to remove it from the parent.
         */
        if (rtR0MemObjIsMapping(pMem))
        {
            PRTR0MEMOBJINTERNAL pParent = pMem->uRel.Child.pParent;
            uint32_t i;

            /* sanity checks */
            AssertPtr(pParent);
            AssertFatal(pParent->u32Magic == RTR0MEMOBJ_MAGIC);
            AssertFatal(pParent->enmType > RTR0MEMOBJTYPE_INVALID && pParent->enmType < RTR0MEMOBJTYPE_END);
            AssertFatal(!rtR0MemObjIsMapping(pParent));
            AssertFatal(pParent->uRel.Parent.cMappings > 0);
            AssertPtr(pParent->uRel.Parent.papMappings);

            /* locate and remove from the array of mappings. */
            i = pParent->uRel.Parent.cMappings;
            while (i-- > 0)
            {
                if (pParent->uRel.Parent.papMappings[i] == pMem)
                {
                    pParent->uRel.Parent.papMappings[i] = pParent->uRel.Parent.papMappings[--pParent->uRel.Parent.cMappings];
                    break;
                }
            }
            Assert(i != UINT32_MAX);
        }
        else
            Assert(pMem->uRel.Parent.cMappings == 0);

        /*
         * Finally, destroy the handle.
         */
        pMem->u32Magic++;
        pMem->enmType = RTR0MEMOBJTYPE_END;
        if (!rtR0MemObjIsMapping(pMem))
            RTMemFree(pMem->uRel.Parent.papMappings);
        RTMemFree(pMem);
    }
    else
        Log(("RTR0MemObjFree: failed to free %p: %d %p %#zx; rc=%Rrc\n",
             pMem, pMem->enmType, pMem->pv, pMem->cb, rc));
    return rc;
}
RT_EXPORT_SYMBOL(RTR0MemObjFree);



RTR0DECL(int) RTR0MemObjAllocPageTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    RT_NOREF_PV(pszTag);

    /* do the allocation. */
    return rtR0MemObjNativeAllocPage(pMemObj, cbAligned, fExecutable);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocPageTag);


RTR0DECL(int) RTR0MemObjAllocLargeTag(PRTR0MEMOBJ pMemObj, size_t cb, size_t cbLargePage, uint32_t fFlags, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, cbLargePage);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
#ifdef RT_ARCH_AMD64
    AssertReturn(cbLargePage == _2M || cbLargePage == _1G, VERR_OUT_OF_RANGE);
#elif defined(RT_ARCH_X86)
    AssertReturn(cbLargePage == _2M || cbLargePage == _4M, VERR_OUT_OF_RANGE);
#else
    AssertReturn(RT_IS_POWER_OF_TWO(cbLargePage), VERR_NOT_POWER_OF_TWO);
    AssertReturn(cbLargePage > PAGE_SIZE, VERR_OUT_OF_RANGE);
#endif
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    AssertReturn(!(fFlags & ~RTMEMOBJ_ALLOC_LARGE_F_VALID_MASK), VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    /* do the allocation. */
    return rtR0MemObjNativeAllocLarge(pMemObj, cbAligned, cbLargePage, fFlags, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocLargeTag);


/**
 * Fallback implementation of rtR0MemObjNativeAllocLarge and implements single
 * page allocation using rtR0MemObjNativeAllocPhys.
 */
DECLHIDDEN(int) rtR0MemObjFallbackAllocLarge(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, size_t cbLargePage, uint32_t fFlags,
                                             const char *pszTag)
{
    RT_NOREF(pszTag, fFlags);
    if (cb == cbLargePage)
        return rtR0MemObjNativeAllocPhys(ppMem, cb, NIL_RTHCPHYS, cbLargePage, pszTag);
    return VERR_NOT_SUPPORTED;
}


RTR0DECL(int) RTR0MemObjAllocLowTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    RT_NOREF_PV(pszTag);

    /* do the allocation. */
    return rtR0MemObjNativeAllocLow(pMemObj, cbAligned, fExecutable);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocLowTag);


RTR0DECL(int) RTR0MemObjAllocContTag(PRTR0MEMOBJ pMemObj, size_t cb, bool fExecutable, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    RT_NOREF_PV(pszTag);

    /* do the allocation. */
    return rtR0MemObjNativeAllocCont(pMemObj, cbAligned, fExecutable);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocContTag);


RTR0DECL(int) RTR0MemObjLockUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3Ptr, size_t cb,
                                    uint32_t fAccess, RTR0PROCESS R0Process, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb + (R3Ptr & PAGE_OFFSET_MASK), PAGE_SIZE);
    RTR3PTR const R3PtrAligned = (R3Ptr & ~(RTR3PTR)PAGE_OFFSET_MASK);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    if (R0Process == NIL_RTR0PROCESS)
        R0Process = RTR0ProcHandleSelf();
    AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
    AssertReturn(fAccess, VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    RT_NOREF_PV(pszTag);

    /* do the locking. */
    return rtR0MemObjNativeLockUser(pMemObj, R3PtrAligned, cbAligned, fAccess, R0Process);
}
RT_EXPORT_SYMBOL(RTR0MemObjLockUserTag);


RTR0DECL(int) RTR0MemObjLockKernelTag(PRTR0MEMOBJ pMemObj, void *pv, size_t cb, uint32_t fAccess, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb + ((uintptr_t)pv & PAGE_OFFSET_MASK), PAGE_SIZE);
    void * const pvAligned = (void *)((uintptr_t)pv & ~(uintptr_t)PAGE_OFFSET_MASK);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    AssertPtrReturn(pvAligned, VERR_INVALID_POINTER);
    AssertReturn(!(fAccess & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE)), VERR_INVALID_PARAMETER);
    AssertReturn(fAccess, VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    RT_NOREF_PV(pszTag);

    /* do the allocation. */
    return rtR0MemObjNativeLockKernel(pMemObj, pvAligned, cbAligned, fAccess);
}
RT_EXPORT_SYMBOL(RTR0MemObjLockKernelTag);


RTR0DECL(int) RTR0MemObjAllocPhysTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    /* do the allocation. */
    return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, PAGE_SIZE /* page aligned */, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysTag);


RTR0DECL(int) RTR0MemObjAllocPhysExTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
    if (uAlignment == 0)
        uAlignment = PAGE_SIZE;
    AssertReturn(    uAlignment == PAGE_SIZE
                 ||  uAlignment == _2M
                 ||  uAlignment == _4M
                 ||  uAlignment == _1G,
                 VERR_INVALID_PARAMETER);
#if HC_ARCH_BITS == 32
    /* Memory allocated in this way is typically mapped into kernel space as well; simply
       don't allow this on 32 bits hosts as the kernel space is too crowded already. */
    if (uAlignment != PAGE_SIZE)
        return VERR_NOT_SUPPORTED;
#endif
    RT_ASSERT_PREEMPTIBLE();

    /* do the allocation. */
    return rtR0MemObjNativeAllocPhys(pMemObj, cbAligned, PhysHighest, uAlignment, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysExTag);


RTR0DECL(int) RTR0MemObjAllocPhysNCTag(PRTR0MEMOBJ pMemObj, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    AssertReturn(PhysHighest >= cb, VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    /* do the allocation. */
    return rtR0MemObjNativeAllocPhysNC(pMemObj, cbAligned, PhysHighest, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjAllocPhysNCTag);


RTR0DECL(int) RTR0MemObjEnterPhysTag(PRTR0MEMOBJ pMemObj, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb + (Phys & PAGE_OFFSET_MASK), PAGE_SIZE);
    const RTHCPHYS PhysAligned = Phys & ~(RTHCPHYS)PAGE_OFFSET_MASK;
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    AssertReturn(Phys != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
    AssertReturn(   uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE
                 || uCachePolicy == RTMEM_CACHE_POLICY_MMIO,
                 VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    /* do the allocation. */
    return rtR0MemObjNativeEnterPhys(pMemObj, PhysAligned, cbAligned, uCachePolicy, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjEnterPhysTag);


RTR0DECL(int) RTR0MemObjReserveKernelTag(PRTR0MEMOBJ pMemObj, void *pvFixed, size_t cb, size_t uAlignment, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    if (uAlignment == 0)
        uAlignment = PAGE_SIZE;
    AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    if (pvFixed != (void *)-1)
        AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    /* do the reservation. */
    return rtR0MemObjNativeReserveKernel(pMemObj, pvFixed, cbAligned, uAlignment, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjReserveKernelTag);


RTR0DECL(int) RTR0MemObjReserveUserTag(PRTR0MEMOBJ pMemObj, RTR3PTR R3PtrFixed, size_t cb,
                                       size_t uAlignment, RTR0PROCESS R0Process, const char *pszTag)
{
    /* sanity checks. */
    const size_t cbAligned = RT_ALIGN_Z(cb, PAGE_SIZE);
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    if (uAlignment == 0)
        uAlignment = PAGE_SIZE;
    AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
    AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
    AssertReturn(cb <= cbAligned, VERR_INVALID_PARAMETER);
    if (R3PtrFixed != (RTR3PTR)-1)
        AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
    if (R0Process == NIL_RTR0PROCESS)
        R0Process = RTR0ProcHandleSelf();
    RT_ASSERT_PREEMPTIBLE();

    /* do the reservation. */
    return rtR0MemObjNativeReserveUser(pMemObj, R3PtrFixed, cbAligned, uAlignment, R0Process, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjReserveUserTag);


RTR0DECL(int) RTR0MemObjMapKernelTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed,
                                     size_t uAlignment, unsigned fProt, const char *pszTag)
{
    return RTR0MemObjMapKernelExTag(pMemObj, MemObjToMap, pvFixed, uAlignment, fProt, 0, 0, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjMapKernelTag);


RTR0DECL(int) RTR0MemObjMapKernelExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, void *pvFixed, size_t uAlignment,
                                       unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
{
    PRTR0MEMOBJINTERNAL pMemToMap;
    PRTR0MEMOBJINTERNAL pNew;
    int                 rc;

    /* sanity checks. */
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
    pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
    AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
    AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
    AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
    AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
    if (uAlignment == 0)
        uAlignment = PAGE_SIZE;
    AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
    if (pvFixed != (void *)-1)
        AssertReturn(!((uintptr_t)pvFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
    AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
    AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
    AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER);
    AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER);
    AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    /* adjust the request to simplify the native code. */
    if (offSub == 0 && cbSub == pMemToMap->cb)
        cbSub = 0;

    /* do the mapping. */
    rc = rtR0MemObjNativeMapKernel(&pNew, pMemToMap, pvFixed, uAlignment, fProt, offSub, cbSub, pszTag);
    if (RT_SUCCESS(rc))
    {
        /* link it. */
        rc = rtR0MemObjLink(pMemToMap, pNew);
        if (RT_SUCCESS(rc))
            *pMemObj = pNew;
        else
        {
            /* damn, out of memory. bail out. */
            int rc2 = rtR0MemObjNativeFree(pNew);
            AssertRC(rc2);
            pNew->u32Magic++;
            pNew->enmType = RTR0MEMOBJTYPE_END;
            RTMemFree(pNew);
        }
    }

    return rc;
}
RT_EXPORT_SYMBOL(RTR0MemObjMapKernelExTag);


RTR0DECL(int) RTR0MemObjMapUserTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed,
                                   size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process, const char *pszTag)
{
    return RTR0MemObjMapUserExTag(pMemObj, MemObjToMap, R3PtrFixed, uAlignment, fProt, R0Process, 0, 0, pszTag);
}
RT_EXPORT_SYMBOL(RTR0MemObjMapUserTag);


RTR0DECL(int) RTR0MemObjMapUserExTag(PRTR0MEMOBJ pMemObj, RTR0MEMOBJ MemObjToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
                                     unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub, const char *pszTag)
{
    /* sanity checks. */
    PRTR0MEMOBJINTERNAL pMemToMap;
    PRTR0MEMOBJINTERNAL pNew;
    int rc;
    AssertPtrReturn(pMemObj, VERR_INVALID_POINTER);
    pMemToMap = (PRTR0MEMOBJINTERNAL)MemObjToMap;
    *pMemObj = NIL_RTR0MEMOBJ;
    AssertPtrReturn(MemObjToMap, VERR_INVALID_HANDLE);
    AssertReturn(pMemToMap->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
    AssertReturn(pMemToMap->enmType > RTR0MEMOBJTYPE_INVALID && pMemToMap->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
    AssertReturn(!rtR0MemObjIsMapping(pMemToMap), VERR_INVALID_PARAMETER);
    AssertReturn(pMemToMap->enmType != RTR0MEMOBJTYPE_RES_VIRT, VERR_INVALID_PARAMETER);
    if (uAlignment == 0)
        uAlignment = PAGE_SIZE;
    AssertReturn(uAlignment == PAGE_SIZE || uAlignment == _2M || uAlignment == _4M, VERR_INVALID_PARAMETER);
    if (R3PtrFixed != (RTR3PTR)-1)
        AssertReturn(!(R3PtrFixed & (uAlignment - 1)), VERR_INVALID_PARAMETER);
    AssertReturn(fProt != RTMEM_PROT_NONE, VERR_INVALID_PARAMETER);
    AssertReturn(!(fProt & ~(RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
    AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(offSub < pMemToMap->cb, VERR_INVALID_PARAMETER);
    AssertReturn(!(cbSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(cbSub <= pMemToMap->cb, VERR_INVALID_PARAMETER);
    AssertReturn((!offSub && !cbSub) || (offSub + cbSub) <= pMemToMap->cb, VERR_INVALID_PARAMETER);
    if (R0Process == NIL_RTR0PROCESS)
        R0Process = RTR0ProcHandleSelf();
    RT_ASSERT_PREEMPTIBLE();

    /* adjust the request to simplify the native code. */
    if (offSub == 0 && cbSub == pMemToMap->cb)
        cbSub = 0;

    /* do the mapping. */
    rc = rtR0MemObjNativeMapUser(&pNew, pMemToMap, R3PtrFixed, uAlignment, fProt, R0Process, offSub, cbSub, pszTag);
    if (RT_SUCCESS(rc))
    {
        /* link it. */
        rc = rtR0MemObjLink(pMemToMap, pNew);
        if (RT_SUCCESS(rc))
            *pMemObj = pNew;
        else
        {
            /* damn, out of memory. bail out. */
            int rc2 = rtR0MemObjNativeFree(pNew);
            AssertRC(rc2);
            pNew->u32Magic++;
            pNew->enmType = RTR0MEMOBJTYPE_END;
            RTMemFree(pNew);
        }
    }

    return rc;
}
RT_EXPORT_SYMBOL(RTR0MemObjMapUserExTag);


RTR0DECL(int) RTR0MemObjProtect(RTR0MEMOBJ hMemObj, size_t offSub, size_t cbSub, uint32_t fProt)
{
    PRTR0MEMOBJINTERNAL pMemObj;
    int                 rc;

    /* sanity checks. */
    pMemObj = (PRTR0MEMOBJINTERNAL)hMemObj;
    AssertPtrReturn(pMemObj, VERR_INVALID_HANDLE);
    AssertReturn(pMemObj->u32Magic == RTR0MEMOBJ_MAGIC, VERR_INVALID_HANDLE);
    AssertReturn(pMemObj->enmType > RTR0MEMOBJTYPE_INVALID && pMemObj->enmType < RTR0MEMOBJTYPE_END, VERR_INVALID_HANDLE);
    AssertReturn(rtR0MemObjIsProtectable(pMemObj), VERR_INVALID_PARAMETER);
    AssertReturn(!(offSub & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(offSub < pMemObj->cb, VERR_INVALID_PARAMETER);
    AssertReturn(!(cbSub  & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
    AssertReturn(cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
    AssertReturn(offSub + cbSub <= pMemObj->cb, VERR_INVALID_PARAMETER);
    AssertReturn(!(fProt & ~(RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC)), VERR_INVALID_PARAMETER);
    RT_ASSERT_PREEMPTIBLE();

    /* do the job */
    rc = rtR0MemObjNativeProtect(pMemObj, offSub, cbSub, fProt);
    if (RT_SUCCESS(rc))
        pMemObj->fFlags |= RTR0MEMOBJ_FLAGS_PROT_CHANGED; /* record it */

    return rc;
}
RT_EXPORT_SYMBOL(RTR0MemObjProtect);