1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
# ===========================================================================
# http://www.gnu.org/software/autoconf-archive/ax_blas_f77_func.html
# ===========================================================================
#
# SYNOPSIS
#
# AX_BLAS_F77_FUNC([ACTION-IF-PASS[, ACTION-IF-FAIL[, ACTION-IF-CROSS-COMPILING]])
# AX_BLAS_WITH_F77_FUNC([ACTION-IF-FOUND-AND-PASS[, ACTION-IF-NOT-FOUND-OR-FAIL]])
#
# DESCRIPTION
#
# These macros are intended as a supplement to the AX_BLAS macro, to
# verify that BLAS functions are properly callable from Fortran. This is
# necessary, for example, if you want to build the LAPACK library on top
# of the BLAS.
#
# AX_BLAS_F77_FUNC uses the defined BLAS_LIBS and Fortran environment to
# check for compatibility, and takes a specific action in case of success,
# resp. failure, resp. cross-compilation.
#
# AX_BLAS_WITH_F77_FUNC is a drop-in replacement wrapper for AX_BLAS that
# calls AX_BLAS_F77_FUNC after detecting a BLAS library and rejects it on
# failure (i.e. pretends that no library was found).
#
# LICENSE
#
# Copyright (c) 2008 Jaroslav Hajek <highegg@gmail.com>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation, either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program. If not, see <http://www.gnu.org/licenses/>.
#
# As a special exception, the respective Autoconf Macro's copyright owner
# gives unlimited permission to copy, distribute and modify the configure
# scripts that are the output of Autoconf when processing the Macro. You
# need not follow the terms of the GNU General Public License when using
# or distributing such scripts, even though portions of the text of the
# Macro appear in them. The GNU General Public License (GPL) does govern
# all other use of the material that constitutes the Autoconf Macro.
#
# This special exception to the GPL applies to versions of the Autoconf
# Macro released by the Autoconf Archive. When you make and distribute a
# modified version of the Autoconf Macro, you may extend this special
# exception to the GPL to apply to your modified version as well.
#serial 8
AU_ALIAS([ACX_BLAS_F77_FUNC], [AX_BLAS_F77_FUNC])
AC_DEFUN([AX_BLAS_F77_FUNC], [
AC_PREREQ(2.50)
AC_REQUIRE([AX_BLAS])
# F77 call-compatibility checks
if test "$cross_compiling" = yes ; then
ifelse($3, ,$1,$3)
elif test x"$ax_blas_ok" = xyes; then
save_ax_blas_f77_func_LIBS="$LIBS"
LIBS="$BLAS_LIBS $LIBS"
AC_LANG_PUSH(Fortran 77)
# LSAME check (LOGICAL return values)
AC_MSG_CHECKING([whether LSAME is called correctly from Fortran])
AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
logical lsame,w
external lsame
character c1,c2
c1 = 'A'
c2 = 'B'
w = lsame(c1,c2)
if (w) stop 1
w = lsame(c1,c1)
if (.not. w) stop 1
]]),[ax_blas_lsame_fcall_ok=yes],
[ax_blas_lsame_fcall_ok=no])
AC_MSG_RESULT([$ax_blas_lsame_fcall_ok])
# ISAMAX check (INTEGER return values)
AC_MSG_CHECKING([whether ISAMAX is called correctly from Fortran])
AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
integer isamax,i
external isamax
real a(2)
a(1) = 1e0
a(2) = -2e0
i = isamax(2,a,1)
if (i.ne.2) stop 1
]]),[ax_blas_isamax_fcall_ok=yes],
[ax_blas_isamax_fcall_ok=no])
AC_MSG_RESULT([$ax_blas_isamax_fcall_ok])
# SDOT check (REAL return values)
AC_MSG_CHECKING([whether SDOT is called correctly from Fortran])
AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
real sdot,a(1),b(1),w
external sdot
a(1) = 1e0
b(1) = 2e0
w = sdot(1,a,1,b,1)
if (w .ne. a(1)*b(1)) stop 1
]]),[ax_blas_sdot_fcall_ok=yes],
[ax_blas_sdot_fcall_ok=no])
AC_MSG_RESULT([$ax_blas_sdot_fcall_ok])
# DDOT check (DOUBLE return values)
AC_MSG_CHECKING([whether DDOT is called correctly from Fortran])
AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
double precision ddot,a(1),b(1),w
external ddot
a(1) = 1d0
b(1) = 2d0
w = ddot(1,a,1,b,1)
if (w .ne. a(1)*b(1)) stop 1
]]),[ax_blas_ddot_fcall_ok=yes],
[ax_blas_ddot_fcall_ok=no])
AC_MSG_RESULT([$ax_blas_ddot_fcall_ok])
# CDOTU check (COMPLEX return values)
AC_MSG_CHECKING([whether CDOTU is called correctly from Fortran])
AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
complex cdotu,a(1),b(1),w
external cdotu
a(1) = cmplx(1e0,1e0)
b(1) = cmplx(1e0,2e0)
w = cdotu(1,a,1,b,1)
if (w .ne. a(1)*b(1)) stop 1
]]),[ax_blas_cdotu_fcall_ok=yes],
[ax_blas_cdotu_fcall_ok=no])
AC_MSG_RESULT([$ax_blas_cdotu_fcall_ok])
# ZDOTU check (DOUBLE COMPLEX return values)
AC_MSG_CHECKING([whether ZDOTU is called correctly from Fortran])
AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
double complex zdotu,a(1),b(1),w
external zdotu
a(1) = dcmplx(1d0,1d0)
b(1) = dcmplx(1d0,2d0)
w = zdotu(1,a,1,b,1)
if (w .ne. a(1)*b(1)) stop 1
]]),[ax_blas_zdotu_fcall_ok=yes],
[ax_blas_zdotu_fcall_ok=no])
AC_MSG_RESULT([$ax_blas_zdotu_fcall_ok])
# Check for correct integer size
# FIXME: this may fail with things like -ftrapping-math.
AC_MSG_CHECKING([whether the integer size is correct])
AC_RUN_IFELSE(AC_LANG_PROGRAM(,[[
integer n,nn(3)
real s,a(1),b(1),sdot
a(1) = 1.0
b(1) = 1.0
c Generate -2**33 + 1, if possible
n = 2
n = -4 * (n ** 30)
n = n + 1
if (n >= 0) goto 1
c This means we're on 64-bit integers. Check whether the BLAS is, too.
s = sdot(n,a,1,b,1)
if (s .ne. 0.0) stop 1
1 continue
c We may be on 32-bit integers, and the BLAS on 64 bits. This is almost bound
c to have already failed, but just in case, we'll check.
nn(1) = -1
nn(2) = 1
nn(3) = -1
s = sdot(nn(2),a,1,b,1)
if (s .ne. 1.0) stop 1
]]),[ax_blas_integer_size_ok=yes],
[ax_blas_integer_size_ok=no])
AC_MSG_RESULT([$ax_blas_integer_size_ok])
AC_LANG_POP(Fortran 77)
# if any of the tests failed, reject the BLAS library
if test $ax_blas_lsame_fcall_ok = yes \
-a $ax_blas_sdot_fcall_ok = yes \
-a $ax_blas_ddot_fcall_ok = yes \
-a $ax_blas_cdotu_fcall_ok = yes \
-a $ax_blas_zdotu_fcall_ok = yes \
-a $ax_blas_integer_size_ok = yes; then
ax_blas_f77_func_ok=yes;
$1
else
ax_blas_f77_func_ok=no;
$2
fi
LIBS="$save_ax_blas_f77_func_LIBS"
fi
])dnl AX_BLAS_F77_FUNC
AC_DEFUN([AX_BLAS_WITH_F77_FUNC], [
AC_PREREQ(2.50)
AX_BLAS([# disable special action], [])
if test x$ax_blas_ok = xyes ; then
AX_BLAS_F77_FUNC(
[ifelse([$1],,AC_DEFINE(HAVE_BLAS,1,[Define if you have a BLAS library.]),[$1])],
[ax_blas_ok=no; BLAS_LIBS=])
fi
if test x$ax_blas_ok = xno ; then
$2
fi
])dnl AX_BLAS_WITH_F77_FUNC
|