summaryrefslogtreecommitdiff
path: root/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp
blob: a4922ef081bccb7824e330b4a67a2ccaa10325df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
/* $Id$ */
/** @file
 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
 *
 * Log group 2: Exit logging.
 * Log group 3: Log context on exit.
 * Log group 5: Ring-3 memory management
 */

/*
 * Copyright (C) 2020-2023 Oracle and/or its affiliates.
 *
 * This file is part of VirtualBox base platform packages, as
 * available from https://www.virtualbox.org.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation, in version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses>.
 *
 * SPDX-License-Identifier: GPL-3.0-only
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_NEM
#define VMCPU_INCL_CPUM_GST_CTX
#define CPUM_WITH_NONCONST_HOST_FEATURES /* required for initializing parts of the g_CpumHostFeatures structure here. */
#include <VBox/vmm/nem.h>
#include <VBox/vmm/iem.h>
#include <VBox/vmm/em.h>
#include <VBox/vmm/apic.h>
#include <VBox/vmm/pdm.h>
#include <VBox/vmm/hm.h>
#include <VBox/vmm/hm_vmx.h>
#include <VBox/vmm/dbgftrace.h>
#include <VBox/vmm/gcm.h>
#include "VMXInternal.h"
#include "NEMInternal.h"
#include <VBox/vmm/vmcc.h>
#include "dtrace/VBoxVMM.h"

#include <iprt/asm.h>
#include <iprt/ldr.h>
#include <iprt/mem.h>
#include <iprt/path.h>
#include <iprt/string.h>
#include <iprt/system.h>
#include <iprt/utf16.h>

#include <mach/mach_time.h>
#include <mach/kern_return.h>


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
/* No nested hwvirt (for now). */
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
# undef VBOX_WITH_NESTED_HWVIRT_VMX
#endif


/** @name HV return codes.
 * @{ */
/** Operation was successful. */
#define HV_SUCCESS              0
/** An error occurred during operation. */
#define HV_ERROR                0xfae94001
/** The operation could not be completed right now, try again. */
#define HV_BUSY                 0xfae94002
/** One of the parameters passed wis invalid. */
#define HV_BAD_ARGUMENT         0xfae94003
/** Not enough resources left to fulfill the operation. */
#define HV_NO_RESOURCES         0xfae94005
/** The device could not be found. */
#define HV_NO_DEVICE            0xfae94006
/** The operation is not supportd on this platform with this configuration. */
#define HV_UNSUPPORTED          0xfae94007
/** @} */


/** @name HV memory protection flags.
 * @{ */
/** Memory is readable. */
#define HV_MEMORY_READ          RT_BIT_64(0)
/** Memory is writeable. */
#define HV_MEMORY_WRITE         RT_BIT_64(1)
/** Memory is executable. */
#define HV_MEMORY_EXEC          RT_BIT_64(2)
/** @} */


/** @name HV shadow VMCS protection flags.
 * @{ */
/** Shadow VMCS field is not accessible. */
#define HV_SHADOW_VMCS_NONE     0
/** Shadow VMCS fild is readable. */
#define HV_SHADOW_VMCS_READ     RT_BIT_64(0)
/** Shadow VMCS field is writeable. */
#define HV_SHADOW_VMCS_WRITE    RT_BIT_64(1)
/** @} */


/** Default VM creation flags. */
#define HV_VM_DEFAULT           0
/** Default guest address space creation flags. */
#define HV_VM_SPACE_DEFAULT     0
/** Default vCPU creation flags. */
#define HV_VCPU_DEFAULT         0

#define HV_DEADLINE_FOREVER     UINT64_MAX


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/

/** HV return code type. */
typedef uint32_t hv_return_t;
/** HV capability bitmask. */
typedef uint64_t hv_capability_t;
/** Option bitmask type when creating a VM. */
typedef uint64_t hv_vm_options_t;
/** Option bitmask when creating a vCPU. */
typedef uint64_t hv_vcpu_options_t;
/** HV memory protection flags type. */
typedef uint64_t hv_memory_flags_t;
/** Shadow VMCS protection flags. */
typedef uint64_t hv_shadow_flags_t;
/** Guest physical address type. */
typedef uint64_t hv_gpaddr_t;


/**
 * VMX Capability enumeration.
 */
typedef enum
{
    HV_VMX_CAP_PINBASED = 0,
    HV_VMX_CAP_PROCBASED,
    HV_VMX_CAP_PROCBASED2,
    HV_VMX_CAP_ENTRY,
    HV_VMX_CAP_EXIT,
    HV_VMX_CAP_BASIC,                   /* Since 11.0 */
    HV_VMX_CAP_TRUE_PINBASED,           /* Since 11.0 */
    HV_VMX_CAP_TRUE_PROCBASED,          /* Since 11.0 */
    HV_VMX_CAP_TRUE_ENTRY,              /* Since 11.0 */
    HV_VMX_CAP_TRUE_EXIT,               /* Since 11.0 */
    HV_VMX_CAP_MISC,                    /* Since 11.0 */
    HV_VMX_CAP_CR0_FIXED0,              /* Since 11.0 */
    HV_VMX_CAP_CR0_FIXED1,              /* Since 11.0 */
    HV_VMX_CAP_CR4_FIXED0,              /* Since 11.0 */
    HV_VMX_CAP_CR4_FIXED1,              /* Since 11.0 */
    HV_VMX_CAP_VMCS_ENUM,               /* Since 11.0 */
    HV_VMX_CAP_EPT_VPID_CAP,            /* Since 11.0 */
    HV_VMX_CAP_PREEMPTION_TIMER = 32
} hv_vmx_capability_t;


/**
 * MSR information.
 */
typedef enum
{
    HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES = 0,
    HV_VMX_INFO_MSR_IA32_PERF_CAPABILITIES,
    HV_VMX_VALID_MSR_IA32_PERFEVNTSEL,
    HV_VMX_VALID_MSR_IA32_FIXED_CTR_CTRL,
    HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_CTRL,
    HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_STATUS,
    HV_VMX_VALID_MSR_IA32_DEBUGCTL,
    HV_VMX_VALID_MSR_IA32_SPEC_CTRL,
    HV_VMX_NEED_MSR_IA32_SPEC_CTRL
} hv_vmx_msr_info_t;


/**
 * HV x86 register enumeration.
 */
typedef enum
{
    HV_X86_RIP = 0,
    HV_X86_RFLAGS,
    HV_X86_RAX,
    HV_X86_RCX,
    HV_X86_RDX,
    HV_X86_RBX,
    HV_X86_RSI,
    HV_X86_RDI,
    HV_X86_RSP,
    HV_X86_RBP,
    HV_X86_R8,
    HV_X86_R9,
    HV_X86_R10,
    HV_X86_R11,
    HV_X86_R12,
    HV_X86_R13,
    HV_X86_R14,
    HV_X86_R15,
    HV_X86_CS,
    HV_X86_SS,
    HV_X86_DS,
    HV_X86_ES,
    HV_X86_FS,
    HV_X86_GS,
    HV_X86_IDT_BASE,
    HV_X86_IDT_LIMIT,
    HV_X86_GDT_BASE,
    HV_X86_GDT_LIMIT,
    HV_X86_LDTR,
    HV_X86_LDT_BASE,
    HV_X86_LDT_LIMIT,
    HV_X86_LDT_AR,
    HV_X86_TR,
    HV_X86_TSS_BASE,
    HV_X86_TSS_LIMIT,
    HV_X86_TSS_AR,
    HV_X86_CR0,
    HV_X86_CR1,
    HV_X86_CR2,
    HV_X86_CR3,
    HV_X86_CR4,
    HV_X86_DR0,
    HV_X86_DR1,
    HV_X86_DR2,
    HV_X86_DR3,
    HV_X86_DR4,
    HV_X86_DR5,
    HV_X86_DR6,
    HV_X86_DR7,
    HV_X86_TPR,
    HV_X86_XCR0,
    HV_X86_REGISTERS_MAX
} hv_x86_reg_t;


/** MSR permission flags type. */
typedef uint32_t hv_msr_flags_t;
/** MSR can't be accessed. */
#define HV_MSR_NONE     0
/** MSR is readable by the guest. */
#define HV_MSR_READ     RT_BIT(0)
/** MSR is writeable by the guest. */
#define HV_MSR_WRITE    RT_BIT(1)


typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
typedef hv_return_t FN_HV_VM_DESTROY(void);
typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);

typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);

typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);

typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);

typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);

/* Since 11.0 */
typedef hv_return_t FN_HV_VMX_GET_MSR_INFO(hv_vmx_msr_info_t field, uint64_t *value);
typedef hv_return_t FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *allowed_0, uint64_t *allowed_1);
typedef hv_return_t FN_HV_VCPU_ENABLE_MANAGED_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
typedef hv_return_t FN_HV_VCPU_SET_MSR_ACCESS(hv_vcpuid_t vcpu, uint32_t msr, hv_msr_flags_t flags);


/*********************************************************************************************************************************
*   Global Variables                                                                                                             *
*********************************************************************************************************************************/
static void nemR3DarwinVmcsDump(PVMCPU pVCpu);

/** NEM_DARWIN_PAGE_STATE_XXX names. */
NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
/** MSRs. */
static SUPHWVIRTMSRS    g_HmMsrs;
/** VMX: Set if swapping EFER is supported.  */
static bool             g_fHmVmxSupportsVmcsEfer = false;
/** @name APIs imported from Hypervisor.framework.
 * @{ */
static FN_HV_CAPABILITY                 *g_pfnHvCapability              = NULL; /* Since 10.15 */
static FN_HV_VM_CREATE                  *g_pfnHvVmCreate                = NULL; /* Since 10.10 */
static FN_HV_VM_DESTROY                 *g_pfnHvVmDestroy               = NULL; /* Since 10.10 */
static FN_HV_VM_SPACE_CREATE            *g_pfnHvVmSpaceCreate           = NULL; /* Since 10.15 */
static FN_HV_VM_SPACE_DESTROY           *g_pfnHvVmSpaceDestroy          = NULL; /* Since 10.15 */
static FN_HV_VM_MAP                     *g_pfnHvVmMap                   = NULL; /* Since 10.10 */
static FN_HV_VM_UNMAP                   *g_pfnHvVmUnmap                 = NULL; /* Since 10.10 */
static FN_HV_VM_PROTECT                 *g_pfnHvVmProtect               = NULL; /* Since 10.10 */
static FN_HV_VM_MAP_SPACE               *g_pfnHvVmMapSpace              = NULL; /* Since 10.15 */
static FN_HV_VM_UNMAP_SPACE             *g_pfnHvVmUnmapSpace            = NULL; /* Since 10.15 */
static FN_HV_VM_PROTECT_SPACE           *g_pfnHvVmProtectSpace          = NULL; /* Since 10.15 */
static FN_HV_VM_SYNC_TSC                *g_pfnHvVmSyncTsc               = NULL; /* Since 10.10 */

static FN_HV_VCPU_CREATE                *g_pfnHvVCpuCreate              = NULL; /* Since 10.10 */
static FN_HV_VCPU_DESTROY               *g_pfnHvVCpuDestroy             = NULL; /* Since 10.10 */
static FN_HV_VCPU_SET_SPACE             *g_pfnHvVCpuSetSpace            = NULL; /* Since 10.15 */
static FN_HV_VCPU_READ_REGISTER         *g_pfnHvVCpuReadRegister        = NULL; /* Since 10.10 */
static FN_HV_VCPU_WRITE_REGISTER        *g_pfnHvVCpuWriteRegister       = NULL; /* Since 10.10 */
static FN_HV_VCPU_READ_FPSTATE          *g_pfnHvVCpuReadFpState         = NULL; /* Since 10.10 */
static FN_HV_VCPU_WRITE_FPSTATE         *g_pfnHvVCpuWriteFpState        = NULL; /* Since 10.10 */
static FN_HV_VCPU_ENABLE_NATIVE_MSR     *g_pfnHvVCpuEnableNativeMsr     = NULL; /* Since 10.10 */
static FN_HV_VCPU_READ_MSR              *g_pfnHvVCpuReadMsr             = NULL; /* Since 10.10 */
static FN_HV_VCPU_WRITE_MSR             *g_pfnHvVCpuWriteMsr            = NULL; /* Since 10.10 */
static FN_HV_VCPU_FLUSH                 *g_pfnHvVCpuFlush               = NULL; /* Since 10.10 */
static FN_HV_VCPU_INVALIDATE_TLB        *g_pfnHvVCpuInvalidateTlb       = NULL; /* Since 10.10 */
static FN_HV_VCPU_RUN                   *g_pfnHvVCpuRun                 = NULL; /* Since 10.10 */
static FN_HV_VCPU_RUN_UNTIL             *g_pfnHvVCpuRunUntil            = NULL; /* Since 10.15 */
static FN_HV_VCPU_INTERRUPT             *g_pfnHvVCpuInterrupt           = NULL; /* Since 10.10 */
static FN_HV_VCPU_GET_EXEC_TIME         *g_pfnHvVCpuGetExecTime         = NULL; /* Since 10.10 */

static FN_HV_VMX_READ_CAPABILITY        *g_pfnHvVmxReadCapability       = NULL; /* Since 10.10 */
static FN_HV_VMX_VCPU_READ_VMCS         *g_pfnHvVmxVCpuReadVmcs         = NULL; /* Since 10.10 */
static FN_HV_VMX_VCPU_WRITE_VMCS        *g_pfnHvVmxVCpuWriteVmcs        = NULL; /* Since 10.10 */
static FN_HV_VMX_VCPU_READ_SHADOW_VMCS  *g_pfnHvVmxVCpuReadShadowVmcs   = NULL; /* Since 10.15 */
static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs  = NULL; /* Since 10.15 */
static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess  = NULL; /* Since 10.15 */
static FN_HV_VMX_VCPU_SET_APIC_ADDRESS  *g_pfnHvVmxVCpuSetApicAddress   = NULL; /* Since 10.10 */

static FN_HV_VMX_GET_MSR_INFO            *g_pfnHvVmxGetMsrInfo          = NULL; /* Since 11.0 */
static FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS *g_pfnHvVmxVCpuGetCapWriteVmcs = NULL; /* Since 11.0 */
static FN_HV_VCPU_ENABLE_MANAGED_MSR     *g_pfnHvVCpuEnableManagedMsr   = NULL; /* Since 11.0 */
static FN_HV_VCPU_SET_MSR_ACCESS         *g_pfnHvVCpuSetMsrAccess       = NULL; /* Since 11.0 */
/** @} */


/**
 * Import instructions.
 */
static const struct
{
    bool        fOptional;  /**< Set if import is optional. */
    void        **ppfn;     /**< The function pointer variable. */
    const char  *pszName;   /**< The function name. */
} g_aImports[] =
{
#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
    NEM_DARWIN_IMPORT(true,  g_pfnHvCapability,             hv_capability),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate,               hv_vm_create),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy,              hv_vm_destroy),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmSpaceCreate,          hv_vm_space_create),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmSpaceDestroy,         hv_vm_space_destroy),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmMap,                  hv_vm_map),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap,                hv_vm_unmap),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect,              hv_vm_protect),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmMapSpace,             hv_vm_map_space),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmUnmapSpace,           hv_vm_unmap_space),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmProtectSpace,         hv_vm_protect_space),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc,              hv_vm_sync_tsc),

    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate,             hv_vcpu_create),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy,            hv_vcpu_destroy),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVCpuSetSpace,           hv_vcpu_set_space),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister,       hv_vcpu_read_register),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister,      hv_vcpu_write_register),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState,        hv_vcpu_read_fpstate),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState,       hv_vcpu_write_fpstate),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr,    hv_vcpu_enable_native_msr),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr,            hv_vcpu_read_msr),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr,           hv_vcpu_write_msr),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush,              hv_vcpu_flush),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb,      hv_vcpu_invalidate_tlb),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun,                hv_vcpu_run),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVCpuRunUntil,           hv_vcpu_run_until),
    NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt,          hv_vcpu_interrupt),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVCpuGetExecTime,        hv_vcpu_get_exec_time),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability,      hv_vmx_read_capability),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs,        hv_vmx_vcpu_read_vmcs),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs,       hv_vmx_vcpu_write_vmcs),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmxVCpuReadShadowVmcs,  hv_vmx_vcpu_read_shadow_vmcs),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
    NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress,  hv_vmx_vcpu_set_apic_address),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmxGetMsrInfo,          hv_vmx_get_msr_info),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVmxVCpuGetCapWriteVmcs, hv_vmx_vcpu_get_cap_write_vmcs),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVCpuEnableManagedMsr,   hv_vcpu_enable_managed_msr),
    NEM_DARWIN_IMPORT(true,  g_pfnHvVCpuSetMsrAccess,       hv_vcpu_set_msr_access)
#undef NEM_DARWIN_IMPORT
};


/*
 * Let the preprocessor alias the APIs to import variables for better autocompletion.
 */
#ifndef IN_SLICKEDIT
# define hv_capability                  g_pfnHvCapability
# define hv_vm_create                   g_pfnHvVmCreate
# define hv_vm_destroy                  g_pfnHvVmDestroy
# define hv_vm_space_create             g_pfnHvVmSpaceCreate
# define hv_vm_space_destroy            g_pfnHvVmSpaceDestroy
# define hv_vm_map                      g_pfnHvVmMap
# define hv_vm_unmap                    g_pfnHvVmUnmap
# define hv_vm_protect                  g_pfnHvVmProtect
# define hv_vm_map_space                g_pfnHvVmMapSpace
# define hv_vm_unmap_space              g_pfnHvVmUnmapSpace
# define hv_vm_protect_space            g_pfnHvVmProtectSpace
# define hv_vm_sync_tsc                 g_pfnHvVmSyncTsc

# define hv_vcpu_create                 g_pfnHvVCpuCreate
# define hv_vcpu_destroy                g_pfnHvVCpuDestroy
# define hv_vcpu_set_space              g_pfnHvVCpuSetSpace
# define hv_vcpu_read_register          g_pfnHvVCpuReadRegister
# define hv_vcpu_write_register         g_pfnHvVCpuWriteRegister
# define hv_vcpu_read_fpstate           g_pfnHvVCpuReadFpState
# define hv_vcpu_write_fpstate          g_pfnHvVCpuWriteFpState
# define hv_vcpu_enable_native_msr      g_pfnHvVCpuEnableNativeMsr
# define hv_vcpu_read_msr               g_pfnHvVCpuReadMsr
# define hv_vcpu_write_msr              g_pfnHvVCpuWriteMsr
# define hv_vcpu_flush                  g_pfnHvVCpuFlush
# define hv_vcpu_invalidate_tlb         g_pfnHvVCpuInvalidateTlb
# define hv_vcpu_run                    g_pfnHvVCpuRun
# define hv_vcpu_run_until              g_pfnHvVCpuRunUntil
# define hv_vcpu_interrupt              g_pfnHvVCpuInterrupt
# define hv_vcpu_get_exec_time          g_pfnHvVCpuGetExecTime

# define hv_vmx_read_capability         g_pfnHvVmxReadCapability
# define hv_vmx_vcpu_read_vmcs          g_pfnHvVmxVCpuReadVmcs
# define hv_vmx_vcpu_write_vmcs         g_pfnHvVmxVCpuWriteVmcs
# define hv_vmx_vcpu_read_shadow_vmcs   g_pfnHvVmxVCpuReadShadowVmcs
# define hv_vmx_vcpu_write_shadow_vmcs  g_pfnHvVmxVCpuWriteShadowVmcs
# define hv_vmx_vcpu_set_shadow_access  g_pfnHvVmxVCpuSetShadowAccess
# define hv_vmx_vcpu_set_apic_address   g_pfnHvVmxVCpuSetApicAddress

# define hv_vmx_get_msr_info            g_pfnHvVmxGetMsrInfo
# define hv_vmx_vcpu_get_cap_write_vmcs g_pfnHvVmxVCpuGetCapWriteVmcs
# define hv_vcpu_enable_managed_msr     g_pfnHvVCpuEnableManagedMsr
# define hv_vcpu_set_msr_access         g_pfnHvVCpuSetMsrAccess
#endif

static const struct
{
    uint32_t    u32VmcsFieldId;  /**< The VMCS field identifier. */
    const char  *pszVmcsField;   /**< The VMCS field name. */
    bool        f64Bit;
} g_aVmcsFieldsCap[] =
{
#define NEM_DARWIN_VMCS64_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true  }
#define NEM_DARWIN_VMCS32_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }

    NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PIN_EXEC),
    NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC),
    NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
    NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXIT),
    NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_ENTRY),
    NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC2),
    NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_GAP),
    NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_WINDOW),
    NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
    NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_GUEST_DEBUGCTL_FULL)
#undef NEM_DARWIN_VMCS64_FIELD_CAP
#undef NEM_DARWIN_VMCS32_FIELD_CAP
};


/*********************************************************************************************************************************
*   Internal Functions                                                                                                           *
*********************************************************************************************************************************/
DECLINLINE(void) vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);


/**
 * Converts a HV return code to a VBox status code.
 *
 * @returns VBox status code.
 * @param   hrc                 The HV return code to convert.
 */
DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
{
    if (hrc == HV_SUCCESS)
        return VINF_SUCCESS;

    switch (hrc)
    {
        case HV_ERROR:        return VERR_INVALID_STATE;
        case HV_BUSY:         return VERR_RESOURCE_BUSY;
        case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
        case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
        case HV_NO_DEVICE:    return VERR_NOT_FOUND;
        case HV_UNSUPPORTED:  return VERR_NOT_SUPPORTED;
    }

    return VERR_IPE_UNEXPECTED_STATUS;
}


/**
 * Unmaps the given guest physical address range (page aligned).
 *
 * @returns VBox status code.
 * @param   pVM                 The cross context VM structure.
 * @param   GCPhys              The guest physical address to start unmapping at.
 * @param   cb                  The size of the range to unmap in bytes.
 * @param   pu2State            Where to store the new state of the unmappd page, optional.
 */
DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint8_t *pu2State)
{
    if (*pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED)
    {
        Log5(("nemR3DarwinUnmap: %RGp == unmapped\n", GCPhys));
        *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
        return VINF_SUCCESS;
    }

    LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
    hv_return_t hrc;
    if (pVM->nem.s.fCreatedAsid)
        hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, cb);
    else
        hrc = hv_vm_unmap(GCPhys, cb);
    if (RT_LIKELY(hrc == HV_SUCCESS))
    {
        STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
        if (pu2State)
            *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
        Log5(("nemR3DarwinUnmap: %RGp => unmapped\n", GCPhys));
        return VINF_SUCCESS;
    }

    STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
    LogRel(("nemR3DarwinUnmap(%RGp): failed! hrc=%#x\n",
            GCPhys, hrc));
    return VERR_NEM_IPE_6;
}


/**
 * Resolves a NEM page state from the given protection flags.
 *
 * @returns NEM page state.
 * @param   fPageProt           The page protection flags.
 */
DECLINLINE(uint8_t) nemR3DarwinPageStateFromProt(uint32_t fPageProt)
{
    switch (fPageProt)
    {
        case NEM_PAGE_PROT_NONE:
            return NEM_DARWIN_PAGE_STATE_UNMAPPED;
        case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE:
            return NEM_DARWIN_PAGE_STATE_RX;
        case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE:
            return NEM_DARWIN_PAGE_STATE_RW;
        case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE:
            return NEM_DARWIN_PAGE_STATE_RWX;
        default:
            break;
    }

    AssertLogRelMsgFailed(("Invalid combination of page protection flags %#x, can't map to page state!\n", fPageProt));
    return NEM_DARWIN_PAGE_STATE_UNMAPPED;
}


/**
 * Maps a given guest physical address range backed by the given memory with the given
 * protection flags.
 *
 * @returns VBox status code.
 * @param   pVM                 The cross context VM structure.
 * @param   GCPhys              The guest physical address to start mapping.
 * @param   pvRam               The R3 pointer of the memory to back the range with.
 * @param   cb                  The size of the range, page aligned.
 * @param   fPageProt           The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
 * @param   pu2State            Where to store the state for the new page, optional.
 */
DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, const void *pvRam, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
{
    LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));

    Assert(fPageProt != NEM_PAGE_PROT_NONE);

    hv_memory_flags_t fHvMemProt = 0;
    if (fPageProt & NEM_PAGE_PROT_READ)
        fHvMemProt |= HV_MEMORY_READ;
    if (fPageProt & NEM_PAGE_PROT_WRITE)
        fHvMemProt |= HV_MEMORY_WRITE;
    if (fPageProt & NEM_PAGE_PROT_EXECUTE)
        fHvMemProt |= HV_MEMORY_EXEC;

    hv_return_t hrc;
    if (pVM->nem.s.fCreatedAsid)
        hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
    else
        hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
    if (hrc == HV_SUCCESS)
    {
        if (pu2State)
            *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
        return VINF_SUCCESS;
    }

    return nemR3DarwinHvSts2Rc(hrc);
}


/**
 * Changes the protection flags for the given guest physical address range.
 *
 * @returns VBox status code.
 * @param   pVM                 The cross context VM structure.
 * @param   GCPhys              The guest physical address to start mapping.
 * @param   cb                  The size of the range, page aligned.
 * @param   fPageProt           The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
 * @param   pu2State            Where to store the state for the new page, optional.
 */
DECLINLINE(int) nemR3DarwinProtect(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
{
    hv_memory_flags_t fHvMemProt = 0;
    if (fPageProt & NEM_PAGE_PROT_READ)
        fHvMemProt |= HV_MEMORY_READ;
    if (fPageProt & NEM_PAGE_PROT_WRITE)
        fHvMemProt |= HV_MEMORY_WRITE;
    if (fPageProt & NEM_PAGE_PROT_EXECUTE)
        fHvMemProt |= HV_MEMORY_EXEC;

    hv_return_t hrc;
    if (pVM->nem.s.fCreatedAsid)
        hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
    else
        hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
    if (hrc == HV_SUCCESS)
    {
        if (pu2State)
            *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
        return VINF_SUCCESS;
    }

    return nemR3DarwinHvSts2Rc(hrc);
}


DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
{
    PGMPAGEMAPLOCK Lock;
    int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
    if (RT_SUCCESS(rc))
        PGMPhysReleasePageMappingLock(pVM, &Lock);
    return rc;
}


DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
{
    PGMPAGEMAPLOCK Lock;
    int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
    if (RT_SUCCESS(rc))
        PGMPhysReleasePageMappingLock(pVM, &Lock);
    return rc;
}


#ifdef LOG_ENABLED
/**
 * Logs the current CPU state.
 */
static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
{
    if (LogIs3Enabled())
    {
#if 0
        char szRegs[4096];
        DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
                        "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
                        "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
                        "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
                        "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
                        "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
                        "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
                        "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
                        "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
                        "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
                        "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
                        "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
                        "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
                        "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
                        "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim}  idtr=%016VR{idtr_base}:%04VR{idtr_lim}  rflags=%08VR{rflags}\n"
                        "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
                        "tr  ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
                        "    sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
                        "        efer=%016VR{efer}\n"
                        "         pat=%016VR{pat}\n"
                        "     sf_mask=%016VR{sf_mask}\n"
                        "krnl_gs_base=%016VR{krnl_gs_base}\n"
                        "       lstar=%016VR{lstar}\n"
                        "        star=%016VR{star} cstar=%016VR{cstar}\n"
                        "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
                        );

        char szInstr[256];
        DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
                           DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
                           szInstr, sizeof(szInstr), NULL);
        Log3(("%s%s\n", szRegs, szInstr));
#else
        RT_NOREF(pVM, pVCpu);
#endif
    }
}
#endif /* LOG_ENABLED */


DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
{
    uint64_t u64Data;
    hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
    if (RT_LIKELY(hrc == HV_SUCCESS))
    {
        *pData = (uint16_t)u64Data;
        return VINF_SUCCESS;
    }

    return nemR3DarwinHvSts2Rc(hrc);
}


DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
{
    uint64_t u64Data;
    hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
    if (RT_LIKELY(hrc == HV_SUCCESS))
    {
        *pData = (uint32_t)u64Data;
        return VINF_SUCCESS;
    }

    return nemR3DarwinHvSts2Rc(hrc);
}


DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
{
    hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
    if (RT_LIKELY(hrc == HV_SUCCESS))
        return VINF_SUCCESS;

    return nemR3DarwinHvSts2Rc(hrc);
}


DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
{
    hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
    if (RT_LIKELY(hrc == HV_SUCCESS))
        return VINF_SUCCESS;

    return nemR3DarwinHvSts2Rc(hrc);
}


DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
{
    hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
    if (RT_LIKELY(hrc == HV_SUCCESS))
        return VINF_SUCCESS;

    return nemR3DarwinHvSts2Rc(hrc);
}


DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
{
    hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
    if (RT_LIKELY(hrc == HV_SUCCESS))
        return VINF_SUCCESS;

    return nemR3DarwinHvSts2Rc(hrc);
}

DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
{
    hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
    if (RT_LIKELY(hrc == HV_SUCCESS))
        return VINF_SUCCESS;

    return nemR3DarwinHvSts2Rc(hrc);
}

#if 0 /*unused*/
DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
{
    hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
    if (RT_LIKELY(hrc == HV_SUCCESS))
        return VINF_SUCCESS;

    return nemR3DarwinHvSts2Rc(hrc);
}
#endif

static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
{
#define READ_GREG(a_GReg, a_Value) \
    do \
    { \
        hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { /* likely */ } \
        else \
            return VERR_INTERNAL_ERROR; \
    } while(0)
#define READ_VMCS_FIELD(a_Field, a_Value) \
    do \
    { \
        hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { /* likely */ } \
        else \
            return VERR_INTERNAL_ERROR; \
    } while(0)
#define READ_VMCS16_FIELD(a_Field, a_Value) \
    do \
    { \
        uint64_t u64Data; \
        hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { (a_Value) = (uint16_t)u64Data; } \
        else \
            return VERR_INTERNAL_ERROR; \
    } while(0)
#define READ_VMCS32_FIELD(a_Field, a_Value) \
    do \
    { \
        uint64_t u64Data; \
        hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { (a_Value) = (uint32_t)u64Data; } \
        else \
            return VERR_INTERNAL_ERROR; \
    } while(0)
#define READ_MSR(a_Msr, a_Value) \
    do \
    { \
        hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { /* likely */ } \
        else \
            AssertFailedReturn(VERR_INTERNAL_ERROR); \
    } while(0)

    STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateImport, x);

    RT_NOREF(pVM);
    fWhat &= pVCpu->cpum.GstCtx.fExtrn;

    if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
        vmxHCImportGuestIntrState(pVCpu, &pVCpu->nem.s.VmcsInfo);

    /* GPRs */
    hv_return_t hrc;
    if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
    {
        if (fWhat & CPUMCTX_EXTRN_RAX)
            READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
        if (fWhat & CPUMCTX_EXTRN_RCX)
            READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
        if (fWhat & CPUMCTX_EXTRN_RDX)
            READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
        if (fWhat & CPUMCTX_EXTRN_RBX)
            READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
        if (fWhat & CPUMCTX_EXTRN_RSP)
            READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
        if (fWhat & CPUMCTX_EXTRN_RBP)
            READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
        if (fWhat & CPUMCTX_EXTRN_RSI)
            READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
        if (fWhat & CPUMCTX_EXTRN_RDI)
            READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
        if (fWhat & CPUMCTX_EXTRN_R8_R15)
        {
            READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
            READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
            READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
            READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
            READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
            READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
            READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
            READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
        }
    }

    /* RIP & Flags */
    if (fWhat & CPUMCTX_EXTRN_RIP)
        READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
    if (fWhat & CPUMCTX_EXTRN_RFLAGS)
    {
        uint64_t fRFlagsTmp = 0;
        READ_GREG(HV_X86_RFLAGS, fRFlagsTmp);
        pVCpu->cpum.GstCtx.rflags.u = fRFlagsTmp;
    }

    /* Segments */
#define READ_SEG(a_SReg, a_enmName) \
        do { \
            READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL,           (a_SReg).Sel); \
            READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT,         (a_SReg).u32Limit); \
            READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
            READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE,            (a_SReg).u64Base); \
            (a_SReg).ValidSel = (a_SReg).Sel; \
        } while (0)
    if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
    {
        if (fWhat & CPUMCTX_EXTRN_ES)
            READ_SEG(pVCpu->cpum.GstCtx.es, ES);
        if (fWhat & CPUMCTX_EXTRN_CS)
            READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
        if (fWhat & CPUMCTX_EXTRN_SS)
            READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
        if (fWhat & CPUMCTX_EXTRN_DS)
            READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
        if (fWhat & CPUMCTX_EXTRN_FS)
            READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
        if (fWhat & CPUMCTX_EXTRN_GS)
            READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
    }

    /* Descriptor tables and the task segment. */
    if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
    {
        if (fWhat & CPUMCTX_EXTRN_LDTR)
            READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);

        if (fWhat & CPUMCTX_EXTRN_TR)
        {
            /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY.  So,
               avoid to trigger sanity assertions around the code, always fix this. */
            READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
            switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
            {
                case X86_SEL_TYPE_SYS_386_TSS_BUSY:
                case X86_SEL_TYPE_SYS_286_TSS_BUSY:
                    break;
                case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
                    pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
                    break;
                case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
                    pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
                    break;
            }
        }
        if (fWhat & CPUMCTX_EXTRN_IDTR)
        {
            READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
            READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE,  pVCpu->cpum.GstCtx.idtr.pIdt);
        }
        if (fWhat & CPUMCTX_EXTRN_GDTR)
        {
            READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
            READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE,  pVCpu->cpum.GstCtx.gdtr.pGdt);
        }
    }

    /* Control registers. */
    bool fMaybeChangedMode = false;
    bool fUpdateCr3        = false;
    if (fWhat & CPUMCTX_EXTRN_CR_MASK)
    {
        uint64_t u64CrTmp = 0;

        if (fWhat & CPUMCTX_EXTRN_CR0)
        {
            READ_GREG(HV_X86_CR0, u64CrTmp);
            if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
            {
                CPUMSetGuestCR0(pVCpu, u64CrTmp);
                fMaybeChangedMode = true;
            }
        }
        if (fWhat & CPUMCTX_EXTRN_CR2)
            READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
        if (fWhat & CPUMCTX_EXTRN_CR3)
        {
            READ_GREG(HV_X86_CR3, u64CrTmp);
            if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
            {
                CPUMSetGuestCR3(pVCpu, u64CrTmp);
                fUpdateCr3 = true;
            }

            /*
             * If the guest is in PAE mode, sync back the PDPE's into the guest state.
             * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
             */
            if (CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx))
            {
                X86PDPE aPaePdpes[4];
                READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE0_FULL, aPaePdpes[0].u);
                READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE1_FULL, aPaePdpes[1].u);
                READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE2_FULL, aPaePdpes[2].u);
                READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE3_FULL, aPaePdpes[3].u);
                if (memcmp(&aPaePdpes[0], &pVCpu->cpum.GstCtx.aPaePdpes[0], sizeof(aPaePdpes)))
                {
                    memcpy(&pVCpu->cpum.GstCtx.aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
                    fUpdateCr3 = true;
                }
            }
        }
        if (fWhat & CPUMCTX_EXTRN_CR4)
        {
            READ_GREG(HV_X86_CR4, u64CrTmp);
            u64CrTmp &= ~VMX_V_CR4_FIXED0;

            if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
            {
                CPUMSetGuestCR4(pVCpu, u64CrTmp);
                fMaybeChangedMode = true;
            }
        }
    }

#if 0 /* Always done. */
    if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
    {
        uint64_t u64Cr8 = 0;

        READ_GREG(HV_X86_TPR, u64Cr8);
        APICSetTpr(pVCpu, u64Cr8 << 4);
    }
#endif

    if (fWhat & CPUMCTX_EXTRN_XCRx)
        READ_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);

    /* Debug registers. */
    if (fWhat & CPUMCTX_EXTRN_DR7)
    {
        uint64_t u64Dr7;
        READ_GREG(HV_X86_DR7, u64Dr7);
        if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
            CPUMSetGuestDR7(pVCpu, u64Dr7);
        pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
    }
    if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
    {
        uint64_t u64DrTmp;

        READ_GREG(HV_X86_DR0, u64DrTmp);
        if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
            CPUMSetGuestDR0(pVCpu, u64DrTmp);
        READ_GREG(HV_X86_DR1, u64DrTmp);
        if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
            CPUMSetGuestDR1(pVCpu, u64DrTmp);
        READ_GREG(HV_X86_DR2, u64DrTmp);
        if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
            CPUMSetGuestDR2(pVCpu, u64DrTmp);
        READ_GREG(HV_X86_DR3, u64DrTmp);
        if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
            CPUMSetGuestDR3(pVCpu, u64DrTmp);
    }
    if (fWhat & CPUMCTX_EXTRN_DR6)
    {
        uint64_t u64Dr6;
        READ_GREG(HV_X86_DR6, u64Dr6);
        if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
            CPUMSetGuestDR6(pVCpu, u64Dr6);
    }

    if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
    {
        hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
        if (hrc == HV_SUCCESS)
        { /* likely */ }
        else
        {
            STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
            return nemR3DarwinHvSts2Rc(hrc);
        }
    }

    /* MSRs */
    if (fWhat & CPUMCTX_EXTRN_EFER)
    {
        uint64_t u64Efer;

        READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
        if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
        {
            Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
            if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
                PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
            pVCpu->cpum.GstCtx.msrEFER = u64Efer;
            fMaybeChangedMode = true;
        }
    }

    if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
        READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
    if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
    {
        uint64_t u64Tmp;
        READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
        pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
        READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
        pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
        READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
        pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
    }
    if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
    {
        READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
        READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
        READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
        READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
    }
    if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
    {
        PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
        READ_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
    }
    if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
    {
        /* Last Branch Record. */
        if (pVM->nem.s.fLbr)
        {
            PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
            uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
            uint32_t const idToIpMsrStart   = pVM->nem.s.idLbrToIpMsrFirst;
            uint32_t const idInfoMsrStart   = pVM->nem.s.idLbrInfoMsrFirst;
            uint32_t const cLbrStack        = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
            Assert(cLbrStack <= 32);
            for (uint32_t i = 0; i < cLbrStack; i++)
            {
                READ_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);

                /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
                if (idToIpMsrStart != 0)
                    READ_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
                if (idInfoMsrStart != 0)
                    READ_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
            }

            READ_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);

            if (pVM->nem.s.idLerFromIpMsr)
                READ_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
            if (pVM->nem.s.idLerToIpMsr)
                READ_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
        }
    }

    /* Almost done, just update extrn flags and maybe change PGM mode. */
    pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
    if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
        pVCpu->cpum.GstCtx.fExtrn = 0;

#ifdef LOG_ENABLED
    nemR3DarwinLogState(pVM, pVCpu);
#endif

    /* Typical. */
    if (!fMaybeChangedMode && !fUpdateCr3)
    {
        STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
        return VINF_SUCCESS;
    }

    /*
     * Slow.
     */
    if (fMaybeChangedMode)
    {
        int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
                               false /* fForce */);
        AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
    }

    if (fUpdateCr3)
    {
        int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
        if (rc == VINF_SUCCESS)
        { /* likely */ }
        else
            AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
    }

    STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);

    return VINF_SUCCESS;
#undef READ_GREG
#undef READ_VMCS_FIELD
#undef READ_VMCS32_FIELD
#undef READ_SEG
#undef READ_MSR
}


/**
 * State to pass between vmxHCExitEptViolation
 * and nemR3DarwinHandleMemoryAccessPageCheckerCallback.
 */
typedef struct NEMHCDARWINHMACPCCSTATE
{
    /** Input: Write access. */
    bool    fWriteAccess;
    /** Output: Set if we did something. */
    bool    fDidSomething;
    /** Output: Set it we should resume. */
    bool    fCanResume;
} NEMHCDARWINHMACPCCSTATE;

/**
 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
 *      Worker for vmxHCExitEptViolation; pvUser points to a
 *      NEMHCDARWINHMACPCCSTATE structure. }
 */
static DECLCALLBACK(int)
nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
{
    RT_NOREF(pVCpu);

    NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
    pState->fDidSomething = false;
    pState->fCanResume    = false;

    uint8_t  u2State = pInfo->u2NemState;

    /*
     * Consolidate current page state with actual page protection and access type.
     * We don't really consider downgrades here, as they shouldn't happen.
     */
    switch (u2State)
    {
        case NEM_DARWIN_PAGE_STATE_UNMAPPED:
        {
            if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
            {
                Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
                return VINF_SUCCESS;
            }

            /* Don't bother remapping it if it's a write request to a non-writable page. */
            if (   pState->fWriteAccess
                && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
            {
                Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
                return VINF_SUCCESS;
            }

            int rc = VINF_SUCCESS;
            if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
            {
                void *pvPage;
                rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhys, &pvPage);
                if (RT_SUCCESS(rc))
                    rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
            }
            else if (pInfo->fNemProt & NEM_PAGE_PROT_READ)
            {
                const void *pvPage;
                rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
                if (RT_SUCCESS(rc))
                    rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
            }
            else /* Only EXECUTE doesn't work. */
                AssertReleaseFailed();

            pInfo->u2NemState = u2State;
            Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
                  GCPhys, g_apszPageStates[u2State], rc));
            pState->fDidSomething = true;
            pState->fCanResume    = true;
            return rc;
        }
        case NEM_DARWIN_PAGE_STATE_RX:
            if (   !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
                && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
            {
                pState->fCanResume = true;
                Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
                return VINF_SUCCESS;
            }
            break;

        case NEM_DARWIN_PAGE_STATE_RW:
        case NEM_DARWIN_PAGE_STATE_RWX:
            if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
            {
                pState->fCanResume = true;
                if (   pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_RW
                    || pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_RWX)
                    Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: Spurious EPT fault\n", GCPhys));
                return VINF_SUCCESS;
            }
            break;

        default:
            AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
    }

    /* Unmap and restart the instruction. */
    int rc = nemR3DarwinUnmap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE, &u2State);
    if (RT_SUCCESS(rc))
    {
        pInfo->u2NemState     = u2State;
        pState->fDidSomething = true;
        pState->fCanResume    = true;
        Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
        return VINF_SUCCESS;
    }

    LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhys=%RGp %s rc=%Rrc\n",
            GCPhys, g_apszPageStates[u2State], rc));
    return VERR_NEM_UNMAP_PAGES_FAILED;
}


DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
{
    RT_NOREF(pVM);
    return true;
}


DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
{
    RT_NOREF(pVM);
    return true;
}


DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
{
    RT_NOREF(pVM);
    return false;
}


#if 0 /* unused */
DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
{
    RT_NOREF(pVM);
    return false;
}
#endif


/*
 * Instantiate the code we share with ring-0.
 */
#define IN_NEM_DARWIN
//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
//#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
//#define HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
#define VCPU_2_VMXSTATE(a_pVCpu)            (a_pVCpu)->nem.s
#define VCPU_2_VMXSTATS(a_pVCpu)            (*(a_pVCpu)->nem.s.pVmxStats)

#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
#define VM_IS_VMX_NESTED_PAGING(a_pVM)      nemR3DarwinIsNestedPaging((a_pVM))
#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
#define VM_IS_VMX_LBR(a_pVM)                nemR3DarwinIsVmxLbr((a_pVM))

#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))

#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))

#include "../VMMAll/VMXAllTemplate.cpp.h"

#undef VMX_VMCS_WRITE_16
#undef VMX_VMCS_WRITE_32
#undef VMX_VMCS_WRITE_64
#undef VMX_VMCS_WRITE_NW

#undef VMX_VMCS_READ_16
#undef VMX_VMCS_READ_32
#undef VMX_VMCS_READ_64
#undef VMX_VMCS_READ_NW

#undef VM_IS_VMX_PREEMPT_TIMER_USED
#undef VM_IS_VMX_NESTED_PAGING
#undef VM_IS_VMX_UNRESTRICTED_GUEST
#undef VCPU_2_VMXSTATS
#undef VCPU_2_VMXSTATE


/**
 * Exports the guest GP registers to HV for execution.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure of the
 *                          calling EMT.
 */
static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
{
#define WRITE_GREG(a_GReg, a_Value) \
    do \
    { \
        hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { /* likely */ } \
        else \
            return VERR_INTERNAL_ERROR; \
    } while(0)

    uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
    if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
    {
        if (fCtxChanged & HM_CHANGED_GUEST_RAX)
            WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
        if (fCtxChanged & HM_CHANGED_GUEST_RCX)
            WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
        if (fCtxChanged & HM_CHANGED_GUEST_RDX)
            WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
        if (fCtxChanged & HM_CHANGED_GUEST_RBX)
            WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
        if (fCtxChanged & HM_CHANGED_GUEST_RSP)
            WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
        if (fCtxChanged & HM_CHANGED_GUEST_RBP)
            WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
        if (fCtxChanged & HM_CHANGED_GUEST_RSI)
            WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
        if (fCtxChanged & HM_CHANGED_GUEST_RDI)
            WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
        if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
        {
            WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
            WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
            WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
            WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
            WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
            WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
            WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
            WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
        }

        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
    }

    if (fCtxChanged & HM_CHANGED_GUEST_CR2)
    {
        WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
    }

    return VINF_SUCCESS;
#undef WRITE_GREG
}


/**
 * Exports the guest debug registers into the guest-state applying any hypervisor
 * debug related states (hardware breakpoints from the debugger, etc.).
 *
 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The VMX-transient structure.
 */
static int nemR3DarwinExportDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
    PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;

#ifdef VBOX_STRICT
    /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
    if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
    {
        /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
        Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
        Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
    }
#endif

    bool     fSteppingDB      = false;
    bool     fInterceptMovDRx = false;
    uint32_t uProcCtls        = pVmcsInfo->u32ProcCtls;
    if (pVCpu->nem.s.fSingleInstruction)
    {
        /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
        if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
        {
            uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
            Assert(fSteppingDB == false);
        }
        else
        {
            pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_TF;
            pVCpu->nem.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
            pVCpu->nem.s.fClearTrapFlag = true;
            fSteppingDB = true;
        }
    }

    uint64_t u64GuestDr7;
    if (   fSteppingDB
        || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
    {
        /*
         * Use the combined guest and host DRx values found in the hypervisor register set
         * because the hypervisor debugger has breakpoints active or someone is single stepping
         * on the host side without a monitor trap flag.
         *
         * Note! DBGF expects a clean DR6 state before executing guest code.
         */
        if (!CPUMIsHyperDebugStateActive(pVCpu))
        {
            /*
             * Make sure the hypervisor values are up to date.
             */
            CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);

            CPUMR3NemActivateHyperDebugState(pVCpu);

            Assert(CPUMIsHyperDebugStateActive(pVCpu));
            Assert(!CPUMIsGuestDebugStateActive(pVCpu));
        }

        /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
        u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
        pVCpu->nem.s.fUsingHyperDR7 = true;
        fInterceptMovDRx = true;
    }
    else
    {
        /*
         * If the guest has enabled debug registers, we need to load them prior to
         * executing guest code so they'll trigger at the right time.
         */
        HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
        if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
        {
            if (!CPUMIsGuestDebugStateActive(pVCpu))
            {
                CPUMR3NemActivateGuestDebugState(pVCpu);

                Assert(CPUMIsGuestDebugStateActive(pVCpu));
                Assert(!CPUMIsHyperDebugStateActive(pVCpu));
            }
            Assert(!fInterceptMovDRx);
        }
        else if (!CPUMIsGuestDebugStateActive(pVCpu))
        {
            /*
             * If no debugging enabled, we'll lazy load DR0-3.  Unlike on AMD-V, we
             * must intercept #DB in order to maintain a correct DR6 guest value, and
             * because we need to intercept it to prevent nested #DBs from hanging the
             * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
             */
            fInterceptMovDRx = true;
        }

        /* Update DR7 with the actual guest value. */
        u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
        pVCpu->nem.s.fUsingHyperDR7 = false;
    }

    if (fInterceptMovDRx)
        uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
    else
        uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;

    /*
     * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
     * monitor-trap flag and update our cache.
     */
    if (uProcCtls != pVmcsInfo->u32ProcCtls)
    {
        int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
        AssertRC(rc);
        pVmcsInfo->u32ProcCtls = uProcCtls;
    }

    /*
     * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
     * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
     *
     * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
     */
    if (fSteppingDB)
    {
        Assert(pVCpu->nem.s.fSingleInstruction);
        Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);

        uint32_t fIntrState = 0;
        int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
        AssertRC(rc);

        if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
        {
            fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
            rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
            AssertRC(rc);
        }
    }

    /*
     * Store status of the shared guest/host debug state at the time of VM-entry.
     */
    pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
    pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);

    return VINF_SUCCESS;
}


/**
 * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
 *
 * @returns Bitmask of HM changed flags.
 * @param   fCpumExtrn      The CPUM extern bitmask.
 */
static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
{
    uint64_t fHmChanged = 0;

    /* Invert to gt a mask of things which are kept in CPUM. */
    uint64_t fCpumIntern = ~fCpumExtrn;

    if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
    {
        if (fCpumIntern & CPUMCTX_EXTRN_RAX)
            fHmChanged |= HM_CHANGED_GUEST_RAX;
        if (fCpumIntern & CPUMCTX_EXTRN_RCX)
            fHmChanged |= HM_CHANGED_GUEST_RCX;
        if (fCpumIntern & CPUMCTX_EXTRN_RDX)
            fHmChanged |= HM_CHANGED_GUEST_RDX;
        if (fCpumIntern & CPUMCTX_EXTRN_RBX)
            fHmChanged |= HM_CHANGED_GUEST_RBX;
        if (fCpumIntern & CPUMCTX_EXTRN_RSP)
            fHmChanged |= HM_CHANGED_GUEST_RSP;
        if (fCpumIntern & CPUMCTX_EXTRN_RBP)
            fHmChanged |= HM_CHANGED_GUEST_RBP;
        if (fCpumIntern & CPUMCTX_EXTRN_RSI)
            fHmChanged |= HM_CHANGED_GUEST_RSI;
        if (fCpumIntern & CPUMCTX_EXTRN_RDI)
            fHmChanged |= HM_CHANGED_GUEST_RDI;
        if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
            fHmChanged |= HM_CHANGED_GUEST_R8_R15;
    }

    /* RIP & Flags */
    if (fCpumIntern & CPUMCTX_EXTRN_RIP)
        fHmChanged |= HM_CHANGED_GUEST_RIP;
    if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
        fHmChanged |= HM_CHANGED_GUEST_RFLAGS;

    /* Segments */
    if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
    {
        if (fCpumIntern & CPUMCTX_EXTRN_ES)
            fHmChanged |= HM_CHANGED_GUEST_ES;
        if (fCpumIntern & CPUMCTX_EXTRN_CS)
            fHmChanged |= HM_CHANGED_GUEST_CS;
        if (fCpumIntern & CPUMCTX_EXTRN_SS)
            fHmChanged |= HM_CHANGED_GUEST_SS;
        if (fCpumIntern & CPUMCTX_EXTRN_DS)
            fHmChanged |= HM_CHANGED_GUEST_DS;
        if (fCpumIntern & CPUMCTX_EXTRN_FS)
            fHmChanged |= HM_CHANGED_GUEST_FS;
        if (fCpumIntern & CPUMCTX_EXTRN_GS)
            fHmChanged |= HM_CHANGED_GUEST_GS;
    }

    /* Descriptor tables & task segment. */
    if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
    {
        if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
            fHmChanged |= HM_CHANGED_GUEST_LDTR;
        if (fCpumIntern & CPUMCTX_EXTRN_TR)
            fHmChanged |= HM_CHANGED_GUEST_TR;
        if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
            fHmChanged |= HM_CHANGED_GUEST_IDTR;
        if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
            fHmChanged |= HM_CHANGED_GUEST_GDTR;
    }

    /* Control registers. */
    if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
    {
        if (fCpumIntern & CPUMCTX_EXTRN_CR0)
            fHmChanged |= HM_CHANGED_GUEST_CR0;
        if (fCpumIntern & CPUMCTX_EXTRN_CR2)
            fHmChanged |= HM_CHANGED_GUEST_CR2;
        if (fCpumIntern & CPUMCTX_EXTRN_CR3)
            fHmChanged |= HM_CHANGED_GUEST_CR3;
        if (fCpumIntern & CPUMCTX_EXTRN_CR4)
            fHmChanged |= HM_CHANGED_GUEST_CR4;
    }
    if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
        fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;

    /* Debug registers. */
    if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
        fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
    if (fCpumIntern & CPUMCTX_EXTRN_DR6)
        fHmChanged |= HM_CHANGED_GUEST_DR6;
    if (fCpumIntern & CPUMCTX_EXTRN_DR7)
        fHmChanged |= HM_CHANGED_GUEST_DR7;

    /* Floating point state. */
    if (fCpumIntern & CPUMCTX_EXTRN_X87)
        fHmChanged |= HM_CHANGED_GUEST_X87;
    if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
        fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
    if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
        fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
    if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
        fHmChanged |= HM_CHANGED_GUEST_XCRx;

    /* MSRs */
    if (fCpumIntern & CPUMCTX_EXTRN_EFER)
        fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
    if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
        fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
    if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
        fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
    if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
        fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
    if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
        fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
    if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
        fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;

    return fHmChanged;
}


/**
 * Exports the guest state to HV for execution.
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   pVCpu           The cross context virtual CPU structure of the
 *                          calling EMT.
 * @param   pVmxTransient   The transient VMX structure.
 */
static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
{
#define WRITE_GREG(a_GReg, a_Value) \
    do \
    { \
        hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { /* likely */ } \
        else \
            return VERR_INTERNAL_ERROR; \
    } while(0)
#define WRITE_VMCS_FIELD(a_Field, a_Value) \
    do \
    { \
        hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { /* likely */ } \
        else \
            return VERR_INTERNAL_ERROR; \
    } while(0)
#define WRITE_MSR(a_Msr, a_Value) \
    do \
    { \
        hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
        if (RT_LIKELY(hrc == HV_SUCCESS)) \
        { /* likely */ } \
        else \
            AssertFailedReturn(VERR_INTERNAL_ERROR); \
    } while(0)

    RT_NOREF(pVM);

#ifdef LOG_ENABLED
    nemR3DarwinLogState(pVM, pVCpu);
#endif

    STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateExport, x);

    uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
    if (!fWhat)
        return VINF_SUCCESS;

    pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);

    int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
    AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);

    rc = nemR3DarwinExportGuestGprs(pVCpu);
    AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);

    rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
    AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);

    VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
    if (rcStrict == VINF_SUCCESS)
    { /* likely */ }
    else
    {
        Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
        return VBOXSTRICTRC_VAL(rcStrict);
    }

    rc = nemR3DarwinExportDebugState(pVCpu, pVmxTransient);
    AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);

    vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
    vmxHCExportGuestRip(pVCpu);
    //vmxHCExportGuestRsp(pVCpu);
    vmxHCExportGuestRflags(pVCpu, pVmxTransient);

    rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
    AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);

    if (fWhat & CPUMCTX_EXTRN_XCRx)
    {
        WRITE_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_XCRx);
    }

    if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
    {
        Assert(pVCpu->nem.s.fCtxChanged & HM_CHANGED_GUEST_APIC_TPR);
        vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);

        rc = APICGetTpr(pVCpu, &pVmxTransient->u8GuestTpr, NULL /*pfPending*/, NULL /*pu8PendingIntr*/);
        AssertRC(rc);

        WRITE_GREG(HV_X86_TPR, pVmxTransient->u8GuestTpr);
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
    }

    /* Debug registers. */
    if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
    {
        WRITE_GREG(HV_X86_DR0, CPUMGetHyperDR0(pVCpu));
        WRITE_GREG(HV_X86_DR1, CPUMGetHyperDR1(pVCpu));
        WRITE_GREG(HV_X86_DR2, CPUMGetHyperDR2(pVCpu));
        WRITE_GREG(HV_X86_DR3, CPUMGetHyperDR3(pVCpu));
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR0_DR3);
    }
    if (fWhat & CPUMCTX_EXTRN_DR6)
    {
        WRITE_GREG(HV_X86_DR6, CPUMGetHyperDR6(pVCpu));
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR6);
    }
    if (fWhat & CPUMCTX_EXTRN_DR7)
    {
        WRITE_GREG(HV_X86_DR7, CPUMGetHyperDR7(pVCpu));
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR7);
    }

    if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
    {
        hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
        if (hrc == HV_SUCCESS)
        { /* likely */ }
        else
            return nemR3DarwinHvSts2Rc(hrc);

        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE));
    }

    /* MSRs */
    if (fWhat & CPUMCTX_EXTRN_EFER)
    {
        WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
    }
    if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
    {
        WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_KERNEL_GS_BASE);
    }
    if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
    {
        WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
        WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
        WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
    }
    if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
    {
        WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
        WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
        WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
        WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSCALL_MSRS);
    }
    if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
    {
        PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);

        WRITE_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
    }
    if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
    {
        /* Last Branch Record. */
        if (pVM->nem.s.fLbr)
        {
            PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
            uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
            uint32_t const idToIpMsrStart   = pVM->nem.s.idLbrToIpMsrFirst;
            uint32_t const idInfoMsrStart   = pVM->nem.s.idLbrInfoMsrFirst;
            uint32_t const cLbrStack        = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
            Assert(cLbrStack <= 32);
            for (uint32_t i = 0; i < cLbrStack; i++)
            {
                WRITE_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);

                /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
                if (idToIpMsrStart != 0)
                    WRITE_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
                if (idInfoMsrStart != 0)
                    WRITE_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
            }

            WRITE_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
            if (pVM->nem.s.idLerFromIpMsr)
                WRITE_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
            if (pVM->nem.s.idLerToIpMsr)
                WRITE_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
        }

        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
    }

    hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
    hv_vcpu_flush(pVCpu->nem.s.hVCpuId);

    pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;

    /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
    ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(  HM_CHANGED_GUEST_HWVIRT
                                                   | HM_CHANGED_VMX_GUEST_AUTO_MSRS
                                                   | HM_CHANGED_VMX_GUEST_LAZY_MSRS
                                                   | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));

    STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateExport, x);
    return VINF_SUCCESS;
#undef WRITE_GREG
#undef WRITE_VMCS_FIELD
}


/**
 * Common worker for both nemR3DarwinHandleExit() and nemR3DarwinHandleExitDebug().
 *
 * @returns VBox strict status code.
 * @param   pVM             The cross context VM structure.
 * @param   pVCpu           The cross context virtual CPU structure of the
 *                          calling EMT.
 * @param   pVmxTransient   The transient VMX structure.
 */
DECLINLINE(int) nemR3DarwinHandleExitCommon(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
{
    uint32_t uExitReason;
    int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
    AssertRC(rc);
    pVmxTransient->fVmcsFieldsRead = 0;
    pVmxTransient->fIsNestedGuest  = false;
    pVmxTransient->uExitReason     = VMX_EXIT_REASON_BASIC(uExitReason);
    pVmxTransient->fVMEntryFailed  = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);

    if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
        AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
                                    pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
                                    VERR_NEM_IPE_0);

    /** @todo Only copy the state on demand (the R0 VT-x code saves some stuff unconditionally and the VMX template assumes that
     * when handling exits). */
    /*
     * Note! What is being fetched here must match the default value for the
     *       a_fDonePostExit parameter of vmxHCImportGuestState exactly!
     */
    rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
    AssertRCReturn(rc, rc);

    STAM_COUNTER_INC(&pVCpu->nem.s.pVmxStats->aStatExitReason[pVmxTransient->uExitReason & MASK_EXITREASON_STAT]);
    STAM_REL_COUNTER_INC(&pVCpu->nem.s.pVmxStats->StatExitAll);
    return VINF_SUCCESS;
}


/**
 * Handles an exit from hv_vcpu_run().
 *
 * @returns VBox strict status code.
 * @param   pVM             The cross context VM structure.
 * @param   pVCpu           The cross context virtual CPU structure of the
 *                          calling EMT.
 * @param   pVmxTransient   The transient VMX structure.
 */
static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
{
    int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
    AssertRCReturn(rc, rc);

#ifndef HMVMX_USE_FUNCTION_TABLE
    return vmxHCHandleExit(pVCpu, pVmxTransient);
#else
    return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
#endif
}


/**
 * Handles an exit from hv_vcpu_run() - debug runloop variant.
 *
 * @returns VBox strict status code.
 * @param   pVM             The cross context VM structure.
 * @param   pVCpu           The cross context virtual CPU structure of the
 *                          calling EMT.
 * @param   pVmxTransient   The transient VMX structure.
 * @param   pDbgState       The debug state structure.
 */
static VBOXSTRICTRC nemR3DarwinHandleExitDebug(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
{
    int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
    AssertRCReturn(rc, rc);

    return vmxHCRunDebugHandleExit(pVCpu, pVmxTransient, pDbgState);
}


/**
 * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
 *
 * @returns VBox status code.
 * @param   fForced             Whether the HMForced flag is set and we should
 *                              fail if we cannot initialize.
 * @param   pErrInfo            Where to always return error info.
 */
static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
{
    RTLDRMOD hMod = NIL_RTLDRMOD;
    static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";

    int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
    if (RT_SUCCESS(rc))
    {
        for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
        {
            int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
            if (RT_SUCCESS(rc2))
            {
                if (g_aImports[i].fOptional)
                    LogRel(("NEM:  info: Found optional import Hypervisor!%s.\n",
                            g_aImports[i].pszName));
            }
            else
            {
                *g_aImports[i].ppfn = NULL;

                LogRel(("NEM:  %s: Failed to import Hypervisor!%s: %Rrc\n",
                        g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
                        g_aImports[i].pszName, rc2));
                if (!g_aImports[i].fOptional)
                {
                    if (RTErrInfoIsSet(pErrInfo))
                        RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
                    else
                        rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
                    Assert(RT_FAILURE(rc));
                }
            }
        }
        if (RT_SUCCESS(rc))
        {
            Assert(!RTErrInfoIsSet(pErrInfo));
        }

        RTLdrClose(hMod);
    }
    else
    {
        RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
        rc = VERR_NEM_INIT_FAILED;
    }

    return rc;
}


/**
 * Read and initialize the global capabilities supported by this CPU.
 *
 * @returns VBox status code.
 */
static int nemR3DarwinCapsInit(void)
{
    RT_ZERO(g_HmMsrs);

    hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
    if (hrc == HV_SUCCESS)
        hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
    if (hrc == HV_SUCCESS)
        hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
    if (hrc == HV_SUCCESS)
        hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
    if (hrc == HV_SUCCESS)
    {
        hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
        if (hrc == HV_SUCCESS)
        {
            if (hrc == HV_SUCCESS)
                hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
            if (hrc == HV_SUCCESS)
                hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
            if (hrc == HV_SUCCESS)
                hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
            if (hrc == HV_SUCCESS)
                hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
            if (hrc == HV_SUCCESS)
                hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
            if (hrc == HV_SUCCESS)
                hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
            if (   hrc == HV_SUCCESS
                && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
            {
                hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
                if (hrc == HV_SUCCESS)
                    hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
                if (hrc == HV_SUCCESS)
                    hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
                if (hrc == HV_SUCCESS)
                    hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
            }
        }
        else
        {
            /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
            g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
            g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
            g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
            g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
            hrc = HV_SUCCESS;
        }
    }

    if (   hrc == HV_SUCCESS
        && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
    {
        hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);

        if (   hrc == HV_SUCCESS
            && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
        {
            hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
            if (hrc != HV_SUCCESS)
                hrc = HV_SUCCESS; /* Probably just outdated OS. */
        }

        g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
    }

    if (hrc == HV_SUCCESS)
    {
        /*
         * Check for EFER swapping support.
         */
        g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
                                //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1  & VMX_EXIT_CTLS_LOAD_EFER_MSR)
                                //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1  & VMX_EXIT_CTLS_SAVE_EFER_MSR);
    }

    /*
     * Get MSR_IA32_ARCH_CAPABILITIES and expand it into the host feature structure.
     * This is only available with 11.0+ (BigSur) as the required API is only available there,
     * we could in theory initialize this when creating the EMTs using hv_vcpu_read_msr() but
     * the required vCPU handle is created after CPUM was initialized which is too late.
     * Given that the majority of users is on 11.0 and later we don't care for now.
     */
    if (   hrc == HV_SUCCESS
        && hv_vmx_get_msr_info)
    {
        g_CpumHostFeatures.s.fArchRdclNo             = 0;
        g_CpumHostFeatures.s.fArchIbrsAll            = 0;
        g_CpumHostFeatures.s.fArchRsbOverride        = 0;
        g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = 0;
        g_CpumHostFeatures.s.fArchMdsNo              = 0;
        uint32_t const cStdRange = ASMCpuId_EAX(0);
        if (   RTX86IsValidStdRange(cStdRange)
            && cStdRange >= 7)
        {
            uint32_t const fStdFeaturesEdx = ASMCpuId_EDX(1);
            uint32_t fStdExtFeaturesEdx;
            ASMCpuIdExSlow(7, 0, 0, 0, NULL, NULL, NULL, &fStdExtFeaturesEdx);
            if (   (fStdExtFeaturesEdx & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
                && (fStdFeaturesEdx    & X86_CPUID_FEATURE_EDX_MSR))
            {
                uint64_t fArchVal;
                hrc = hv_vmx_get_msr_info(HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES, &fArchVal);
                if (hrc == HV_SUCCESS)
                {
                    g_CpumHostFeatures.s.fArchRdclNo             = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO);
                    g_CpumHostFeatures.s.fArchIbrsAll            = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL);
                    g_CpumHostFeatures.s.fArchRsbOverride        = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO);
                    g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D);
                    g_CpumHostFeatures.s.fArchMdsNo              = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_MDS_NO);
                }
            }
            else
                g_CpumHostFeatures.s.fArchCap = 0;
        }
    }

    return nemR3DarwinHvSts2Rc(hrc);
}


/**
 * Sets up the LBR MSR ranges based on the host CPU.
 *
 * @returns VBox status code.
 * @param   pVM     The cross context VM structure.
 *
 * @sa hmR0VmxSetupLbrMsrRange
 */
static int nemR3DarwinSetupLbrMsrRange(PVMCC pVM)
{
    Assert(pVM->nem.s.fLbr);
    uint32_t idLbrFromIpMsrFirst;
    uint32_t idLbrFromIpMsrLast;
    uint32_t idLbrToIpMsrFirst;
    uint32_t idLbrToIpMsrLast;
    uint32_t idLbrInfoMsrFirst;
    uint32_t idLbrInfoMsrLast;
    uint32_t idLbrTosMsr;
    uint32_t idLbrSelectMsr;
    uint32_t idLerFromIpMsr;
    uint32_t idLerToIpMsr;

    /*
     * Determine the LBR MSRs supported for this host CPU family and model.
     *
     * See Intel spec. 17.4.8 "LBR Stack".
     * See Intel "Model-Specific Registers" spec.
     */
    uint32_t const uFamilyModel = (g_CpumHostFeatures.s.uFamily << 8)
                                | g_CpumHostFeatures.s.uModel;
    switch (uFamilyModel)
    {
        case 0x0f01: case 0x0f02:
            idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
            idLbrFromIpMsrLast  = MSR_P4_LASTBRANCH_3;
            idLbrToIpMsrFirst   = 0x0;
            idLbrToIpMsrLast    = 0x0;
            idLbrInfoMsrFirst   = 0x0;
            idLbrInfoMsrLast    = 0x0;
            idLbrTosMsr         = MSR_P4_LASTBRANCH_TOS;
            idLbrSelectMsr      = 0x0;
            idLerFromIpMsr      = 0x0;
            idLerToIpMsr        = 0x0;
            break;

        case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
        case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
        case 0x066a: case 0x066c: case 0x067d: case 0x067e:
            idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
            idLbrFromIpMsrLast  = MSR_LASTBRANCH_31_FROM_IP;
            idLbrToIpMsrFirst   = MSR_LASTBRANCH_0_TO_IP;
            idLbrToIpMsrLast    = MSR_LASTBRANCH_31_TO_IP;
            idLbrInfoMsrFirst   = MSR_LASTBRANCH_0_INFO;
            idLbrInfoMsrLast    = MSR_LASTBRANCH_31_INFO;
            idLbrTosMsr         = MSR_LASTBRANCH_TOS;
            idLbrSelectMsr      = MSR_LASTBRANCH_SELECT;
            idLerFromIpMsr      = MSR_LER_FROM_IP;
            idLerToIpMsr        = MSR_LER_TO_IP;
            break;

        case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
        case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
        case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
        case 0x062e: case 0x0625: case 0x062c: case 0x062f:
            idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
            idLbrFromIpMsrLast  = MSR_LASTBRANCH_15_FROM_IP;
            idLbrToIpMsrFirst   = MSR_LASTBRANCH_0_TO_IP;
            idLbrToIpMsrLast    = MSR_LASTBRANCH_15_TO_IP;
            idLbrInfoMsrFirst   = MSR_LASTBRANCH_0_INFO;
            idLbrInfoMsrLast    = MSR_LASTBRANCH_15_INFO;
            idLbrTosMsr         = MSR_LASTBRANCH_TOS;
            idLbrSelectMsr      = MSR_LASTBRANCH_SELECT;
            idLerFromIpMsr      = MSR_LER_FROM_IP;
            idLerToIpMsr        = MSR_LER_TO_IP;
            break;

        case 0x0617: case 0x061d: case 0x060f:
            idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
            idLbrFromIpMsrLast  = MSR_CORE2_LASTBRANCH_3_FROM_IP;
            idLbrToIpMsrFirst   = MSR_CORE2_LASTBRANCH_0_TO_IP;
            idLbrToIpMsrLast    = MSR_CORE2_LASTBRANCH_3_TO_IP;
            idLbrInfoMsrFirst   = 0x0;
            idLbrInfoMsrLast    = 0x0;
            idLbrTosMsr         = MSR_CORE2_LASTBRANCH_TOS;
            idLbrSelectMsr      = 0x0;
            idLerFromIpMsr      = 0x0;
            idLerToIpMsr        = 0x0;
            break;

        /* Atom and related microarchitectures we don't care about:
        case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
        case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
        case 0x0636: */
        /* All other CPUs: */
        default:
        {
            LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
            VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
            return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
        }
    }

    /*
     * Validate.
     */
    uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
    PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
    AssertCompile(   RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
                  == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrToIpMsr));
    AssertCompile(   RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
                  == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrInfoMsr));
    if (cLbrStack > RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr))
    {
        LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
        VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
        return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
    }
    NOREF(pVCpu0);

    /*
     * Update the LBR info. to the VM struct. for use later.
     */
    pVM->nem.s.idLbrTosMsr         = idLbrTosMsr;
    pVM->nem.s.idLbrSelectMsr      = idLbrSelectMsr;

    pVM->nem.s.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
    pVM->nem.s.idLbrFromIpMsrLast  = idLbrFromIpMsrLast;

    pVM->nem.s.idLbrToIpMsrFirst   = idLbrToIpMsrFirst;
    pVM->nem.s.idLbrToIpMsrLast    = idLbrToIpMsrLast;

    pVM->nem.s.idLbrInfoMsrFirst   = idLbrInfoMsrFirst;
    pVM->nem.s.idLbrInfoMsrLast    = idLbrInfoMsrLast;

    pVM->nem.s.idLerFromIpMsr      = idLerFromIpMsr;
    pVM->nem.s.idLerToIpMsr        = idLerToIpMsr;
    return VINF_SUCCESS;
}


/**
 * Sets up pin-based VM-execution controls in the VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    uint32_t       fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0;      /* Bits set here must always be set. */
    uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1;      /* Bits cleared here must always be cleared. */

    if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
        fVal |= VMX_PIN_CTLS_VIRT_NMI;                       /* Use virtual NMIs and virtual-NMI blocking features. */

#if 0 /** @todo Use preemption timer */
    /* Enable the VMX-preemption timer. */
    if (pVM->hmr0.s.vmx.fUsePreemptTimer)
    {
        Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
        fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
    }

    /* Enable posted-interrupt processing. */
    if (pVM->hm.s.fPostedIntrs)
    {
        Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1  & VMX_PIN_CTLS_POSTED_INT);
        Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
        fVal |= VMX_PIN_CTLS_POSTED_INT;
    }
#endif

    if ((fVal & fZap) != fVal)
    {
        LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
                    g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
        pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
        return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
    }

    /* Commit it to the VMCS and update our cache. */
    int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
    AssertRC(rc);
    pVmcsInfo->u32PinCtls = fVal;

    return VINF_SUCCESS;
}


/**
 * Sets up secondary processor-based VM-execution controls in the VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    uint32_t       fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0;    /* Bits set here must be set in the VMCS. */
    uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1;    /* Bits cleared here must be cleared in the VMCS. */

    /* WBINVD causes a VM-exit. */
    if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
        fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;

    /* Enable the INVPCID instruction if we expose it to the guest and is supported
       by the hardware. Without this, guest executing INVPCID would cause a #UD. */
    if (   pVM->cpum.ro.GuestFeatures.fInvpcid
        && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
        fVal |= VMX_PROC_CTLS2_INVPCID;

#if 0 /** @todo */
    /* Enable VPID. */
    if (pVM->hmr0.s.vmx.fVpid)
        fVal |= VMX_PROC_CTLS2_VPID;

    if (pVM->hm.s.fVirtApicRegs)
    {
        /* Enable APIC-register virtualization. */
        Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
        fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;

        /* Enable virtual-interrupt delivery. */
        Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
        fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
    }

    /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
       where the TPR shadow resides. */
    /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
     *        done dynamically. */
    if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
    {
        fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
        hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
    }
#endif

    /* Enable the RDTSCP instruction if we expose it to the guest and is supported
       by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
    if (   pVM->cpum.ro.GuestFeatures.fRdTscP
        && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
        fVal |= VMX_PROC_CTLS2_RDTSCP;

    /* Enable Pause-Loop exiting. */
    if (   (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
        && pVM->nem.s.cPleGapTicks
        && pVM->nem.s.cPleWindowTicks)
    {
        fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;

        int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_GAP, pVM->nem.s.cPleGapTicks);          AssertRC(rc);
        rc     = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_WINDOW, pVM->nem.s.cPleWindowTicks);    AssertRC(rc);
    }

    if ((fVal & fZap) != fVal)
    {
        LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
                    g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
        pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
        return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
    }

    /* Commit it to the VMCS and update our cache. */
    int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
    AssertRC(rc);
    pVmcsInfo->u32ProcCtls2 = fVal;

    return VINF_SUCCESS;
}


/**
 * Enables native access for the given MSR.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   idMsr       The MSR to enable native access for.
 */
static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
{
    hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
    if (hrc == HV_SUCCESS)
        return VINF_SUCCESS;

    return nemR3DarwinHvSts2Rc(hrc);
}


/**
 * Sets the MSR to managed for the given vCPU allowing the guest to access it.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   idMsr       The MSR to enable managed access for.
 * @param   fMsrPerm    The MSR permissions flags.
 */
static int nemR3DarwinMsrSetManaged(PVMCPUCC pVCpu, uint32_t idMsr, hv_msr_flags_t fMsrPerm)
{
    Assert(hv_vcpu_enable_managed_msr);

    hv_return_t hrc = hv_vcpu_enable_managed_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
    if (hrc == HV_SUCCESS)
    {
        hrc = hv_vcpu_set_msr_access(pVCpu->nem.s.hVCpuId, idMsr, fMsrPerm);
        if (hrc == HV_SUCCESS)
            return VINF_SUCCESS;
    }

    return nemR3DarwinHvSts2Rc(hrc);
}


/**
 * Sets up the MSR permissions which don't change through the lifetime of the VM.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    RT_NOREF(pVmcsInfo);

    /*
     * The guest can access the following MSRs (read, write) without causing
     * VM-exits; they are loaded/stored automatically using fields in the VMCS.
     */
    PVMCC pVM = pVCpu->CTX_SUFF(pVM);
    int rc;
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS);  AssertRCReturn(rc, rc);
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE);        AssertRCReturn(rc, rc);
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE);        AssertRCReturn(rc, rc);

    /*
     * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
     * associated with then. We never need to intercept access (writes need to be
     * executed without causing a VM-exit, reads will #GP fault anyway).
     *
     * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
     * read/write them. We swap the guest/host MSR value using the
     * auto-load/store MSR area.
     */
    if (pVM->cpum.ro.GuestFeatures.fIbpb)
    {
        rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
        AssertRCReturn(rc, rc);
    }
#if 0 /* Doesn't work. */
    if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
    {
        rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
        AssertRCReturn(rc, rc);
    }
#endif
    if (pVM->cpum.ro.GuestFeatures.fIbrs)
    {
        rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
        AssertRCReturn(rc, rc);
    }

    /*
     * Allow full read/write access for the following MSRs (mandatory for VT-x)
     * required for 64-bit guests.
     */
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR);          AssertRCReturn(rc, rc);
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR);           AssertRCReturn(rc, rc);
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK);        AssertRCReturn(rc, rc);
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);

    /* Required for enabling the RDTSCP instruction. */
    rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX);        AssertRCReturn(rc, rc);

    /* Last Branch Record. */
    if (pVM->nem.s.fLbr)
    {
        uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
        uint32_t const idToIpMsrStart   = pVM->nem.s.idLbrToIpMsrFirst;
        uint32_t const idInfoMsrStart   = pVM->nem.s.idLbrInfoMsrFirst;
        uint32_t const cLbrStack        = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
        Assert(cLbrStack <= 32);
        for (uint32_t i = 0; i < cLbrStack; i++)
        {
            rc = nemR3DarwinMsrSetManaged(pVCpu, idFromIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
            AssertRCReturn(rc, rc);

            /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
            if (idToIpMsrStart != 0)
            {
                rc = nemR3DarwinMsrSetManaged(pVCpu, idToIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
                AssertRCReturn(rc, rc);
            }

            if (idInfoMsrStart != 0)
            {
                rc = nemR3DarwinMsrSetManaged(pVCpu, idInfoMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
                AssertRCReturn(rc, rc);
            }
        }

        rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrTosMsr, HV_MSR_READ | HV_MSR_WRITE);
        AssertRCReturn(rc, rc);

        if (pVM->nem.s.idLerFromIpMsr)
        {
            rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerFromIpMsr, HV_MSR_READ | HV_MSR_WRITE);
            AssertRCReturn(rc, rc);
        }

        if (pVM->nem.s.idLerToIpMsr)
        {
            rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerToIpMsr, HV_MSR_READ | HV_MSR_WRITE);
            AssertRCReturn(rc, rc);
        }

        if (pVM->nem.s.idLbrSelectMsr)
        {
            rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrSelectMsr, HV_MSR_READ | HV_MSR_WRITE);
            AssertRCReturn(rc, rc);
        }
    }

    return VINF_SUCCESS;
}


/**
 * Sets up processor-based VM-execution controls in the VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    uint32_t       fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0;     /* Bits set here must be set in the VMCS. */
    uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1;     /* Bits cleared here must be cleared in the VMCS. */

    fVal |= VMX_PROC_CTLS_HLT_EXIT                                    /* HLT causes a VM-exit. */
//         |  VMX_PROC_CTLS_USE_TSC_OFFSETTING                          /* Use TSC-offsetting. */
         |  VMX_PROC_CTLS_MOV_DR_EXIT                                 /* MOV DRx causes a VM-exit. */
         |  VMX_PROC_CTLS_UNCOND_IO_EXIT                              /* All IO instructions cause a VM-exit. */
         |  VMX_PROC_CTLS_RDPMC_EXIT                                  /* RDPMC causes a VM-exit. */
         |  VMX_PROC_CTLS_MONITOR_EXIT                                /* MONITOR causes a VM-exit. */
         |  VMX_PROC_CTLS_MWAIT_EXIT;                                 /* MWAIT causes a VM-exit. */

#ifdef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
    fVal |= VMX_PROC_CTLS_CR3_LOAD_EXIT
         |  VMX_PROC_CTLS_CR3_STORE_EXIT;
#endif

    /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
    if (   !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
        ||  (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
    {
        pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
        return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
    }

    /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
    if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
        fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;

    if ((fVal & fZap) != fVal)
    {
        LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
                    g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
        pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
        return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
    }

    /* Commit it to the VMCS and update our cache. */
    int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
    AssertRC(rc);
    pVmcsInfo->u32ProcCtls = fVal;

    /* Set up MSR permissions that don't change through the lifetime of the VM. */
    rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
    AssertRCReturn(rc, rc);

    /*
     * Set up secondary processor-based VM-execution controls
     * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
     */
    Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
    return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
}


/**
 * Sets up miscellaneous (everything other than Pin, Processor and secondary
 * Processor-based VM-execution) control fields in the VMCS.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    int rc = VINF_SUCCESS;
    //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
    if (RT_SUCCESS(rc))
    {
        uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
        uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);

        rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);    AssertRC(rc);
        rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);    AssertRC(rc);

        pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
        pVmcsInfo->u64Cr4Mask = u64Cr4Mask;

        if (pVCpu->CTX_SUFF(pVM)->nem.s.fLbr)
        {
            rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
            AssertRC(rc);
        }
        return VINF_SUCCESS;
    }
    else
        LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
    return rc;
}


/**
 * Sets up the initial exception bitmap in the VMCS based on static conditions.
 *
 * We shall setup those exception intercepts that don't change during the
 * lifetime of the VM here. The rest are done dynamically while loading the
 * guest state.
 *
 * @param   pVCpu       The cross context virtual CPU structure.
 * @param   pVmcsInfo   The VMCS info. object.
 */
static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
{
    /*
     * The following exceptions are always intercepted:
     *
     * #AC - To prevent the guest from hanging the CPU and for dealing with
     *       split-lock detecting host configs.
     * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
     *       recursive #DBs can cause a CPU hang.
     */
    uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
                               | RT_BIT(X86_XCPT_DB);

    /* Commit it to the VMCS. */
    int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
    AssertRC(rc);

    /* Update our cache of the exception bitmap. */
    pVmcsInfo->u32XcptBitmap = uXcptBitmap;
}


/**
 * Initialize the VMCS information field for the given vCPU.
 *
 * @returns VBox status code.
 * @param   pVCpu           The cross context virtual CPU structure of the
 *                          calling EMT.
 */
static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
{
    int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
    if (RT_SUCCESS(rc))
    {
        rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
        if (RT_SUCCESS(rc))
        {
            rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
            if (RT_SUCCESS(rc))
            {
                rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
                if (RT_SUCCESS(rc))
                {
                    rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
                    if (RT_SUCCESS(rc))
                    {
                        nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
                        return VINF_SUCCESS;
                    }
                    LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
                }
                else
                    LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
            }
            else
                LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
        }
        else
            LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
    }
    else
        LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));

    return rc;
}


/**
 * Registers statistics for the given vCPU.
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   idCpu           The CPU ID.
 * @param   pNemCpu         The NEM CPU structure.
 */
static int nemR3DarwinStatisticsRegister(PVM pVM, VMCPUID idCpu, PNEMCPU pNemCpu)
{
#define NEM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
                int rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
                AssertRC(rc); \
            } while (0)
#define NEM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
           NEM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
#define NEM_REG_COUNTER(a, b, desc) NEM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)

    PVMXSTATISTICS const pVmxStats = pNemCpu->pVmxStats;

    NEM_REG_COUNTER(&pVmxStats->StatExitCR0Read,  "/NEM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR2Read,  "/NEM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR3Read,  "/NEM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR4Read,  "/NEM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR8Read,  "/NEM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR0Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR2Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR3Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR4Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
    NEM_REG_COUNTER(&pVmxStats->StatExitCR8Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");

    NEM_REG_COUNTER(&pVmxStats->StatExitAll,      "/NEM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");

    NEM_REG_COUNTER(&pVmxStats->StatImportGuestStateFallback, "/NEM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
    NEM_REG_COUNTER(&pVmxStats->StatReadToTransientFallback,  "/NEM/CPU%u/ReadToTransientFallback",  "Times vmxHCReadToTransient took the fallback code path.");

#ifdef VBOX_WITH_STATISTICS
    NEM_REG_PROFILE(&pNemCpu->StatProfGstStateImport, "/NEM/CPU%u/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
    NEM_REG_PROFILE(&pNemCpu->StatProfGstStateExport, "/NEM/CPU%u/ExportGuestState", "Profiling of exporting guest state from hardware after VM-exit.");

    for (int j = 0; j < MAX_EXITREASON_STAT; j++)
    {
        const char *pszExitName = HMGetVmxExitName(j);
        if (pszExitName)
        {
            int rc = STAMR3RegisterF(pVM, &pVmxStats->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
                                     STAMUNIT_OCCURENCES, pszExitName, "/NEM/CPU%u/Exit/Reason/%02x", idCpu, j);
            AssertRCReturn(rc, rc);
        }
    }
#endif

    return VINF_SUCCESS;

#undef NEM_REG_COUNTER
#undef NEM_REG_PROFILE
#undef NEM_REG_STAT
}


/**
 * Displays the HM Last-Branch-Record info. for the guest.
 *
 * @param   pVM         The cross context VM structure.
 * @param   pHlp        The info helper functions.
 * @param   pszArgs     Arguments, ignored.
 */
static DECLCALLBACK(void) nemR3DarwinInfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
    NOREF(pszArgs);
    PVMCPU pVCpu = VMMGetCpu(pVM);
    if (!pVCpu)
        pVCpu = pVM->apCpusR3[0];

    Assert(pVM->nem.s.fLbr);

    PCVMXVMCSINFOSHARED pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
    uint32_t const      cLbrStack       = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;

    /** @todo r=ramshankar: The index technically varies depending on the CPU, but
     *        0xf should cover everything we support thus far. Fix if necessary
     *        later. */
    uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
    if (idxTopOfStack > cLbrStack)
    {
        pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
                        idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
        return;
    }

    /*
     * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
     */
    pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
    if (pVM->nem.s.idLerFromIpMsr)
        pHlp->pfnPrintf(pHlp, "LER: From IP=%#016RX64 - To IP=%#016RX64\n",
                        pVmcsInfoShared->u64LerFromIpMsr, pVmcsInfoShared->u64LerToIpMsr);
    uint32_t idxCurrent = idxTopOfStack;
    Assert(idxTopOfStack < cLbrStack);
    Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
    Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
    for (;;)
    {
        if (pVM->nem.s.idLbrToIpMsrFirst)
            pHlp->pfnPrintf(pHlp, "  Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64 (Info: %#016RX64)\n", idxCurrent,
                            pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent],
                            pVmcsInfoShared->au64LbrToIpMsr[idxCurrent],
                            pVmcsInfoShared->au64LbrInfoMsr[idxCurrent]);
        else
            pHlp->pfnPrintf(pHlp, "  Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);

        idxCurrent = (idxCurrent - 1) % cLbrStack;
        if (idxCurrent == idxTopOfStack)
            break;
    }
}


/**
 * Try initialize the native API.
 *
 * This may only do part of the job, more can be done in
 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   fFallback       Whether we're in fallback mode or use-NEM mode. In
 *                          the latter we'll fail if we cannot initialize.
 * @param   fForced         Whether the HMForced flag is set and we should
 *                          fail if we cannot initialize.
 */
int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
{
    AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);

    /*
     * Some state init.
     */
    PCFGMNODE pCfgNem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "NEM/");

    /** @cfgm{/NEM/VmxPleGap, uint32_t, 0}
     * The pause-filter exiting gap in TSC ticks. When the number of ticks between
     * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
     * latest PAUSE instruction to be start of a new PAUSE loop.
     */
    int rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleGap", &pVM->nem.s.cPleGapTicks, 0);
    AssertRCReturn(rc, rc);

    /** @cfgm{/NEM/VmxPleWindow, uint32_t, 0}
     * The pause-filter exiting window in TSC ticks. When the number of ticks
     * between the current PAUSE instruction and first PAUSE of a loop exceeds
     * VmxPleWindow, a VM-exit is triggered.
     *
     * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
     */
    rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleWindow", &pVM->nem.s.cPleWindowTicks, 0);
    AssertRCReturn(rc, rc);

    /** @cfgm{/NEM/VmxLbr, bool, false}
     * Whether to enable LBR for the guest. This is disabled by default as it's only
     * useful while debugging and enabling it causes a noticeable performance hit. */
    rc = CFGMR3QueryBoolDef(pCfgNem, "VmxLbr", &pVM->nem.s.fLbr, false);
    AssertRCReturn(rc, rc);

    /*
     * Error state.
     * The error message will be non-empty on failure and 'rc' will be set too.
     */
    RTERRINFOSTATIC ErrInfo;
    PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
    rc = nemR3DarwinLoadHv(fForced, pErrInfo);
    if (RT_SUCCESS(rc))
    {
        if (   !hv_vcpu_enable_managed_msr
            && pVM->nem.s.fLbr)
        {
            LogRel(("NEM: LBR recording is disabled because the Hypervisor API misses hv_vcpu_enable_managed_msr/hv_vcpu_set_msr_access functionality\n"));
            pVM->nem.s.fLbr = false;
        }

        /*
         * While hv_vcpu_run_until() is available starting with Catalina (10.15) it sometimes returns
         * an error there for no obvious reasons and there is no indication as to why this happens
         * and Apple doesn't document anything. Starting with BigSur (11.0) it appears to work correctly
         * so pretend that hv_vcpu_run_until() doesn't exist on Catalina which can be determined by checking
         * whether another method is available which was introduced with BigSur.
         */
        if (!hv_vmx_get_msr_info) /* Not available means this runs on < 11.0 */
            hv_vcpu_run_until = NULL;

        if (hv_vcpu_run_until)
        {
            struct mach_timebase_info TimeInfo;

            if (mach_timebase_info(&TimeInfo) == KERN_SUCCESS)
            {
                pVM->nem.s.cMachTimePerNs = RT_MIN(1, (double)TimeInfo.denom / (double)TimeInfo.numer);
                LogRel(("NEM: cMachTimePerNs=%llu (TimeInfo.numer=%u TimeInfo.denom=%u)\n",
                        pVM->nem.s.cMachTimePerNs, TimeInfo.numer, TimeInfo.denom));
            }
            else
                hv_vcpu_run_until = NULL; /* To avoid running forever (TM asserts when the guest runs for longer than 4 seconds). */
        }

        hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
        if (hrc == HV_SUCCESS)
        {
            if (hv_vm_space_create)
            {
                hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
                if (hrc == HV_SUCCESS)
                {
                    LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
                    pVM->nem.s.fCreatedAsid = true;
                }
                else
                    LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
            }
            pVM->nem.s.fCreatedVm = true;

            /* Register release statistics */
            for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
            {
                PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
                PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
                if (RT_LIKELY(pVmxStats))
                {
                        pNemCpu->pVmxStats = pVmxStats;
                        rc = nemR3DarwinStatisticsRegister(pVM, idCpu, pNemCpu);
                        AssertRC(rc);
                }
                else
                {
                    rc = VERR_NO_MEMORY;
                    break;
                }
            }

            if (RT_SUCCESS(rc))
            {
                VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
                Log(("NEM: Marked active!\n"));
                PGMR3EnableNemMode(pVM);
            }
        }
        else
            rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
                               "hv_vm_create() failed: %#x", hrc);
    }

    /*
     * We only fail if in forced mode, otherwise just log the complaint and return.
     */
    Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
    if (   (fForced || !fFallback)
        && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
        return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);

    if (pVM->nem.s.fLbr)
    {
        rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the NEM LBR info.", nemR3DarwinInfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
        AssertRCReturn(rc, rc);
    }

    if (RTErrInfoIsSet(pErrInfo))
        LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
    return VINF_SUCCESS;
}


/**
 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
 *
 * @returns VBox status code
 * @param   pVM                 The VM handle.
 * @param   pVCpu               The vCPU handle.
 * @param   idCpu               ID of the CPU to create.
 */
static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
{
    hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
    if (hrc != HV_SUCCESS)
        return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
                          "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));

    if (idCpu == 0)
    {
        /* First call initializs the MSR structure holding the capabilities of the host CPU. */
        int rc = nemR3DarwinCapsInit();
        AssertRCReturn(rc, rc);

        if (hv_vmx_vcpu_get_cap_write_vmcs)
        {
            /* Log the VMCS field write capabilities. */
            for (uint32_t i = 0; i < RT_ELEMENTS(g_aVmcsFieldsCap); i++)
            {
                uint64_t u64Allowed0 = 0;
                uint64_t u64Allowed1 = 0;

                hrc = hv_vmx_vcpu_get_cap_write_vmcs(pVCpu->nem.s.hVCpuId, g_aVmcsFieldsCap[i].u32VmcsFieldId,
                                                     &u64Allowed0, &u64Allowed1);
                if (hrc == HV_SUCCESS)
                {
                    if (g_aVmcsFieldsCap[i].f64Bit)
                        LogRel(("NEM:    %s = (allowed_0=%#016RX64 allowed_1=%#016RX64)\n",
                                g_aVmcsFieldsCap[i].pszVmcsField, u64Allowed0, u64Allowed1));
                    else
                        LogRel(("NEM:    %s = (allowed_0=%#08RX32 allowed_1=%#08RX32)\n",
                                g_aVmcsFieldsCap[i].pszVmcsField, (uint32_t)u64Allowed0, (uint32_t)u64Allowed1));

                    uint32_t cBits = g_aVmcsFieldsCap[i].f64Bit ? 64 : 32;
                    for (uint32_t iBit = 0; iBit < cBits; iBit++)
                    {
                        bool fAllowed0 = RT_BOOL(u64Allowed0 & RT_BIT_64(iBit));
                        bool fAllowed1 = RT_BOOL(u64Allowed1 & RT_BIT_64(iBit));

                        if (!fAllowed0 && !fAllowed1)
                            LogRel(("NEM:        Bit %02u = Must NOT be set\n", iBit));
                        else if (!fAllowed0 && fAllowed1)
                            LogRel(("NEM:        Bit %02u = Can be set or not be set\n", iBit));
                        else if (fAllowed0 && !fAllowed1)
                            LogRel(("NEM:        Bit %02u = UNDEFINED (AppleHV error)!\n", iBit));
                        else if (fAllowed0 && fAllowed1)
                            LogRel(("NEM:        Bit %02u = MUST be set\n", iBit));
                        else
                            AssertFailed();
                    }
                }
                else
                    LogRel(("NEM:    %s = failed to query (hrc=%d)\n", g_aVmcsFieldsCap[i].pszVmcsField, hrc));
            }
        }
    }

    int rc = nemR3DarwinInitVmcs(pVCpu);
    AssertRCReturn(rc, rc);

    if (pVM->nem.s.fCreatedAsid)
    {
        hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
        AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
    }

    ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);

    return VINF_SUCCESS;
}


/**
 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
 *
 * @returns VBox status code
 * @param   pVCpu               The vCPU handle.
 */
static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
{
    hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
    Assert(hrc == HV_SUCCESS);

    hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
    Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
    return VINF_SUCCESS;
}


/**
 * Worker to setup the TPR shadowing feature if available on the CPU and the VM has an APIC enabled.
 *
 * @returns VBox status code
 * @param   pVM                 The VM handle.
 * @param   pVCpu               The vCPU handle.
 */
static DECLCALLBACK(int) nemR3DarwinNativeInitTprShadowing(PVM pVM, PVMCPU pVCpu)
{
    PVMXVMCSINFO pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
    uint32_t fVal = pVmcsInfo->u32ProcCtls;

    /* Use TPR shadowing if supported by the CPU. */
    if (   PDMHasApic(pVM)
        && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
    {
        fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW;                /* CR8 reads from the Virtual-APIC page. */
                                                             /* CR8 writes cause a VM-exit based on TPR threshold. */
        Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
        Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
    }
    else
    {
        fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT             /* CR8 reads cause a VM-exit. */
             |  VMX_PROC_CTLS_CR8_LOAD_EXIT;             /* CR8 writes cause a VM-exit. */
    }

    /* Commit it to the VMCS and update our cache. */
    int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
    AssertRC(rc);
    pVmcsInfo->u32ProcCtls = fVal;

    return VINF_SUCCESS;
}


/**
 * This is called after CPUMR3Init is done.
 *
 * @returns VBox status code.
 * @param   pVM                 The VM handle..
 */
int nemR3NativeInitAfterCPUM(PVM pVM)
{
    /*
     * Validate sanity.
     */
    AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
    AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);

    if (pVM->nem.s.fLbr)
    {
        int rc = nemR3DarwinSetupLbrMsrRange(pVM);
        AssertRCReturn(rc, rc);
    }

    /*
     * Setup the EMTs.
     */
    for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
    {
        PVMCPU pVCpu = pVM->apCpusR3[idCpu];

        int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
        if (RT_FAILURE(rc))
        {
            /* Rollback. */
            while (idCpu--)
                VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);

            return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
        }
    }

    pVM->nem.s.fCreatedEmts = true;
    return VINF_SUCCESS;
}


int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
{
    if (enmWhat == VMINITCOMPLETED_RING3)
    {
        /* Now that PDM is initialized the APIC state is known in order to enable the TPR shadowing feature on all EMTs. */
        for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
        {
            PVMCPU pVCpu = pVM->apCpusR3[idCpu];

            int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitTprShadowing, 2, pVM, pVCpu);
            if (RT_FAILURE(rc))
                return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Setting up TPR shadowing failed: %Rrc", rc);
        }
    }
    return VINF_SUCCESS;
}


int nemR3NativeTerm(PVM pVM)
{
    /*
     * Delete the VM.
     */

    for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
    {
        PVMCPU pVCpu = pVM->apCpusR3[idCpu];

        /*
         * Need to do this or hv_vm_space_destroy() fails later on (on 10.15 at least). Could've been documented in
         * API reference so I wouldn't have to decompile the kext to find this out but we are talking
         * about Apple here unfortunately, API documentation is not their strong suit...
         * Would have been of course even better to just automatically drop the address space reference when the vCPU
         * gets destroyed.
         */
        hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
        Assert(hrc == HV_SUCCESS);

        /*
         * Apple's documentation states that the vCPU should be destroyed
         * on the thread running the vCPU but as all the other EMTs are gone
         * at this point, destroying the VM would hang.
         *
         * We seem to be at luck here though as destroying apparently works
         * from EMT(0) as well.
         */
        hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
        Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);

        if (pVCpu->nem.s.pVmxStats)
        {
            RTMemFree(pVCpu->nem.s.pVmxStats);
            pVCpu->nem.s.pVmxStats = NULL;
        }
    }

    pVM->nem.s.fCreatedEmts = false;

    if (pVM->nem.s.fCreatedAsid)
    {
        hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
        Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
        pVM->nem.s.fCreatedAsid = false;
    }

    if (pVM->nem.s.fCreatedVm)
    {
        hv_return_t hrc = hv_vm_destroy();
        if (hrc != HV_SUCCESS)
            LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));

        pVM->nem.s.fCreatedVm = false;
    }
    return VINF_SUCCESS;
}


/**
 * VM reset notification.
 *
 * @param   pVM         The cross context VM structure.
 */
void nemR3NativeReset(PVM pVM)
{
    RT_NOREF(pVM);
}


/**
 * Reset CPU due to INIT IPI or hot (un)plugging.
 *
 * @param   pVCpu       The cross context virtual CPU structure of the CPU being
 *                      reset.
 * @param   fInitIpi    Whether this is the INIT IPI or hot (un)plugging case.
 */
void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
{
    RT_NOREF(fInitIpi);
    ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
}


/**
 * Dumps the VMCS in response to a faild hv_vcpu_run{_until}() call.
 *
 * @returns nothing.
 * @param   pVCpu           The cross context virtual CPU structure.
 */
static void nemR3DarwinVmcsDump(PVMCPU pVCpu)
{
    static const struct
    {
        uint32_t    u32VmcsFieldId;  /**< The VMCS field identifier. */
        const char  *pszVmcsField;   /**< The VMCS field name. */
        bool        f64Bit;
    } s_aVmcsFieldsDump[] =
    {
    #define NEM_DARWIN_VMCSNW_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true  }
    #define NEM_DARWIN_VMCS64_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true  }
    #define NEM_DARWIN_VMCS32_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
    #define NEM_DARWIN_VMCS16_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_VPID),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_EPTP_INDEX),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_ES_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_CS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_SS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_DS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_FS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_GS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_LDTR_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_TR_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_INTR_STATUS),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_PML_INDEX),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_ES_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_CS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_SS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_DS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_FS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_GS_SEL),
        NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_TR_SEL),

        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_FULL),
        NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_HIGH),

        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PIN_EXEC),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_CR3_TARGET_COUNT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_TPR_THRESHOLD),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC2),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_GAP),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_WINDOW),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_VM_INSTR_ERROR),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_REASON),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_INFO),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_LENGTH),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_INFO),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GDTR_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_IDTR_LIMIT),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_INT_STATE),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ACTIVITY_STATE),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SMBASE),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SYSENTER_CS),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_PREEMPT_TIMER_VALUE),
        NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_HOST_SYSENTER_CS),

        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_MASK),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_MASK),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_READ_SHADOW),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_READ_SHADOW),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL0),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL1),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL2),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL3),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_EXIT_QUALIFICATION),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RCX),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RSI),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RDI),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RIP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_GUEST_LINEAR_ADDR),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR0),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR3),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR4),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_ES_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CS_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SS_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DS_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_FS_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GS_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_LDTR_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_TR_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GDTR_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_IDTR_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DR7),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RSP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RIP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RFLAGS),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_ESP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_EIP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_S_CET),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SSP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_INTR_SSP_TABLE_ADDR),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR0),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR3),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR4),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_FS_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GS_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_TR_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GDTR_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_IDTR_BASE),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_ESP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_EIP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RSP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RIP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_S_CET),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SSP),
        NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_INTR_SSP_TABLE_ADDR)
    #undef NEM_DARWIN_VMCSNW_FIELD_DUMP
    #undef NEM_DARWIN_VMCS64_FIELD_DUMP
    #undef NEM_DARWIN_VMCS32_FIELD_DUMP
    #undef NEM_DARWIN_VMCS16_FIELD_DUMP
    };

    for (uint32_t i = 0; i < RT_ELEMENTS(s_aVmcsFieldsDump); i++)
    {
        if (s_aVmcsFieldsDump[i].f64Bit)
        {
            uint64_t u64Val;
            int rc = nemR3DarwinReadVmcs64(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u64Val);
            if (RT_SUCCESS(rc))
                LogRel(("NEM/VMCS: %040s: 0x%016RX64\n", s_aVmcsFieldsDump[i].pszVmcsField, u64Val));
            else
                LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
        }
        else
        {
            uint32_t u32Val;
            int rc = nemR3DarwinReadVmcs32(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u32Val);
            if (RT_SUCCESS(rc))
                LogRel(("NEM/VMCS: %040s: 0x%08RX32\n", s_aVmcsFieldsDump[i].pszVmcsField, u32Val));
            else
                LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
        }
    }
}


/**
 * Runs the guest once until an exit occurs.
 *
 * @returns HV status code.
 * @param   pVM             The cross context VM structure.
 * @param   pVCpu           The cross context virtual CPU structure.
 * @param   pVmxTransient   The transient VMX execution structure.
 */
static hv_return_t nemR3DarwinRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
{
    TMNotifyStartOfExecution(pVM, pVCpu);

    Assert(!pVCpu->nem.s.fCtxChanged);
    hv_return_t hrc;
    if (hv_vcpu_run_until) /** @todo Configur the deadline dynamically based on when the next timer triggers. */
        hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, mach_absolute_time() + 2 * RT_NS_1SEC_64 * pVM->nem.s.cMachTimePerNs);
    else
        hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);

    TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());

    if (hrc != HV_SUCCESS)
        nemR3DarwinVmcsDump(pVCpu);

    /*
     * Sync the TPR shadow with our APIC state.
     */
    if (   !pVmxTransient->fIsNestedGuest
        && (pVCpu->nem.s.VmcsInfo.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
    {
        uint64_t u64Tpr;
        hv_return_t hrc2 = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, HV_X86_TPR, &u64Tpr);
        Assert(hrc2 == HV_SUCCESS); RT_NOREF(hrc2);

        if (pVmxTransient->u8GuestTpr != (uint8_t)u64Tpr)
        {
            int rc = APICSetTpr(pVCpu, (uint8_t)u64Tpr);
            AssertRC(rc);
            ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
        }
    }

    return hrc;
}


/**
 * Prepares the VM to run the guest.
 *
 * @returns Strict VBox status code.
 * @param   pVM                 The cross context VM structure.
 * @param   pVCpu               The cross context virtual CPU structure.
 * @param   pVmxTransient       The VMX transient state.
 * @param   fSingleStepping     Flag whether we run in single stepping mode.
 */
static VBOXSTRICTRC nemR3DarwinPreRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fSingleStepping)
{
    /*
     * Check and process force flag actions, some of which might require us to go back to ring-3.
     */
    VBOXSTRICTRC rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
    if (rcStrict == VINF_SUCCESS)
    { /*likely */ }
    else
        return rcStrict;

    /*
     * Do not execute in HV if the A20 isn't enabled.
     */
    if (PGMPhysIsA20Enabled(pVCpu))
    { /* likely */ }
    else
    {
        LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
        return VINF_EM_RESCHEDULE_REM;
    }

    /*
     * Evaluate events to be injected into the guest.
     *
     * Events in TRPM can be injected without inspecting the guest state.
     * If any new events (interrupts/NMI) are pending currently, we try to set up the
     * guest to cause a VM-exit the next time they are ready to receive the event.
     */
    if (TRPMHasTrap(pVCpu))
        vmxHCTrpmTrapToPendingEvent(pVCpu);

    uint32_t fIntrState;
    rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, &fIntrState);

    /*
     * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
     * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
     * also result in triple-faulting the VM.
     *
     * With nested-guests, the above does not apply since unrestricted guest execution is a
     * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
     */
    rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
    if (RT_LIKELY(rcStrict == VINF_SUCCESS))
    { /* likely */ }
    else
        return rcStrict;

    int rc = nemR3DarwinExportGuestState(pVM, pVCpu, pVmxTransient);
    AssertRCReturn(rc, rc);

    LogFlowFunc(("Running vCPU\n"));
    pVCpu->nem.s.Event.fPending = false;
    return VINF_SUCCESS;
}


/**
 * The normal runloop (no debugging features enabled).
 *
 * @returns Strict VBox status code.
 * @param   pVM         The cross context VM structure.
 * @param   pVCpu       The cross context virtual CPU structure.
 */
static VBOXSTRICTRC nemR3DarwinRunGuestNormal(PVM pVM, PVMCPU pVCpu)
{
    /*
     * The run loop.
     *
     * Current approach to state updating to use the sledgehammer and sync
     * everything every time.  This will be optimized later.
     */
    VMXTRANSIENT VmxTransient;
    RT_ZERO(VmxTransient);
    VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;

    /*
     * Poll timers and run for a bit.
     */
    /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
     *        the whole polling job when timers have changed... */
    uint64_t       offDeltaIgnored;
    uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
    VBOXSTRICTRC    rcStrict        = VINF_SUCCESS;
    for (unsigned iLoop = 0;; iLoop++)
    {
        rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, false /* fSingleStepping */);
        if (rcStrict != VINF_SUCCESS)
            break;

        hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
        if (hrc == HV_SUCCESS)
        {
            /*
             * Deal with the message.
             */
            rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
            if (rcStrict == VINF_SUCCESS)
            { /* hopefully likely */ }
            else
            {
                LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
                STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
                break;
            }
        }
        else
        {
            AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
                                        pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
                                        VERR_NEM_IPE_0);
        }
    } /* the run loop */

    return rcStrict;
}


/**
 * Checks if any expensive dtrace probes are enabled and we should go to the
 * debug loop.
 *
 * @returns true if we should use debug loop, false if not.
 */
static bool nemR3DarwinAnyExpensiveProbesEnabled(void)
{
    /** @todo Check performance penalty when checking these over and over */
    return (  VBOXVMM_R0_HMVMX_VMEXIT_ENABLED() /* expensive too due to context */
            | VBOXVMM_XCPT_DE_ENABLED()
            | VBOXVMM_XCPT_DB_ENABLED()
            | VBOXVMM_XCPT_BP_ENABLED()
            | VBOXVMM_XCPT_OF_ENABLED()
            | VBOXVMM_XCPT_BR_ENABLED()
            | VBOXVMM_XCPT_UD_ENABLED()
            | VBOXVMM_XCPT_NM_ENABLED()
            | VBOXVMM_XCPT_DF_ENABLED()
            | VBOXVMM_XCPT_TS_ENABLED()
            | VBOXVMM_XCPT_NP_ENABLED()
            | VBOXVMM_XCPT_SS_ENABLED()
            | VBOXVMM_XCPT_GP_ENABLED()
            | VBOXVMM_XCPT_PF_ENABLED()
            | VBOXVMM_XCPT_MF_ENABLED()
            | VBOXVMM_XCPT_AC_ENABLED()
            | VBOXVMM_XCPT_XF_ENABLED()
            | VBOXVMM_XCPT_VE_ENABLED()
            | VBOXVMM_XCPT_SX_ENABLED()
            | VBOXVMM_INT_SOFTWARE_ENABLED()
            /* not available in R3 | VBOXVMM_INT_HARDWARE_ENABLED()*/
           ) != 0
        || (  VBOXVMM_INSTR_HALT_ENABLED()
            | VBOXVMM_INSTR_MWAIT_ENABLED()
            | VBOXVMM_INSTR_MONITOR_ENABLED()
            | VBOXVMM_INSTR_CPUID_ENABLED()
            | VBOXVMM_INSTR_INVD_ENABLED()
            | VBOXVMM_INSTR_WBINVD_ENABLED()
            | VBOXVMM_INSTR_INVLPG_ENABLED()
            | VBOXVMM_INSTR_RDTSC_ENABLED()
            | VBOXVMM_INSTR_RDTSCP_ENABLED()
            | VBOXVMM_INSTR_RDPMC_ENABLED()
            | VBOXVMM_INSTR_RDMSR_ENABLED()
            | VBOXVMM_INSTR_WRMSR_ENABLED()
            | VBOXVMM_INSTR_CRX_READ_ENABLED()
            | VBOXVMM_INSTR_CRX_WRITE_ENABLED()
            | VBOXVMM_INSTR_DRX_READ_ENABLED()
            | VBOXVMM_INSTR_DRX_WRITE_ENABLED()
            | VBOXVMM_INSTR_PAUSE_ENABLED()
            | VBOXVMM_INSTR_XSETBV_ENABLED()
            | VBOXVMM_INSTR_SIDT_ENABLED()
            | VBOXVMM_INSTR_LIDT_ENABLED()
            | VBOXVMM_INSTR_SGDT_ENABLED()
            | VBOXVMM_INSTR_LGDT_ENABLED()
            | VBOXVMM_INSTR_SLDT_ENABLED()
            | VBOXVMM_INSTR_LLDT_ENABLED()
            | VBOXVMM_INSTR_STR_ENABLED()
            | VBOXVMM_INSTR_LTR_ENABLED()
            | VBOXVMM_INSTR_GETSEC_ENABLED()
            | VBOXVMM_INSTR_RSM_ENABLED()
            | VBOXVMM_INSTR_RDRAND_ENABLED()
            | VBOXVMM_INSTR_RDSEED_ENABLED()
            | VBOXVMM_INSTR_XSAVES_ENABLED()
            | VBOXVMM_INSTR_XRSTORS_ENABLED()
            | VBOXVMM_INSTR_VMM_CALL_ENABLED()
            | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED()
            | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED()
            | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED()
            | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED()
            | VBOXVMM_INSTR_VMX_VMREAD_ENABLED()
            | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED()
            | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED()
            | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED()
            | VBOXVMM_INSTR_VMX_VMXON_ENABLED()
            | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED()
            | VBOXVMM_INSTR_VMX_INVEPT_ENABLED()
            | VBOXVMM_INSTR_VMX_INVVPID_ENABLED()
            | VBOXVMM_INSTR_VMX_INVPCID_ENABLED()
           ) != 0
        || (  VBOXVMM_EXIT_TASK_SWITCH_ENABLED()
            | VBOXVMM_EXIT_HALT_ENABLED()
            | VBOXVMM_EXIT_MWAIT_ENABLED()
            | VBOXVMM_EXIT_MONITOR_ENABLED()
            | VBOXVMM_EXIT_CPUID_ENABLED()
            | VBOXVMM_EXIT_INVD_ENABLED()
            | VBOXVMM_EXIT_WBINVD_ENABLED()
            | VBOXVMM_EXIT_INVLPG_ENABLED()
            | VBOXVMM_EXIT_RDTSC_ENABLED()
            | VBOXVMM_EXIT_RDTSCP_ENABLED()
            | VBOXVMM_EXIT_RDPMC_ENABLED()
            | VBOXVMM_EXIT_RDMSR_ENABLED()
            | VBOXVMM_EXIT_WRMSR_ENABLED()
            | VBOXVMM_EXIT_CRX_READ_ENABLED()
            | VBOXVMM_EXIT_CRX_WRITE_ENABLED()
            | VBOXVMM_EXIT_DRX_READ_ENABLED()
            | VBOXVMM_EXIT_DRX_WRITE_ENABLED()
            | VBOXVMM_EXIT_PAUSE_ENABLED()
            | VBOXVMM_EXIT_XSETBV_ENABLED()
            | VBOXVMM_EXIT_SIDT_ENABLED()
            | VBOXVMM_EXIT_LIDT_ENABLED()
            | VBOXVMM_EXIT_SGDT_ENABLED()
            | VBOXVMM_EXIT_LGDT_ENABLED()
            | VBOXVMM_EXIT_SLDT_ENABLED()
            | VBOXVMM_EXIT_LLDT_ENABLED()
            | VBOXVMM_EXIT_STR_ENABLED()
            | VBOXVMM_EXIT_LTR_ENABLED()
            | VBOXVMM_EXIT_GETSEC_ENABLED()
            | VBOXVMM_EXIT_RSM_ENABLED()
            | VBOXVMM_EXIT_RDRAND_ENABLED()
            | VBOXVMM_EXIT_RDSEED_ENABLED()
            | VBOXVMM_EXIT_XSAVES_ENABLED()
            | VBOXVMM_EXIT_XRSTORS_ENABLED()
            | VBOXVMM_EXIT_VMM_CALL_ENABLED()
            | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED()
            | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED()
            | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED()
            | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED()
            | VBOXVMM_EXIT_VMX_VMREAD_ENABLED()
            | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED()
            | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED()
            | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED()
            | VBOXVMM_EXIT_VMX_VMXON_ENABLED()
            | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED()
            | VBOXVMM_EXIT_VMX_INVEPT_ENABLED()
            | VBOXVMM_EXIT_VMX_INVVPID_ENABLED()
            | VBOXVMM_EXIT_VMX_INVPCID_ENABLED()
            | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED()
            | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED()
            | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED()
            | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED()
           ) != 0;
}


/**
 * The debug runloop.
 *
 * @returns Strict VBox status code.
 * @param   pVM         The cross context VM structure.
 * @param   pVCpu       The cross context virtual CPU structure.
 */
static VBOXSTRICTRC nemR3DarwinRunGuestDebug(PVM pVM, PVMCPU pVCpu)
{
    /*
     * The run loop.
     *
     * Current approach to state updating to use the sledgehammer and sync
     * everything every time.  This will be optimized later.
     */
    VMXTRANSIENT VmxTransient;
    RT_ZERO(VmxTransient);
    VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;

    bool const fSavedSingleInstruction = pVCpu->nem.s.fSingleInstruction;
    pVCpu->nem.s.fSingleInstruction    = pVCpu->nem.s.fSingleInstruction || DBGFIsStepping(pVCpu);
    pVCpu->nem.s.fDebugWantRdTscExit   = false;
    pVCpu->nem.s.fUsingDebugLoop       = true;

    /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps.  */
    VMXRUNDBGSTATE DbgState;
    vmxHCRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
    vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);

    /*
     * Poll timers and run for a bit.
     */
    /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
     *        the whole polling job when timers have changed... */
    uint64_t       offDeltaIgnored;
    uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
    VBOXSTRICTRC    rcStrict        = VINF_SUCCESS;
    for (unsigned iLoop = 0;; iLoop++)
    {
        bool fStepping = pVCpu->nem.s.fSingleInstruction;

        /* Set up VM-execution controls the next two can respond to. */
        vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);

        rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, fStepping);
        if (rcStrict != VINF_SUCCESS)
            break;

        /* Override any obnoxious code in the above call. */
        vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);

        hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
        if (hrc == HV_SUCCESS)
        {
            /*
             * Deal with the message.
             */
            rcStrict = nemR3DarwinHandleExitDebug(pVM, pVCpu, &VmxTransient, &DbgState);
            if (rcStrict == VINF_SUCCESS)
            { /* hopefully likely */ }
            else
            {
                LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExitDebug -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
                STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
                break;
            }

            /*
             * Stepping: Did the RIP change, if so, consider it a single step.
             * Otherwise, make sure one of the TFs gets set.
             */
            if (fStepping)
            {
                int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
                AssertRC(rc);
                if (   pVCpu->cpum.GstCtx.rip    != DbgState.uRipStart
                    || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
                {
                    rcStrict = VINF_EM_DBG_STEPPED;
                    break;
                }
                ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
            }
        }
        else
        {
            AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
                                        pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
                                        VERR_NEM_IPE_0);
        }
    } /* the run loop */

    /*
     * Clear the X86_EFL_TF if necessary.
     */
    if (pVCpu->nem.s.fClearTrapFlag)
    {
        int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
        AssertRC(rc);
        pVCpu->nem.s.fClearTrapFlag = false;
        pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
    }

    pVCpu->nem.s.fUsingDebugLoop     = false;
    pVCpu->nem.s.fDebugWantRdTscExit = false;
    pVCpu->nem.s.fSingleInstruction  = fSavedSingleInstruction;

    /* Restore all controls applied by vmxHCPreRunGuestDebugStateApply above. */
    return vmxHCRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
}


VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
{
    LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u));
#ifdef LOG_ENABLED
    if (LogIs3Enabled())
        nemR3DarwinLogState(pVM, pVCpu);
#endif

    AssertReturn(NEMR3CanExecuteGuest(pVM, pVCpu), VERR_NEM_IPE_9);

    /*
     * Try switch to NEM runloop state.
     */
    if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
    { /* likely */ }
    else
    {
        VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
        LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
        return VINF_SUCCESS;
    }

    VBOXSTRICTRC rcStrict;
    if (   !pVCpu->nem.s.fUseDebugLoop
        && !nemR3DarwinAnyExpensiveProbesEnabled()
        && !DBGFIsStepping(pVCpu)
        && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
        rcStrict = nemR3DarwinRunGuestNormal(pVM, pVCpu);
    else
        rcStrict = nemR3DarwinRunGuestDebug(pVM, pVCpu);

    if (rcStrict == VINF_EM_RAW_TO_R3)
        rcStrict = VINF_SUCCESS;

    /*
     * Convert any pending HM events back to TRPM due to premature exits.
     *
     * This is because execution may continue from IEM and we would need to inject
     * the event from there (hence place it back in TRPM).
     */
    if (pVCpu->nem.s.Event.fPending)
    {
        vmxHCPendingEventToTrpmTrap(pVCpu);
        Assert(!pVCpu->nem.s.Event.fPending);

        /* Clear the events from the VMCS. */
        int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);    AssertRC(rc);
        rc     = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0);         AssertRC(rc);
    }


    if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
        VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);

    if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
    {
        /* Try anticipate what we might need. */
        uint64_t fImport = NEM_DARWIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
        if (   (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
            || RT_FAILURE(rcStrict))
            fImport = CPUMCTX_EXTRN_ALL;
        else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
                                          | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
            fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;

        if (pVCpu->cpum.GstCtx.fExtrn & fImport)
        {
            /* Only import what is external currently. */
            int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
            if (RT_SUCCESS(rc2))
                pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
            else if (RT_SUCCESS(rcStrict))
                rcStrict = rc2;
            if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
            {
                pVCpu->cpum.GstCtx.fExtrn = 0;
                ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
            }
            STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
        }
        else
            STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
    }
    else
    {
        STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
        pVCpu->cpum.GstCtx.fExtrn = 0;
        ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
    }

    LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
             pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
    return rcStrict;
}


VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
{
    NOREF(pVM);
    return PGMPhysIsA20Enabled(pVCpu);
}


bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
{
    VMCPU_ASSERT_EMT(pVCpu);
    bool fOld = pVCpu->nem.s.fSingleInstruction;
    pVCpu->nem.s.fSingleInstruction = fEnable;
    pVCpu->nem.s.fUseDebugLoop = fEnable || pVM->nem.s.fUseDebugLoop;
    return fOld;
}


void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
{
    LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));

    RT_NOREF(pVM, fFlags);

    hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
    if (hrc != HV_SUCCESS)
        LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
}


DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
{
    for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
         !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
         enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
        fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);

    return fUseDebugLoop;
}


DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
{
    RT_NOREF(pVM, pVCpu);
    return fUseDebugLoop;
}


VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
                                               uint8_t *pu2State, uint32_t *puNemRange)
{
    RT_NOREF(pVM, puNemRange);

    Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
#if defined(VBOX_WITH_PGM_NEM_MODE)
    if (pvR3)
    {
        int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
        if (RT_FAILURE(rc))
        {
            LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
            return VERR_NEM_MAP_PAGES_FAILED;
        }
    }
    return VINF_SUCCESS;
#else
    RT_NOREF(pVM, GCPhys, cb, pvR3);
    return VERR_NEM_MAP_PAGES_FAILED;
#endif
}


VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
{
    RT_NOREF(pVM);
    return false;
}


VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
                                                  void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
{
    RT_NOREF(pVM, puNemRange, pvRam, fFlags);

    Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
          GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));

#if defined(VBOX_WITH_PGM_NEM_MODE)
    /*
     * Unmap the RAM we're replacing.
     */
    if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
    {
        int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
        if (RT_SUCCESS(rc))
        { /* likely */ }
        else if (pvMmio2)
            LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
                    GCPhys, cb, fFlags, rc));
        else
        {
            LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
                    GCPhys, cb, fFlags, rc));
            return VERR_NEM_UNMAP_PAGES_FAILED;
        }
    }

    /*
     * Map MMIO2 if any.
     */
    if (pvMmio2)
    {
        Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
        int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE, pu2State);
        if (RT_FAILURE(rc))
        {
            LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
                    GCPhys, cb, fFlags, pvMmio2, rc));
            return VERR_NEM_MAP_PAGES_FAILED;
        }
    }
    else
        Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));

#else
    RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
    *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
#endif
    return VINF_SUCCESS;
}


VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
                                                 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
{
    RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
    return VINF_SUCCESS;
}


VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
                                               void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
{
    RT_NOREF(pVM, puNemRange);

    Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
          GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));

    int rc = VINF_SUCCESS;
#if defined(VBOX_WITH_PGM_NEM_MODE)
    /*
     * Unmap the MMIO2 pages.
     */
    /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
     *        we may have more stuff to unmap even in case of pure MMIO... */
    if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
    {
        rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
        if (RT_FAILURE(rc))
        {
            LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
                    GCPhys, cb, fFlags, rc));
            return VERR_NEM_UNMAP_PAGES_FAILED;
        }
    }

    /* Ensure the page is masked as unmapped if relevant. */
    Assert(!pu2State || *pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED);

    /*
     * Restore the RAM we replaced.
     */
    if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
    {
        AssertPtr(pvRam);
        rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
        if (RT_SUCCESS(rc))
        { /* likely */ }
        else
        {
            LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
            rc = VERR_NEM_MAP_PAGES_FAILED;
        }
    }

    RT_NOREF(pvMmio2);
#else
    RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
    if (pu2State)
        *pu2State = UINT8_MAX;
    rc = VERR_NEM_UNMAP_PAGES_FAILED;
#endif
    return rc;
}


VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
                                                           void *pvBitmap, size_t cbBitmap)
{
    RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
    AssertFailed();
    return VERR_NOT_IMPLEMENTED;
}


VMMR3_INT_DECL(int)  NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
                                                     uint8_t *pu2State, uint32_t *puNemRange)
{
    RT_NOREF(pvPages);

    Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
          GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
    if (fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE)
    {
        int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
        if (RT_FAILURE(rc))
        {
            LogRel(("NEMR3NotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
                    GCPhys, cb, fFlags, rc));
            return VERR_NEM_UNMAP_PAGES_FAILED;
        }
    }

    *puNemRange = 0;
    return VINF_SUCCESS;
}


VMMR3_INT_DECL(int)  NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
                                                    uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
{
    Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
          GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
    *pu2State = UINT8_MAX;
    RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
    return VINF_SUCCESS;
}


VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
                                                        RTR3PTR pvMemR3, uint8_t *pu2State)
{
    Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
          GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
    *pu2State = UINT8_MAX;
    RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
}


VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
{
    Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
    RT_NOREF(pVCpu, fEnabled);
}


void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
{
    Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
    NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
}


void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
                                            RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
{
    Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
          GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
    NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
}


int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
                                       PGMPAGETYPE enmType, uint8_t *pu2State)
{
    Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
          GCPhys, HCPhys, fPageProt, enmType, *pu2State));
    RT_NOREF(HCPhys, fPageProt, enmType);

    return nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
}


VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
                                                  PGMPAGETYPE enmType, uint8_t *pu2State)
{
    Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp pvR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
          GCPhys, HCPhys, pvR3, fPageProt, enmType, *pu2State));
    RT_NOREF(HCPhys, pvR3, fPageProt, enmType)

    uint8_t u2StateOld = *pu2State;
    /* Can return early if this is an unmap request and the page is not mapped. */
    if (   fPageProt == NEM_PAGE_PROT_NONE
        && u2StateOld == NEM_DARWIN_PAGE_STATE_UNMAPPED)
    {
        Assert(!pvR3);
        return;
    }

    int rc;
    if (u2StateOld == NEM_DARWIN_PAGE_STATE_UNMAPPED)
    {
        AssertPtr(pvR3);
        rc = nemR3DarwinMap(pVM, GCPhys, pvR3, X86_PAGE_SIZE, fPageProt, pu2State);
    }
    else
        rc = nemR3DarwinProtect(pVM, GCPhys, X86_PAGE_SIZE, fPageProt, pu2State);
    AssertLogRelMsgRC(rc, ("NEMHCNotifyPhysPageProtChanged: nemR3DarwinMap/nemR3DarwinProtect(,%p,%RGp,%RGp,) u2StateOld=%u -> %Rrc\n",
                      pvR3, GCPhys, X86_PAGE_SIZE, u2StateOld, rc));
}


VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
                                              RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
{
    Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
          GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
    RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);

    int rc = nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
    if (RT_SUCCESS(rc))
    {
        rc = nemR3DarwinMap(pVM, GCPhys, pvNewR3, X86_PAGE_SIZE, fPageProt, pu2State);
        AssertLogRelMsgRC(rc, ("NEMHCNotifyPhysPageChanged: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
                          pvNewR3, GCPhys, X86_PAGE_SIZE, rc));
    }
    else
        AssertReleaseFailed();
}


/**
 * Interface for importing state on demand (used by IEM).
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context CPU structure.
 * @param   fWhat       What to import, CPUMCTX_EXTRN_XXX.
 */
VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
{
    LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
    STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);

    return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
}


/**
 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
 *
 * @returns VBox status code.
 * @param   pVCpu       The cross context CPU structure.
 * @param   pcTicks     Where to return the CPU tick count.
 * @param   puAux       Where to return the TSC_AUX register value.
 */
VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
{
    LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
    STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);

    int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
    if (   RT_SUCCESS(rc)
        && puAux)
    {
        if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
        {
            uint64_t u64Aux;
            rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
            if (RT_SUCCESS(rc))
                *puAux = (uint32_t)u64Aux;
        }
        else
            *puAux = CPUMGetGuestTscAux(pVCpu);
    }

    return rc;
}


/**
 * Resumes CPU clock (TSC) on all virtual CPUs.
 *
 * This is called by TM when the VM is started, restored, resumed or similar.
 *
 * @returns VBox status code.
 * @param   pVM             The cross context VM structure.
 * @param   pVCpu           The cross context CPU structure of the calling EMT.
 * @param   uPausedTscValue The TSC value at the time of pausing.
 */
VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
{
    LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
    VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
    AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);

    hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
    if (RT_LIKELY(hrc == HV_SUCCESS))
    {
        ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
        return VINF_SUCCESS;
    }

    return nemR3DarwinHvSts2Rc(hrc);
}


/**
 * Returns features supported by the NEM backend.
 *
 * @returns Flags of features supported by the native NEM backend.
 * @param   pVM             The cross context VM structure.
 */
VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
{
    RT_NOREF(pVM);
    /*
     * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
     * and unrestricted guest execution support so we can safely return these flags here always.
     */
    return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
}


/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
 *
 * @todo Add notes as the implementation progresses...
 */