1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* clock.c - generic clocksource implementation
*
* This file contains the clocksource implementation from the Linux
* kernel originally by John Stultz
*
* Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
* Copyright (c) 2007 Sascha Hauer <s.hauer@pengutronix.de>, Pengutronix
*/
#include <common.h>
#include <init.h>
#include <linux/math64.h>
#include <clock.h>
#include <poller.h>
static uint64_t time_ns;
/*
* The first timestamp when the clocksource is registered.
* Useful for measuring the time spent in barebox.
*/
uint64_t time_beginning;
static uint64_t dummy_read(void)
{
static uint64_t dummy_counter;
dummy_counter += CONFIG_CLOCKSOURCE_DUMMY_RATE;
return dummy_counter;
}
static struct clocksource dummy_cs = {
.shift = 0,
.mult = 1,
.read = dummy_read,
.mask = CLOCKSOURCE_MASK(64),
.priority = -1,
};
static struct clocksource *current_clock = &dummy_cs;
static int dummy_csrc_warn(void)
{
if (current_clock == &dummy_cs) {
pr_warn("Warning: Using dummy clocksource\n");
}
return 0;
}
late_initcall(dummy_csrc_warn);
/**
* get_time_ns - get current timestamp in nanoseconds
*/
uint64_t get_time_ns(void)
{
struct clocksource *cs = current_clock;
uint64_t cycle_now, cycle_delta;
uint64_t ns_offset;
/* read clocksource: */
cycle_now = cs->read() & cs->mask;
/* calculate the delta since the last call: */
cycle_delta = (cycle_now - cs->cycle_last) & cs->mask;
/* convert to nanoseconds: */
ns_offset = cyc2ns(cs, cycle_delta);
cs->cycle_last = cycle_now;
time_ns += ns_offset;
return time_ns;
}
EXPORT_SYMBOL(get_time_ns);
/**
* clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
* @mult: pointer to mult variable
* @shift: pointer to shift variable
* @from: frequency to convert from
* @to: frequency to convert to
* @maxsec: guaranteed runtime conversion range in seconds
*
* The function evaluates the shift/mult pair for the scaled math
* operations of clocksources and clockevents.
*
* @to and @from are frequency values in HZ. For clock sources @to is
* NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
* event @to is the counter frequency and @from is NSEC_PER_SEC.
*
* The @maxsec conversion range argument controls the time frame in
* seconds which must be covered by the runtime conversion with the
* calculated mult and shift factors. This guarantees that no 64bit
* overflow happens when the input value of the conversion is
* multiplied with the calculated mult factor. Larger ranges may
* reduce the conversion accuracy by choosing smaller mult and shift
* factors.
*/
void clocks_calc_mult_shift(uint32_t *mult, uint32_t *shift, uint32_t from, uint32_t to, uint32_t maxsec)
{
uint64_t tmp;
uint32_t sft, sftacc = 32;
/*
* Calculate the shift factor which is limiting the conversion
* range:
*/
tmp = ((uint64_t)maxsec * from) >> 32;
while (tmp) {
tmp >>= 1;
sftacc--;
}
/*
* Find the conversion shift/mult pair which has the best
* accuracy and fits the maxsec conversion range:
*/
for (sft = 32; sft > 0; sft--) {
tmp = (uint64_t) to << sft;
tmp += from / 2;
do_div(tmp, from);
if ((tmp >> sftacc) == 0)
break;
}
*mult = tmp;
*shift = sft;
}
/**
* clocksource_hz2mult - calculates mult from hz and shift
* @hz: Clocksource frequency in Hz
* @shift_constant: Clocksource shift factor
*
* Helper functions that converts a hz counter
* frequency to a timsource multiplier, given the
* clocksource shift value
*/
uint32_t clocksource_hz2mult(uint32_t hz, uint32_t shift_constant)
{
/* hz = cyc/(Billion ns)
* mult/2^shift = ns/cyc
* mult = ns/cyc * 2^shift
* mult = 1Billion/hz * 2^shift
* mult = 1000000000 * 2^shift / hz
* mult = (1000000000<<shift) / hz
*/
uint64_t tmp = ((uint64_t)1000000000) << shift_constant;
tmp += hz/2; /* round for do_div */
do_div(tmp, hz);
return (uint32_t)tmp;
}
int is_timeout_non_interruptible(uint64_t start_ns, uint64_t time_offset_ns)
{
if ((int64_t)(start_ns + time_offset_ns - get_time_ns()) < 0)
return 1;
else
return 0;
}
EXPORT_SYMBOL(is_timeout_non_interruptible);
int is_timeout(uint64_t start_ns, uint64_t time_offset_ns)
{
int ret = is_timeout_non_interruptible(start_ns, time_offset_ns);
if (time_offset_ns >= 100 * USECOND)
poller_call();
return ret;
}
EXPORT_SYMBOL(is_timeout);
void ndelay(unsigned long nsecs)
{
uint64_t start = get_time_ns();
while(!is_timeout_non_interruptible(start, nsecs));
}
EXPORT_SYMBOL(ndelay);
void udelay(unsigned long usecs)
{
uint64_t start = get_time_ns();
while(!is_timeout(start, usecs * USECOND));
}
EXPORT_SYMBOL(udelay);
void mdelay(unsigned long msecs)
{
udelay(msecs * USECOND);
}
EXPORT_SYMBOL(mdelay);
void mdelay_non_interruptible(unsigned long msecs)
{
uint64_t start = get_time_ns();
while (!is_timeout_non_interruptible(start, msecs * MSECOND))
;
}
EXPORT_SYMBOL(mdelay_non_interruptible);
int init_clock(struct clocksource *cs)
{
if (current_clock && cs->priority <= current_clock->priority)
return 0;
if (cs->init) {
int ret;
ret = cs->init(cs);
if (ret)
return ret;
}
current_clock = cs;
time_beginning = get_time_ns();
return 0;
}
|