summaryrefslogtreecommitdiff
path: root/cord/cordbscs.c
diff options
context:
space:
mode:
Diffstat (limited to 'cord/cordbscs.c')
-rw-r--r--cord/cordbscs.c718
1 files changed, 360 insertions, 358 deletions
diff --git a/cord/cordbscs.c b/cord/cordbscs.c
index d83f4067..924bf445 100644
--- a/cord/cordbscs.c
+++ b/cord/cordbscs.c
@@ -19,64 +19,64 @@
# include <stdio.h>
# include <string.h>
-/* An implementation of the cord primitives. These are the only */
-/* Functions that understand the representation. We perform only */
-/* minimal checks on arguments to these functions. Out of bounds */
-/* arguments to the iteration functions may result in client functions */
-/* invoked on garbage data. In most cases, client functions should be */
-/* programmed defensively enough that this does not result in memory */
-/* smashes. */
+/* An implementation of the cord primitives. These are the only */
+/* Functions that understand the representation. We perform only */
+/* minimal checks on arguments to these functions. Out of bounds */
+/* arguments to the iteration functions may result in client functions */
+/* invoked on garbage data. In most cases, client functions should be */
+/* programmed defensively enough that this does not result in memory */
+/* smashes. */
typedef void (* oom_fn)(void);
oom_fn CORD_oom_fn = (oom_fn) 0;
# define OUT_OF_MEMORY { if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \
- ABORT("Out of memory\n"); }
+ ABORT("Out of memory\n"); }
# define ABORT(msg) { fprintf(stderr, "%s\n", msg); abort(); }
typedef unsigned long word;
typedef union {
struct Concatenation {
- char null;
- char header;
- char depth; /* concatenation nesting depth. */
- unsigned char left_len;
- /* Length of left child if it is sufficiently */
- /* short; 0 otherwise. */
-# define MAX_LEFT_LEN 255
- word len;
- CORD left; /* length(left) > 0 */
- CORD right; /* length(right) > 0 */
+ char null;
+ char header;
+ char depth; /* concatenation nesting depth. */
+ unsigned char left_len;
+ /* Length of left child if it is sufficiently */
+ /* short; 0 otherwise. */
+# define MAX_LEFT_LEN 255
+ word len;
+ CORD left; /* length(left) > 0 */
+ CORD right; /* length(right) > 0 */
} concatenation;
struct Function {
- char null;
- char header;
- char depth; /* always 0 */
- char left_len; /* always 0 */
- word len;
- CORD_fn fn;
- void * client_data;
+ char null;
+ char header;
+ char depth; /* always 0 */
+ char left_len; /* always 0 */
+ word len;
+ CORD_fn fn;
+ void * client_data;
} function;
struct Generic {
- char null;
- char header;
- char depth;
- char left_len;
- word len;
+ char null;
+ char header;
+ char depth;
+ char left_len;
+ word len;
} generic;
char string[1];
} CordRep;
# define CONCAT_HDR 1
-
+
# define FN_HDR 4
# define SUBSTR_HDR 6
- /* Substring nodes are a special case of function nodes. */
- /* The client_data field is known to point to a substr_args */
- /* structure, and the function is either CORD_apply_access_fn */
- /* or CORD_index_access_fn. */
+ /* Substring nodes are a special case of function nodes. */
+ /* The client_data field is known to point to a substr_args */
+ /* structure, and the function is either CORD_apply_access_fn */
+ /* or CORD_index_access_fn. */
/* The following may be applied only to function and concatenation nodes: */
#define IS_CONCATENATION(s) (((CordRep *)s)->generic.header == CONCAT_HDR)
@@ -90,26 +90,26 @@ typedef union {
#define GEN_LEN(s) (CORD_IS_STRING(s) ? strlen(s) : LEN(s))
#define LEFT_LEN(c) ((c) -> left_len != 0? \
- (c) -> left_len \
- : (CORD_IS_STRING((c) -> left) ? \
- (c) -> len - GEN_LEN((c) -> right) \
- : LEN((c) -> left)))
+ (c) -> left_len \
+ : (CORD_IS_STRING((c) -> left) ? \
+ (c) -> len - GEN_LEN((c) -> right) \
+ : LEN((c) -> left)))
#define SHORT_LIMIT (sizeof(CordRep) - 1)
- /* Cords shorter than this are C strings */
+ /* Cords shorter than this are C strings */
-/* Dump the internal representation of x to stdout, with initial */
-/* indentation level n. */
+/* Dump the internal representation of x to stdout, with initial */
+/* indentation level n. */
void CORD_dump_inner(CORD x, unsigned n)
{
register size_t i;
-
+
for (i = 0; i < (size_t)n; i++) {
fputs(" ", stdout);
}
if (x == 0) {
- fputs("NIL\n", stdout);
+ fputs("NIL\n", stdout);
} else if (CORD_IS_STRING(x)) {
for (i = 0; i <= SHORT_LIMIT; i++) {
if (x[i] == '\0') break;
@@ -119,14 +119,14 @@ void CORD_dump_inner(CORD x, unsigned n)
putchar('\n');
} else if (IS_CONCATENATION(x)) {
register struct Concatenation * conc =
- &(((CordRep *)x) -> concatenation);
+ &(((CordRep *)x) -> concatenation);
printf("Concatenation: %p (len: %d, depth: %d)\n",
x, (int)(conc -> len), (int)(conc -> depth));
CORD_dump_inner(conc -> left, n+1);
CORD_dump_inner(conc -> right, n+1);
} else /* function */{
register struct Function * func =
- &(((CordRep *)x) -> function);
+ &(((CordRep *)x) -> function);
if (IS_SUBSTR(x)) printf("(Substring) ");
printf("Function: %p (len: %d): ", x, (int)(func -> len));
for (i = 0; i < 20 && i < func -> len; i++) {
@@ -137,7 +137,7 @@ void CORD_dump_inner(CORD x, unsigned n)
}
}
-/* Dump the internal representation of x to stdout */
+/* Dump the internal representation of x to stdout */
void CORD_dump(CORD x)
{
CORD_dump_inner(x, 0);
@@ -149,7 +149,7 @@ CORD CORD_cat_char_star(CORD x, const char * y, size_t leny)
register size_t result_len;
register size_t lenx;
register int depth;
-
+
if (x == CORD_EMPTY) return(y);
if (leny == 0) return(x);
if (CORD_IS_STRING(x)) {
@@ -157,7 +157,7 @@ CORD CORD_cat_char_star(CORD x, const char * y, size_t leny)
result_len = lenx + leny;
if (result_len <= SHORT_LIMIT) {
register char * result = GC_MALLOC_ATOMIC(result_len+1);
-
+
if (result == 0) OUT_OF_MEMORY;
memcpy(result, x, lenx);
memcpy(result + lenx, y, leny);
@@ -167,35 +167,35 @@ CORD CORD_cat_char_star(CORD x, const char * y, size_t leny)
depth = 1;
}
} else {
- register CORD right;
- register CORD left;
- register char * new_right;
- register size_t right_len;
-
- lenx = LEN(x);
-
+ register CORD right;
+ register CORD left;
+ register char * new_right;
+ register size_t right_len;
+
+ lenx = LEN(x);
+
if (leny <= SHORT_LIMIT/2
- && IS_CONCATENATION(x)
+ && IS_CONCATENATION(x)
&& CORD_IS_STRING(right = ((CordRep *)x) -> concatenation.right)) {
/* Merge y into right part of x. */
if (!CORD_IS_STRING(left = ((CordRep *)x) -> concatenation.left)) {
- right_len = lenx - LEN(left);
+ right_len = lenx - LEN(left);
} else if (((CordRep *)x) -> concatenation.left_len != 0) {
right_len = lenx - ((CordRep *)x) -> concatenation.left_len;
} else {
- right_len = strlen(right);
+ right_len = strlen(right);
}
result_len = right_len + leny; /* length of new_right */
if (result_len <= SHORT_LIMIT) {
- new_right = GC_MALLOC_ATOMIC(result_len + 1);
- memcpy(new_right, right, right_len);
- memcpy(new_right + right_len, y, leny);
- new_right[result_len] = '\0';
- y = new_right;
- leny = result_len;
- x = left;
- lenx -= right_len;
- /* Now fall through to concatenate the two pieces: */
+ new_right = GC_MALLOC_ATOMIC(result_len + 1);
+ memcpy(new_right, right, right_len);
+ memcpy(new_right + right_len, y, leny);
+ new_right[result_len] = '\0';
+ y = new_right;
+ leny = result_len;
+ x = left;
+ lenx -= right_len;
+ /* Now fall through to concatenate the two pieces: */
}
if (CORD_IS_STRING(x)) {
depth = 1;
@@ -209,21 +209,21 @@ CORD CORD_cat_char_star(CORD x, const char * y, size_t leny)
}
{
/* The general case; lenx, result_len is known: */
- register struct Concatenation * result;
-
- result = GC_NEW(struct Concatenation);
- if (result == 0) OUT_OF_MEMORY;
- result->header = CONCAT_HDR;
- result->depth = depth;
- if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
- result->len = result_len;
- result->left = x;
- result->right = y;
- if (depth >= MAX_DEPTH) {
- return(CORD_balance((CORD)result));
- } else {
- return((CORD) result);
- }
+ register struct Concatenation * result;
+
+ result = GC_NEW(struct Concatenation);
+ if (result == 0) OUT_OF_MEMORY;
+ result->header = CONCAT_HDR;
+ result->depth = depth;
+ if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
+ result->len = result_len;
+ result->left = x;
+ result->right = y;
+ if (depth >= MAX_DEPTH) {
+ return(CORD_balance((CORD)result));
+ } else {
+ return((CORD) result);
+ }
}
}
@@ -233,7 +233,7 @@ CORD CORD_cat(CORD x, CORD y)
register size_t result_len;
register int depth;
register size_t lenx;
-
+
if (x == CORD_EMPTY) return(y);
if (y == CORD_EMPTY) return(x);
if (CORD_IS_STRING(y)) {
@@ -243,28 +243,28 @@ CORD CORD_cat(CORD x, CORD y)
depth = DEPTH(y) + 1;
} else {
register int depthy = DEPTH(y);
-
+
lenx = LEN(x);
depth = DEPTH(x) + 1;
if (depthy >= depth) depth = depthy + 1;
}
result_len = lenx + LEN(y);
{
- register struct Concatenation * result;
-
- result = GC_NEW(struct Concatenation);
- if (result == 0) OUT_OF_MEMORY;
- result->header = CONCAT_HDR;
- result->depth = depth;
- if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
- result->len = result_len;
- result->left = x;
- result->right = y;
- if (depth >= MAX_DEPTH) {
- return(CORD_balance((CORD)result));
- } else {
- return((CORD) result);
- }
+ register struct Concatenation * result;
+
+ result = GC_NEW(struct Concatenation);
+ if (result == 0) OUT_OF_MEMORY;
+ result->header = CONCAT_HDR;
+ result->depth = depth;
+ if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
+ result->len = result_len;
+ result->left = x;
+ result->right = y;
+ if (depth >= MAX_DEPTH) {
+ return(CORD_balance((CORD)result));
+ } else {
+ return((CORD) result);
+ }
}
}
@@ -278,7 +278,7 @@ CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len)
register size_t i;
char buf[SHORT_LIMIT+1];
register char c;
-
+
for (i = 0; i < len; i++) {
c = (*fn)(i, client_data);
if (c == '\0') goto gen_case;
@@ -293,25 +293,25 @@ CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len)
}
gen_case:
{
- register struct Function * result;
-
- result = GC_NEW(struct Function);
- if (result == 0) OUT_OF_MEMORY;
- result->header = FN_HDR;
- /* depth is already 0 */
- result->len = len;
- result->fn = fn;
- result->client_data = client_data;
- return((CORD) result);
+ register struct Function * result;
+
+ result = GC_NEW(struct Function);
+ if (result == 0) OUT_OF_MEMORY;
+ result->header = FN_HDR;
+ /* depth is already 0 */
+ result->len = len;
+ result->fn = fn;
+ result->client_data = client_data;
+ return((CORD) result);
}
}
size_t CORD_len(CORD x)
{
if (x == 0) {
- return(0);
+ return(0);
} else {
- return(GEN_LEN(x));
+ return(GEN_LEN(x));
}
}
@@ -323,7 +323,7 @@ struct substr_args {
char CORD_index_access_fn(size_t i, void * client_data)
{
register struct substr_args *descr = (struct substr_args *)client_data;
-
+
return(((char *)(descr->sa_cord))[i + descr->sa_index]);
}
@@ -331,19 +331,19 @@ char CORD_apply_access_fn(size_t i, void * client_data)
{
register struct substr_args *descr = (struct substr_args *)client_data;
register struct Function * fn_cord = &(descr->sa_cord->function);
-
+
return((*(fn_cord->fn))(i + descr->sa_index, fn_cord->client_data));
}
-/* A version of CORD_substr that simply returns a function node, thus */
-/* postponing its work. The fourth argument is a function that may */
-/* be used for efficient access to the ith character. */
-/* Assumes i >= 0 and i + n < length(x). */
+/* A version of CORD_substr that simply returns a function node, thus */
+/* postponing its work. The fourth argument is a function that may */
+/* be used for efficient access to the ith character. */
+/* Assumes i >= 0 and i + n < length(x). */
CORD CORD_substr_closure(CORD x, size_t i, size_t n, CORD_fn f)
{
register struct substr_args * sa = GC_NEW(struct substr_args);
CORD result;
-
+
if (sa == 0) OUT_OF_MEMORY;
sa->sa_cord = (CordRep *)x;
sa->sa_index = i;
@@ -353,9 +353,9 @@ CORD CORD_substr_closure(CORD x, size_t i, size_t n, CORD_fn f)
}
# define SUBSTR_LIMIT (10 * SHORT_LIMIT)
- /* Substrings of function nodes and flat strings shorter than */
- /* this are flat strings. Othewise we use a functional */
- /* representation, which is significantly slower to access. */
+ /* Substrings of function nodes and flat strings shorter than */
+ /* this are flat strings. Othewise we use a functional */
+ /* representation, which is significantly slower to access. */
/* A version of CORD_substr that assumes i >= 0, n > 0, and i + n < length(x).*/
CORD CORD_substr_checked(CORD x, size_t i, size_t n)
@@ -365,56 +365,56 @@ CORD CORD_substr_checked(CORD x, size_t i, size_t n)
return(CORD_substr_closure(x, i, n, CORD_index_access_fn));
} else {
register char * result = GC_MALLOC_ATOMIC(n+1);
-
+
if (result == 0) OUT_OF_MEMORY;
strncpy(result, x+i, n);
result[n] = '\0';
return(result);
}
} else if (IS_CONCATENATION(x)) {
- register struct Concatenation * conc
- = &(((CordRep *)x) -> concatenation);
- register size_t left_len;
- register size_t right_len;
-
- left_len = LEFT_LEN(conc);
- right_len = conc -> len - left_len;
- if (i >= left_len) {
- if (n == right_len) return(conc -> right);
- return(CORD_substr_checked(conc -> right, i - left_len, n));
- } else if (i+n <= left_len) {
- if (n == left_len) return(conc -> left);
- return(CORD_substr_checked(conc -> left, i, n));
- } else {
- /* Need at least one character from each side. */
- register CORD left_part;
- register CORD right_part;
- register size_t left_part_len = left_len - i;
-
- if (i == 0) {
- left_part = conc -> left;
- } else {
- left_part = CORD_substr_checked(conc -> left, i, left_part_len);
- }
- if (i + n == right_len + left_len) {
- right_part = conc -> right;
- } else {
- right_part = CORD_substr_checked(conc -> right, 0,
- n - left_part_len);
- }
- return(CORD_cat(left_part, right_part));
- }
+ register struct Concatenation * conc
+ = &(((CordRep *)x) -> concatenation);
+ register size_t left_len;
+ register size_t right_len;
+
+ left_len = LEFT_LEN(conc);
+ right_len = conc -> len - left_len;
+ if (i >= left_len) {
+ if (n == right_len) return(conc -> right);
+ return(CORD_substr_checked(conc -> right, i - left_len, n));
+ } else if (i+n <= left_len) {
+ if (n == left_len) return(conc -> left);
+ return(CORD_substr_checked(conc -> left, i, n));
+ } else {
+ /* Need at least one character from each side. */
+ register CORD left_part;
+ register CORD right_part;
+ register size_t left_part_len = left_len - i;
+
+ if (i == 0) {
+ left_part = conc -> left;
+ } else {
+ left_part = CORD_substr_checked(conc -> left, i, left_part_len);
+ }
+ if (i + n == right_len + left_len) {
+ right_part = conc -> right;
+ } else {
+ right_part = CORD_substr_checked(conc -> right, 0,
+ n - left_part_len);
+ }
+ return(CORD_cat(left_part, right_part));
+ }
} else /* function */ {
if (n > SUBSTR_LIMIT) {
if (IS_SUBSTR(x)) {
- /* Avoid nesting substring nodes. */
- register struct Function * f = &(((CordRep *)x) -> function);
- register struct substr_args *descr =
- (struct substr_args *)(f -> client_data);
-
- return(CORD_substr_closure((CORD)descr->sa_cord,
- i + descr->sa_index,
- n, f -> fn));
+ /* Avoid nesting substring nodes. */
+ register struct Function * f = &(((CordRep *)x) -> function);
+ register struct substr_args *descr =
+ (struct substr_args *)(f -> client_data);
+
+ return(CORD_substr_closure((CORD)descr->sa_cord,
+ i + descr->sa_index,
+ n, f -> fn));
} else {
return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
}
@@ -426,13 +426,13 @@ CORD CORD_substr_checked(CORD x, size_t i, size_t n)
register char c;
register int j;
register int lim = i + n;
-
+
for (j = i; j < lim; j++) {
- c = (*(f -> fn))(j, f -> client_data);
- if (c == '\0') {
- return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
- }
- *p++ = c;
+ c = (*(f -> fn))(j, f -> client_data);
+ if (c == '\0') {
+ return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
+ }
+ *p++ = c;
}
*p = '\0';
result = GC_MALLOC_ATOMIC(n+1);
@@ -446,59 +446,59 @@ CORD CORD_substr_checked(CORD x, size_t i, size_t n)
CORD CORD_substr(CORD x, size_t i, size_t n)
{
register size_t len = CORD_len(x);
-
+
if (i >= len || n <= 0) return(0);
- /* n < 0 is impossible in a correct C implementation, but */
- /* quite possible under SunOS 4.X. */
+ /* n < 0 is impossible in a correct C implementation, but */
+ /* quite possible under SunOS 4.X. */
if (i + n > len) n = len - i;
# ifndef __STDC__
if (i < 0) ABORT("CORD_substr: second arg. negative");
- /* Possible only if both client and C implementation are buggy. */
- /* But empirically this happens frequently. */
+ /* Possible only if both client and C implementation are buggy. */
+ /* But empirically this happens frequently. */
# endif
return(CORD_substr_checked(x, i, n));
}
-/* See cord.h for definition. We assume i is in range. */
+/* See cord.h for definition. We assume i is in range. */
int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1,
- CORD_batched_iter_fn f2, void * client_data)
+ CORD_batched_iter_fn f2, void * client_data)
{
if (x == 0) return(0);
if (CORD_IS_STRING(x)) {
- register const char *p = x+i;
-
- if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big");
+ register const char *p = x+i;
+
+ if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big");
if (f2 != CORD_NO_FN) {
return((*f2)(p, client_data));
} else {
- while (*p) {
+ while (*p) {
if ((*f1)(*p, client_data)) return(1);
p++;
- }
- return(0);
+ }
+ return(0);
}
} else if (IS_CONCATENATION(x)) {
- register struct Concatenation * conc
- = &(((CordRep *)x) -> concatenation);
-
-
- if (i > 0) {
- register size_t left_len = LEFT_LEN(conc);
-
- if (i >= left_len) {
- return(CORD_iter5(conc -> right, i - left_len, f1, f2,
- client_data));
- }
- }
- if (CORD_iter5(conc -> left, i, f1, f2, client_data)) {
- return(1);
- }
- return(CORD_iter5(conc -> right, 0, f1, f2, client_data));
+ register struct Concatenation * conc
+ = &(((CordRep *)x) -> concatenation);
+
+
+ if (i > 0) {
+ register size_t left_len = LEFT_LEN(conc);
+
+ if (i >= left_len) {
+ return(CORD_iter5(conc -> right, i - left_len, f1, f2,
+ client_data));
+ }
+ }
+ if (CORD_iter5(conc -> left, i, f1, f2, client_data)) {
+ return(1);
+ }
+ return(CORD_iter5(conc -> right, 0, f1, f2, client_data));
} else /* function */ {
register struct Function * f = &(((CordRep *)x) -> function);
register size_t j;
register size_t lim = f -> len;
-
+
for (j = i; j < lim; j++) {
if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
return(1);
@@ -507,7 +507,7 @@ int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1,
return(0);
}
}
-
+
#undef CORD_iter
int CORD_iter(CORD x, CORD_iter_fn f1, void * client_data)
{
@@ -518,36 +518,36 @@ int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data)
{
if (x == 0) return(0);
if (CORD_IS_STRING(x)) {
- register const char *p = x + i;
- register char c;
-
- for(;;) {
- c = *p;
- if (c == '\0') ABORT("2nd arg to CORD_riter4 too big");
+ register const char *p = x + i;
+ register char c;
+
+ for(;;) {
+ c = *p;
+ if (c == '\0') ABORT("2nd arg to CORD_riter4 too big");
if ((*f1)(c, client_data)) return(1);
- if (p == x) break;
+ if (p == x) break;
p--;
- }
- return(0);
+ }
+ return(0);
} else if (IS_CONCATENATION(x)) {
- register struct Concatenation * conc
- = &(((CordRep *)x) -> concatenation);
- register CORD left_part = conc -> left;
- register size_t left_len;
-
- left_len = LEFT_LEN(conc);
- if (i >= left_len) {
- if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) {
- return(1);
- }
- return(CORD_riter4(left_part, left_len - 1, f1, client_data));
- } else {
- return(CORD_riter4(left_part, i, f1, client_data));
- }
+ register struct Concatenation * conc
+ = &(((CordRep *)x) -> concatenation);
+ register CORD left_part = conc -> left;
+ register size_t left_len;
+
+ left_len = LEFT_LEN(conc);
+ if (i >= left_len) {
+ if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) {
+ return(1);
+ }
+ return(CORD_riter4(left_part, left_len - 1, f1, client_data));
+ } else {
+ return(CORD_riter4(left_part, i, f1, client_data));
+ }
} else /* function */ {
register struct Function * f = &(((CordRep *)x) -> function);
register size_t j;
-
+
for (j = i; ; j--) {
if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
return(1);
@@ -559,7 +559,9 @@ int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data)
int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data)
{
- return(CORD_riter4(x, CORD_len(x) - 1, f1, client_data));
+ size_t len = CORD_len(x);
+ if (len == 0) return(0);
+ return(CORD_riter4(x, len - 1, f1, client_data));
}
/*
@@ -579,7 +581,7 @@ int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data)
typedef struct {
CORD c;
- size_t len; /* Actual length of c */
+ size_t len; /* Actual length of c */
} ForestElement;
static size_t min_len [ MAX_DEPTH ];
@@ -589,24 +591,24 @@ static int min_len_init = 0;
int CORD_max_len;
typedef ForestElement Forest [ MAX_DEPTH ];
- /* forest[i].len >= fib(i+1) */
- /* The string is the concatenation */
- /* of the forest in order of DECREASING */
- /* indices. */
+ /* forest[i].len >= fib(i+1) */
+ /* The string is the concatenation */
+ /* of the forest in order of DECREASING */
+ /* indices. */
void CORD_init_min_len()
{
register int i;
register size_t last, previous, current;
-
+
min_len[0] = previous = 1;
min_len[1] = last = 2;
for (i = 2; i < MAX_DEPTH; i++) {
- current = last + previous;
- if (current < last) /* overflow */ current = last;
- min_len[i] = current;
- previous = last;
- last = current;
+ current = last + previous;
+ if (current < last) /* overflow */ current = last;
+ min_len[i] = current;
+ previous = last;
+ last = current;
}
CORD_max_len = last - 1;
min_len_init = 1;
@@ -616,48 +618,48 @@ void CORD_init_min_len()
void CORD_init_forest(ForestElement * forest, size_t max_len)
{
register int i;
-
+
for (i = 0; i < MAX_DEPTH; i++) {
- forest[i].c = 0;
- if (min_len[i] > max_len) return;
+ forest[i].c = 0;
+ if (min_len[i] > max_len) return;
}
ABORT("Cord too long");
}
-/* Add a leaf to the appropriate level in the forest, cleaning */
-/* out lower levels as necessary. */
-/* Also works if x is a balanced tree of concatenations; however */
-/* in this case an extra concatenation node may be inserted above x; */
-/* This node should not be counted in the statement of the invariants. */
+/* Add a leaf to the appropriate level in the forest, cleaning */
+/* out lower levels as necessary. */
+/* Also works if x is a balanced tree of concatenations; however */
+/* in this case an extra concatenation node may be inserted above x; */
+/* This node should not be counted in the statement of the invariants. */
void CORD_add_forest(ForestElement * forest, CORD x, size_t len)
{
register int i = 0;
register CORD sum = CORD_EMPTY;
register size_t sum_len = 0;
-
+
while (len > min_len[i + 1]) {
- if (forest[i].c != 0) {
- sum = CORD_cat(forest[i].c, sum);
- sum_len += forest[i].len;
- forest[i].c = 0;
- }
+ if (forest[i].c != 0) {
+ sum = CORD_cat(forest[i].c, sum);
+ sum_len += forest[i].len;
+ forest[i].c = 0;
+ }
i++;
}
- /* Sum has depth at most 1 greter than what would be required */
- /* for balance. */
+ /* Sum has depth at most 1 greter than what would be required */
+ /* for balance. */
sum = CORD_cat(sum, x);
sum_len += len;
- /* If x was a leaf, then sum is now balanced. To see this */
- /* consider the two cases in which forest[i-1] either is or is */
- /* not empty. */
+ /* If x was a leaf, then sum is now balanced. To see this */
+ /* consider the two cases in which forest[i-1] either is or is */
+ /* not empty. */
while (sum_len >= min_len[i]) {
- if (forest[i].c != 0) {
- sum = CORD_cat(forest[i].c, sum);
- sum_len += forest[i].len;
- /* This is again balanced, since sum was balanced, and has */
- /* allowable depth that differs from i by at most 1. */
- forest[i].c = 0;
- }
+ if (forest[i].c != 0) {
+ sum = CORD_cat(forest[i].c, sum);
+ sum_len += forest[i].len;
+ /* This is again balanced, since sum was balanced, and has */
+ /* allowable depth that differs from i by at most 1. */
+ forest[i].c = 0;
+ }
i++;
}
i--;
@@ -670,37 +672,37 @@ CORD CORD_concat_forest(ForestElement * forest, size_t expected_len)
register int i = 0;
CORD sum = 0;
size_t sum_len = 0;
-
+
while (sum_len != expected_len) {
- if (forest[i].c != 0) {
- sum = CORD_cat(forest[i].c, sum);
- sum_len += forest[i].len;
- }
+ if (forest[i].c != 0) {
+ sum = CORD_cat(forest[i].c, sum);
+ sum_len += forest[i].len;
+ }
i++;
}
return(sum);
}
-/* Insert the frontier of x into forest. Balanced subtrees are */
-/* treated as leaves. This potentially adds one to the depth */
-/* of the final tree. */
+/* Insert the frontier of x into forest. Balanced subtrees are */
+/* treated as leaves. This potentially adds one to the depth */
+/* of the final tree. */
void CORD_balance_insert(CORD x, size_t len, ForestElement * forest)
{
register int depth;
-
+
if (CORD_IS_STRING(x)) {
CORD_add_forest(forest, x, len);
} else if (IS_CONCATENATION(x)
&& ((depth = DEPTH(x)) >= MAX_DEPTH
|| len < min_len[depth])) {
- register struct Concatenation * conc
- = &(((CordRep *)x) -> concatenation);
- size_t left_len = LEFT_LEN(conc);
-
- CORD_balance_insert(conc -> left, left_len, forest);
- CORD_balance_insert(conc -> right, len - left_len, forest);
+ register struct Concatenation * conc
+ = &(((CordRep *)x) -> concatenation);
+ size_t left_len = LEFT_LEN(conc);
+
+ CORD_balance_insert(conc -> left, left_len, forest);
+ CORD_balance_insert(conc -> right, len - left_len, forest);
} else /* function or balanced */ {
- CORD_add_forest(forest, x, len);
+ CORD_add_forest(forest, x, len);
}
}
@@ -709,7 +711,7 @@ CORD CORD_balance(CORD x)
{
Forest forest;
register size_t len;
-
+
if (x == 0) return(0);
if (CORD_IS_STRING(x)) return(x);
if (!min_len_init) CORD_init_min_len();
@@ -720,13 +722,13 @@ CORD CORD_balance(CORD x)
}
-/* Position primitives */
+/* Position primitives */
/* Private routines to deal with the hard cases only: */
-/* P contains a prefix of the path to cur_pos. Extend it to a full */
-/* path and set up leaf info. */
-/* Return 0 if past the end of cord, 1 o.w. */
+/* P contains a prefix of the path to cur_pos. Extend it to a full */
+/* path and set up leaf info. */
+/* Return 0 if past the end of cord, 1 o.w. */
void CORD__extend_path(register CORD_pos p)
{
register struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]);
@@ -734,25 +736,25 @@ void CORD__extend_path(register CORD_pos p)
register size_t pos = p[0].cur_pos;
register size_t top_pos = current_pe -> pe_start_pos;
register size_t top_len = GEN_LEN(top);
-
+
/* Fill in the rest of the path. */
while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) {
- register struct Concatenation * conc =
- &(((CordRep *)top) -> concatenation);
- register size_t left_len;
-
- left_len = LEFT_LEN(conc);
- current_pe++;
- if (pos >= top_pos + left_len) {
- current_pe -> pe_cord = top = conc -> right;
- current_pe -> pe_start_pos = top_pos = top_pos + left_len;
- top_len -= left_len;
- } else {
- current_pe -> pe_cord = top = conc -> left;
- current_pe -> pe_start_pos = top_pos;
- top_len = left_len;
- }
- p[0].path_len++;
+ register struct Concatenation * conc =
+ &(((CordRep *)top) -> concatenation);
+ register size_t left_len;
+
+ left_len = LEFT_LEN(conc);
+ current_pe++;
+ if (pos >= top_pos + left_len) {
+ current_pe -> pe_cord = top = conc -> right;
+ current_pe -> pe_start_pos = top_pos = top_pos + left_len;
+ top_len -= left_len;
+ } else {
+ current_pe -> pe_cord = top = conc -> left;
+ current_pe -> pe_start_pos = top_pos;
+ top_len = left_len;
+ }
+ p[0].path_len++;
}
/* Fill in leaf description for fast access. */
if (CORD_IS_STRING(top)) {
@@ -771,7 +773,7 @@ char CORD__pos_fetch(register CORD_pos p)
struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]);
CORD leaf = pe -> pe_cord;
register struct Function * f = &(((CordRep *)leaf) -> function);
-
+
if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf");
return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data));
}
@@ -781,48 +783,48 @@ void CORD__next(register CORD_pos p)
register size_t cur_pos = p[0].cur_pos + 1;
register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
register CORD leaf = current_pe -> pe_cord;
-
+
/* Leaf is not a string or we're at end of leaf */
p[0].cur_pos = cur_pos;
if (!CORD_IS_STRING(leaf)) {
- /* Function leaf */
- register struct Function * f = &(((CordRep *)leaf) -> function);
- register size_t start_pos = current_pe -> pe_start_pos;
- register size_t end_pos = start_pos + f -> len;
-
- if (cur_pos < end_pos) {
- /* Fill cache and return. */
- register size_t i;
- register size_t limit = cur_pos + FUNCTION_BUF_SZ;
- register CORD_fn fn = f -> fn;
- register void * client_data = f -> client_data;
-
- if (limit > end_pos) {
- limit = end_pos;
- }
- for (i = cur_pos; i < limit; i++) {
- p[0].function_buf[i - cur_pos] =
- (*fn)(i - start_pos, client_data);
- }
- p[0].cur_start = cur_pos;
- p[0].cur_leaf = p[0].function_buf;
- p[0].cur_end = limit;
- return;
- }
+ /* Function leaf */
+ register struct Function * f = &(((CordRep *)leaf) -> function);
+ register size_t start_pos = current_pe -> pe_start_pos;
+ register size_t end_pos = start_pos + f -> len;
+
+ if (cur_pos < end_pos) {
+ /* Fill cache and return. */
+ register size_t i;
+ register size_t limit = cur_pos + FUNCTION_BUF_SZ;
+ register CORD_fn fn = f -> fn;
+ register void * client_data = f -> client_data;
+
+ if (limit > end_pos) {
+ limit = end_pos;
+ }
+ for (i = cur_pos; i < limit; i++) {
+ p[0].function_buf[i - cur_pos] =
+ (*fn)(i - start_pos, client_data);
+ }
+ p[0].cur_start = cur_pos;
+ p[0].cur_leaf = p[0].function_buf;
+ p[0].cur_end = limit;
+ return;
+ }
}
- /* End of leaf */
- /* Pop the stack until we find two concatenation nodes with the */
- /* same start position: this implies we were in left part. */
+ /* End of leaf */
+ /* Pop the stack until we find two concatenation nodes with the */
+ /* same start position: this implies we were in left part. */
{
- while (p[0].path_len > 0
- && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) {
- p[0].path_len--;
- current_pe--;
- }
- if (p[0].path_len == 0) {
- p[0].path_len = CORD_POS_INVALID;
+ while (p[0].path_len > 0
+ && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) {
+ p[0].path_len--;
+ current_pe--;
+ }
+ if (p[0].path_len == 0) {
+ p[0].path_len = CORD_POS_INVALID;
return;
- }
+ }
}
p[0].path_len--;
CORD__extend_path(p);
@@ -831,26 +833,26 @@ void CORD__next(register CORD_pos p)
void CORD__prev(register CORD_pos p)
{
register struct CORD_pe * pe = &(p[0].path[p[0].path_len]);
-
+
if (p[0].cur_pos == 0) {
p[0].path_len = CORD_POS_INVALID;
return;
}
p[0].cur_pos--;
if (p[0].cur_pos >= pe -> pe_start_pos) return;
-
- /* Beginning of leaf */
-
- /* Pop the stack until we find two concatenation nodes with the */
- /* different start position: this implies we were in right part. */
+
+ /* Beginning of leaf */
+
+ /* Pop the stack until we find two concatenation nodes with the */
+ /* different start position: this implies we were in right part. */
{
- register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
-
- while (p[0].path_len > 0
- && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) {
- p[0].path_len--;
- current_pe--;
- }
+ register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
+
+ while (p[0].path_len > 0
+ && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) {
+ p[0].path_len--;
+ current_pe--;
+ }
}
p[0].path_len--;
CORD__extend_path(p);
@@ -866,7 +868,7 @@ void CORD__prev(register CORD_pos p)
char CORD_pos_fetch(register CORD_pos p)
{
if (p[0].cur_start <= p[0].cur_pos && p[0].cur_pos < p[0].cur_end) {
- return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]);
+ return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]);
} else {
return(CORD__pos_fetch(p));
}
@@ -875,18 +877,18 @@ char CORD_pos_fetch(register CORD_pos p)
void CORD_next(CORD_pos p)
{
if (p[0].cur_pos < p[0].cur_end - 1) {
- p[0].cur_pos++;
+ p[0].cur_pos++;
} else {
- CORD__next(p);
+ CORD__next(p);
}
}
void CORD_prev(CORD_pos p)
{
if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) {
- p[0].cur_pos--;
+ p[0].cur_pos--;
} else {
- CORD__prev(p);
+ CORD__prev(p);
}
}
@@ -908,8 +910,8 @@ int CORD_pos_valid(CORD_pos p)
void CORD_set_pos(CORD_pos p, CORD x, size_t i)
{
if (x == CORD_EMPTY) {
- p[0].path_len = CORD_POS_INVALID;
- return;
+ p[0].path_len = CORD_POS_INVALID;
+ return;
}
p[0].path[0].pe_cord = x;
p[0].path[0].pe_start_pos = 0;