1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2008 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <crc.h>
#include <ddr_spd.h>
/* used for ddr1 and ddr2 spd */
static int spd_check(const u8 *buf, u8 spd_rev, u8 spd_cksum)
{
unsigned int cksum = 0;
unsigned int i;
/*
* Check SPD revision supported
* Rev 1.X or less supported by this code
*/
if (spd_rev >= 0x20) {
printf("SPD revision %02X not supported by this code\n",
spd_rev);
return 1;
}
if (spd_rev > 0x13) {
printf("SPD revision %02X not verified by this code\n",
spd_rev);
}
/*
* Calculate checksum
*/
for (i = 0; i < 63; i++)
cksum += *buf++;
cksum &= 0xFF;
if (cksum != spd_cksum) {
printf("SPD checksum unexpected. "
"Checksum in SPD = %02X, computed SPD = %02X\n",
spd_cksum, cksum);
return -EBADMSG;
}
return 0;
}
int ddr1_spd_check(const struct ddr1_spd_eeprom *spd)
{
const u8 *p = (const u8 *)spd;
return spd_check(p, spd->spd_rev, spd->cksum);
}
int ddr2_spd_check(const struct ddr2_spd_eeprom *spd)
{
const u8 *p = (const u8 *)spd;
return spd_check(p, spd->spd_rev, spd->cksum);
}
int ddr3_spd_check(const struct ddr3_spd_eeprom *spd)
{
char *p = (char *)spd;
int csum16;
int len;
char crc_lsb; /* byte 126 */
char crc_msb; /* byte 127 */
/*
* SPD byte0[7] - CRC coverage
* 0 = CRC covers bytes 0~125
* 1 = CRC covers bytes 0~116
*/
len = !(spd->info_size_crc & 0x80) ? 126 : 117;
csum16 = crc_itu_t(0, p, len);
crc_lsb = (char) (csum16 & 0xff);
crc_msb = (char) (csum16 >> 8);
if (spd->crc[0] == crc_lsb && spd->crc[1] == crc_msb) {
return 0;
} else {
printf("SPD checksum unexpected.\n"
"Checksum lsb in SPD = %02X, computed SPD = %02X\n"
"Checksum msb in SPD = %02X, computed SPD = %02X\n",
spd->crc[0], crc_lsb, spd->crc[1], crc_msb);
return -EBADMSG;
}
}
int ddr4_spd_check(const struct ddr4_spd_eeprom *spd)
{
char *p = (char *)spd;
int csum16;
int len;
char crc_lsb; /* byte 126 */
char crc_msb; /* byte 127 */
len = 126;
csum16 = crc_itu_t(0, p, len);
crc_lsb = (char) (csum16 & 0xff);
crc_msb = (char) (csum16 >> 8);
if (spd->crc[0] != crc_lsb || spd->crc[1] != crc_msb) {
printf("SPD checksum unexpected.\n"
"Checksum lsb in SPD = %02X, computed SPD = %02X\n"
"Checksum msb in SPD = %02X, computed SPD = %02X\n",
spd->crc[0], crc_lsb, spd->crc[1], crc_msb);
return -EBADMSG;
}
p = (char *)((ulong)spd + 128);
len = 126;
csum16 = crc_itu_t(0, p, len);
crc_lsb = (char) (csum16 & 0xff);
crc_msb = (char) (csum16 >> 8);
if (spd->mod_section.uc[126] != crc_lsb ||
spd->mod_section.uc[127] != crc_msb) {
printf("SPD checksum unexpected.\n"
"Checksum lsb in SPD = %02X, computed SPD = %02X\n"
"Checksum msb in SPD = %02X, computed SPD = %02X\n",
spd->mod_section.uc[126],
crc_lsb, spd->mod_section.uc[127],
crc_msb);
return -EBADMSG;
}
return 0;
}
static char *heights[] = {
"<25.4",
"25.4",
"25.4 - 30.0",
"30.0",
"30.5",
"> 30.5",
};
static char *sdram_voltage_interface_level[] = {
"TTL (5V tolerant)",
"LVTTL (not 5V tolerant)",
"HSTL 1.5V",
"SSTL 3.3V",
"SSTL 2.5V",
"SSTL 1.8V",
};
static char *ddr2_module_types[] = {
"RDIMM (133.35 mm)",
"UDIMM (133.25 mm)",
"SO-DIMM (67.6 mm)",
"Micro-DIMM (45.5 mm)",
"Mini-RDIMM (82.0 mm)",
"Mini-UDIMM (82.0 mm)",
};
static char *refresh[] = {
"15.625",
"3.9",
"7.8",
"31.3",
"62.5",
"125",
};
static char *type_list[] = {
"Reserved",
"FPM DRAM",
"EDO",
"Pipelined Nibble",
"SDR SDRAM",
"Multiplexed ROM",
"DDR SGRAM",
"DDR SDRAM",
[SPD_MEMTYPE_DDR2] = "DDR2 SDRAM",
"FB-DIMM",
"FB-DIMM Probe",
[SPD_MEMTYPE_DDR3] = "DDR3 SDRAM",
};
static int funct(uint8_t addr)
{
int t;
t = ((addr >> 4) * 10 + (addr & 0xf));
return t;
}
static int des(uint8_t byte)
{
int k;
k = (byte & 0x3) * 100 / 4;
return k;
}
static int integ(uint8_t byte)
{
int k;
k = (byte >> 2);
return k;
}
static int ddr2_sdram_ctime(uint8_t byte)
{
int ctime;
ctime = (byte >> 4) * 100;
if ((byte & 0xf) <= 9)
ctime += (byte & 0xf) * 10;
else if ((byte & 0xf) == 10)
ctime += 25;
else if ((byte & 0xf) == 11)
ctime += 33;
else if ((byte & 0xf) == 12)
ctime += 66;
else if ((byte & 0xf) == 13)
ctime += 75;
return ctime;
}
/*
* Based on
* https://github.com/groeck/i2c-tools/blob/master/eeprom/decode-dimms
*/
void ddr_spd_print(uint8_t *record)
{
int highestCAS = 0;
int i, i_i, k, x, y;
int ddrclk, tbits, pcclk;
int trcd, trp, tras;
int ctime;
uint8_t parity;
char *ref, *sum;
struct ddr2_spd_eeprom *s = (struct ddr2_spd_eeprom *)record;
if (s->mem_type != SPD_MEMTYPE_DDR2) {
printf("Can't dump information for non-DDR2 memory\n");
return;
}
ctime = ddr2_sdram_ctime(s->clk_cycle);
ddrclk = 2 * (100000 / ctime);
tbits = (s->res_7 << 8) + (s->dataw);
if ((s->config & 0x03) == 1)
tbits = tbits - 8;
pcclk = ddrclk * tbits / 8;
pcclk = pcclk - (pcclk % 100);
i_i = (s->nrow_addr & 0x0f) + (s->ncol_addr & 0x0f) - 17;
k = ((s->mod_ranks & 0x7) + 1) * s->nbanks;
trcd = ((s->trcd >> 2) * 4 + (s->trcd & 3)) * 25 / ctime;
trp = ((s->trp >> 2) * 4 + (s->trp & 3)) * 25 / ctime;
tras = s->tras * 100 / ctime ;
x = (int)(ctime / 100);
y = (ctime - (int)((ctime / 100) * 100)) / 10;
for (i_i = 2; i_i < 7; i_i++) {
if (s->cas_lat & 1 << i_i) {
highestCAS = i_i;
}
}
if (ddr2_spd_check(s))
sum = "ERR";
else
sum = "OK";
printf("---=== SPD EEPROM Information ===---\n");
printf("%-48s %s (0x%02X)\n", "EEPROM Checksum of bytes 0-62",
sum, s->cksum);
printf("%-48s %d\n", "# of bytes written to SDRAM EEPROM",
s->info_size);
printf("%-48s %d\n", "Total number of bytes in EEPROM",
1 << (s->chip_size));
if (s->mem_type < ARRAY_SIZE(type_list))
printf("%-48s %s\n", "Fundamental Memory type",
type_list[s->mem_type]);
else
printf("%-48s (%02x)\n", "Warning: unknown memory type",
s->mem_type);
printf("%-48s %x.%x\n", "SPD Revision", s->spd_rev >> 4,
s->spd_rev & 0x0f);
printf("\n---=== Memory Characteristics ===---\n");
printf("%-48s %d MHz (PC2-%d)\n", "Maximum module speed",
ddrclk, pcclk);
if (i_i > 0 && i_i <= 12 && k > 0)
printf("%-48s %d MB\n", "Size", (1 << i_i) * k);
else
printf("%-48s INVALID: %02x %02x %02x %02x\n", "Size",
s->nrow_addr, s->ncol_addr, s->mod_ranks, s->nbanks);
printf("%-48s %d x %d x %d x %d\n", "Banks x Rows x Columns x Bits",
s->nbanks, s->nrow_addr, s->ncol_addr, s->dataw);
printf("%-48s %d\n", "Ranks", (s->mod_ranks & 0x7) + 1);
printf("%-48s %d bits\n", "SDRAM Device Width", s->primw);
if (s->mod_ranks >> 5 < ARRAY_SIZE(heights))
printf("%-48s %s mm\n", "Module Height",
heights[s->mod_ranks >> 5]);
else
printf("Error height\n");
if ((fls(s->dimm_type) - 1) < ARRAY_SIZE(ddr2_module_types))
printf("%-48s %s\n", "Module Type",
ddr2_module_types[fls(s->dimm_type) - 1]);
else
printf("Error module type\n");
printf("%-48s ", "DRAM Package ");
if ((s->mod_ranks & 0x10) != 0)
printf("Stack\n");
else
printf("Planar\n");
if (s->voltage < ARRAY_SIZE(sdram_voltage_interface_level))
printf("%-48s %s\n", "Voltage Interface Level",
sdram_voltage_interface_level[s->voltage]);
else
printf("Error Voltage Interface Level\n");
printf("%-48s ", "Module Configuration Type ");
parity = s->config & 0x07;
if (parity == 0)
printf("No Parity\n");
if ((parity & 0x03) == 0x01)
printf("Data Parity\n");
if (parity & 0x02)
printf("Data ECC\n");
if (parity & 0x04)
printf("Address/Command Parity\n");
if ((s->refresh >> 7) == 1)
ref = "- Self Refresh";
else
ref = " ";
printf("%-48s Reduced (%s us) %s\n", "Refresh Rate",
refresh[s->refresh & 0x7f], ref);
printf("%-48s %d, %d\n", "Supported Burst Lengths",
s->burstl & 4, s->burstl & 8);
printf("%-48s %dT\n", "Supported CAS Latencies (tCL)", highestCAS);
printf("%-48s %d-%d-%d-%d as DDR2-%d\n", "tCL-tRCD-tRP-tRAS",
highestCAS, trcd, trp, tras, ddrclk);
printf("%-48s %d.%d ns at CAS %d\n", "Minimum Cycle Time", x, y,
highestCAS);
printf("%-48s 0.%d%d ns at CAS %d\n", "Maximum Access Time",
(s->clk_access >> 4), (s->clk_access & 0xf), highestCAS);
printf("%-48s %d ns\n", "Maximum Cycle Time (tCK max)",
(s->tckmax >> 4) + (s->tckmax & 0x0f));
printf("\n---=== Timing Parameters ===---\n");
printf("%-48s 0.%d ns\n",
"Address/Command Setup Time Before Clock (tIS)",
funct(s->ca_setup));
printf("%-48s 0.%d ns\n", "Address/Command Hold Time After Clock (tIH)",
funct(s->ca_hold));
printf("%-48s 0.%d%d ns\n", "Data Input Setup Time Before Strobe (tDS)",
s->data_setup >> 4, s->data_setup & 0xf);
printf("%-48s 0.%d%d ns\n", "Data Input Hold Time After Strobe (tDH)",
s->data_hold >> 4, s->data_hold & 0xf);
printf("%-48s %d.%02d ns\n", "Minimum Row Precharge Delay (tRP)",
integ(s->trp), des(s->trp));
printf("%-48s %d.%02d ns\n",
"Minimum Row Active to Row Active Delay (tRRD)",
integ(s->trrd), des(s->trrd));
printf("%-48s %d.%02d ns\n", "Minimum RAS# to CAS# Delay (tRCD)",
integ(s->trcd), des(s->trcd));
printf("%-48s %d.00 ns\n", "Minimum RAS# Pulse Width (tRAS)",
((s->tras & 0xfc) + (s->tras & 0x3)));
printf("%-48s %d.%02d ns\n", "Write Recovery Time (tWR)",
integ(s->twr), des(s->twr));
printf("%-48s %d.%02d ns\n", "Minimum Write to Read CMD Delay (tWTR)",
integ(s->twtr), des(s->twtr));
printf("%-48s %d.%02d ns\n",
"Minimum Read to Pre-charge CMD Delay (tRTP)",
integ(s->trtp), des(s->trtp));
printf("%-48s %d.00 ns\n", "Minimum Active to Auto-refresh Delay (tRC)",
s->trc);
printf("%-48s %d ns\n", "Minimum Recovery Delay (tRFC)", s->trfc);
printf("%-48s 0.%d ns\n", "Maximum DQS to DQ Skew (tDQSQ)", s->tdqsq);
printf("%-48s 0.%d ns\n", "Maximum Read Data Hold Skew (tQHS)",
s->tqhs);
printf("\n---=== Manufacturing Information ===---\n");
printf("%-48s", "Manufacturer JEDEC ID");
for (i = 64; i < 72; i++)
printf(" %02x", record[i]);
printf("\n");
if (s->mloc)
printf("%-48s 0x%02x\n", "Manufacturing Location Code",
s->mloc);
printf("%-48s ", "Part Number");
for (i = 73; i < 91; i++) {
if (record[i] >= 32 && record[i] < 127)
printf("%c", record[i]);
else
printf("%d", record[i]);
}
printf("\n");
printf("%-48s 20%d-W%d\n", "Manufacturing Date", record[93],
record[94]);
printf("%-48s 0x", "Assembly Serial Number");
for (i = 95; i < 99; i++)
printf("%02X", record[i]);
printf("\n");
}
#define SPD_SPA0_ADDRESS 0x36
#define SPD_SPA1_ADDRESS 0x37
static int select_page(void *ctx,
int (*xfer)(void *ctx, struct i2c_msg *msgs, int num),
uint8_t addr)
{
struct i2c_msg msg = {
.addr = addr,
.len = 0,
};
int ret;
ret = xfer(ctx, &msg, 1);
if (ret < 0)
return ret;
return 0;
}
static int read_buf(void *ctx,
int (*xfer)(void *ctx, struct i2c_msg *msgs, int num),
uint8_t addr, int page, void *buf)
{
uint8_t pos = 0;
int ret;
struct i2c_msg msg[2] = {
{
.addr = addr,
.len = 1,
.buf = &pos,
}, {
.addr = addr,
.len = 256,
.flags = I2C_M_RD,
.buf = buf,
}
};
ret = select_page(ctx, xfer, page);
if (ret < 0)
return ret;
ret = xfer(ctx, msg, 2);
if (ret < 0)
return ret;
return 0;
}
/**
* spd_read_eeprom - Read contents of a SPD EEPROM
* @ctx: Context pointer for the xfer function
* @xfer: I2C message transfer function
* @addr: I2C bus address for the EEPROM
* @buf: buffer to read the SPD data to
*
* This function takes a I2C message transfer function and reads the contents
* from a SPD EEPROM to the buffer provided at @buf. The buffer should at least
* have a size of 512 bytes. Returns 0 for success or a negative error code
* otherwise.
*/
int spd_read_eeprom(void *ctx,
int (*xfer)(void *ctx, struct i2c_msg *msgs, int num),
uint8_t addr, void *buf)
{
unsigned char *buf8 = buf;
int ret;
ret = read_buf(ctx, xfer, addr, SPD_SPA0_ADDRESS, buf);
if (ret < 0)
return ret;
if (buf8[2] == SPD_MEMTYPE_DDR4) {
ret = read_buf(ctx, xfer, addr, SPD_SPA1_ADDRESS, buf + 256);
if (ret < 0)
return ret;
}
return 0;
}
|