1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
/*
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
* Copyright (c) 1999-2004 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2008-2022 Ivan Maidanski
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*/
#include "private/gc_priv.h"
#include <string.h>
/* Allocate reclaim list for the kind. Returns TRUE on success. */
STATIC GC_bool GC_alloc_reclaim_list(struct obj_kind *kind)
{
struct hblk ** result;
GC_ASSERT(I_HOLD_LOCK());
result = (struct hblk **)GC_scratch_alloc(
(MAXOBJGRANULES+1) * sizeof(struct hblk *));
if (EXPECT(NULL == result, FALSE)) return FALSE;
BZERO(result, (MAXOBJGRANULES+1)*sizeof(struct hblk *));
kind -> ok_reclaim_list = result;
return TRUE;
}
GC_INNER ptr_t GC_alloc_large(size_t lb, int k, unsigned flags,
size_t align_m1)
{
struct hblk * h;
size_t n_blocks; /* includes alignment */
ptr_t result = NULL;
GC_bool retry = FALSE;
GC_ASSERT(I_HOLD_LOCK());
lb = ROUNDUP_GRANULE_SIZE(lb);
n_blocks = OBJ_SZ_TO_BLOCKS_CHECKED(SIZET_SAT_ADD(lb, align_m1));
if (!EXPECT(GC_is_initialized, TRUE)) {
UNLOCK(); /* just to unset GC_lock_holder */
GC_init();
LOCK();
}
/* Do our share of marking work. */
if (GC_incremental && !GC_dont_gc) {
ENTER_GC();
GC_collect_a_little_inner((int)n_blocks);
EXIT_GC();
}
h = GC_allochblk(lb, k, flags, align_m1);
# ifdef USE_MUNMAP
if (NULL == h) {
GC_merge_unmapped();
h = GC_allochblk(lb, k, flags, align_m1);
}
# endif
while (0 == h && GC_collect_or_expand(n_blocks, flags != 0, retry)) {
h = GC_allochblk(lb, k, flags, align_m1);
retry = TRUE;
}
if (EXPECT(h != NULL, TRUE)) {
if (lb > HBLKSIZE) {
GC_large_allocd_bytes += HBLKSIZE * OBJ_SZ_TO_BLOCKS(lb);
if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)
GC_max_large_allocd_bytes = GC_large_allocd_bytes;
}
/* FIXME: Do we need some way to reset GC_max_large_allocd_bytes? */
result = h -> hb_body;
GC_ASSERT(((word)result & align_m1) == 0);
}
return result;
}
/* Allocate a large block of size lb bytes. Clear if appropriate. */
/* EXTRA_BYTES were already added to lb. */
STATIC ptr_t GC_alloc_large_and_clear(size_t lb, int k, unsigned flags)
{
ptr_t result;
GC_ASSERT(I_HOLD_LOCK());
result = GC_alloc_large(lb, k, flags, 0 /* align_m1 */);
if (EXPECT(result != NULL, TRUE)
&& (GC_debugging_started || GC_obj_kinds[k].ok_init)) {
/* Clear the whole block, in case of GC_realloc call. */
BZERO(result, HBLKSIZE * OBJ_SZ_TO_BLOCKS(lb));
}
return result;
}
/* Fill in additional entries in GC_size_map, including the i-th one. */
/* Note that a filled in section of the array ending at n always */
/* has the length of at least n/4. */
STATIC void GC_extend_size_map(size_t i)
{
size_t orig_granule_sz = ROUNDED_UP_GRANULES(i);
size_t granule_sz;
size_t byte_sz = GRANULES_TO_BYTES(orig_granule_sz);
/* The size we try to preserve. */
/* Close to i, unless this would */
/* introduce too many distinct sizes. */
size_t smaller_than_i = byte_sz - (byte_sz >> 3);
size_t low_limit; /* The lowest indexed entry we initialize. */
size_t number_of_objs;
GC_ASSERT(I_HOLD_LOCK());
GC_ASSERT(0 == GC_size_map[i]);
if (0 == GC_size_map[smaller_than_i]) {
low_limit = byte_sz - (byte_sz >> 2); /* much smaller than i */
granule_sz = orig_granule_sz;
while (GC_size_map[low_limit] != 0)
low_limit++;
} else {
low_limit = smaller_than_i + 1;
while (GC_size_map[low_limit] != 0)
low_limit++;
granule_sz = ROUNDED_UP_GRANULES(low_limit);
granule_sz += granule_sz >> 3;
if (granule_sz < orig_granule_sz)
granule_sz = orig_granule_sz;
}
/* For these larger sizes, we use an even number of granules. */
/* This makes it easier to, e.g., construct a 16-byte-aligned */
/* allocator even if GRANULE_BYTES is 8. */
granule_sz = (granule_sz + 1) & ~1;
if (granule_sz > MAXOBJGRANULES)
granule_sz = MAXOBJGRANULES;
/* If we can fit the same number of larger objects in a block, do so. */
number_of_objs = HBLK_GRANULES / granule_sz;
GC_ASSERT(number_of_objs != 0);
granule_sz = (HBLK_GRANULES / number_of_objs) & ~1;
byte_sz = GRANULES_TO_BYTES(granule_sz) - EXTRA_BYTES;
/* We may need one extra byte; do not always */
/* fill in GC_size_map[byte_sz]. */
for (; low_limit <= byte_sz; low_limit++)
GC_size_map[low_limit] = granule_sz;
}
/* Allocate lb bytes for an object of kind k. */
/* Should not be used to directly to allocate objects */
/* that require special handling on allocation. */
GC_INNER void * GC_generic_malloc_inner(size_t lb, int k)
{
void *op;
GC_ASSERT(I_HOLD_LOCK());
GC_ASSERT(k < MAXOBJKINDS);
if (SMALL_OBJ(lb)) {
struct obj_kind * kind = GC_obj_kinds + k;
size_t lg = GC_size_map[lb];
void ** opp = &(kind -> ok_freelist[lg]);
op = *opp;
if (EXPECT(0 == op, FALSE)) {
if (lg == 0) {
if (!EXPECT(GC_is_initialized, TRUE)) {
UNLOCK(); /* just to unset GC_lock_holder */
GC_init();
LOCK();
lg = GC_size_map[lb];
}
if (0 == lg) {
GC_extend_size_map(lb);
lg = GC_size_map[lb];
GC_ASSERT(lg != 0);
}
/* Retry */
opp = &(kind -> ok_freelist[lg]);
op = *opp;
}
if (0 == op) {
if (0 == kind -> ok_reclaim_list &&
!GC_alloc_reclaim_list(kind))
return NULL;
op = GC_allocobj(lg, k);
if (0 == op)
return NULL;
}
}
*opp = obj_link(op);
obj_link(op) = 0;
GC_bytes_allocd += GRANULES_TO_BYTES((word)lg);
} else {
op = (ptr_t)GC_alloc_large_and_clear(ADD_SLOP(lb), k, 0);
if (op != NULL)
GC_bytes_allocd += lb;
}
return op;
}
#if defined(DBG_HDRS_ALL) || defined(GC_GCJ_SUPPORT) \
|| !defined(GC_NO_FINALIZATION)
/* Allocate a composite object of size n bytes. The caller */
/* guarantees that pointers past the first page are not relevant. */
GC_INNER void * GC_generic_malloc_inner_ignore_off_page(size_t lb, int k)
{
word lb_adjusted;
void * op;
GC_ASSERT(I_HOLD_LOCK());
if (lb <= HBLKSIZE)
return GC_generic_malloc_inner(lb, k);
GC_ASSERT(k < MAXOBJKINDS);
lb_adjusted = ADD_SLOP(lb);
op = GC_alloc_large_and_clear(lb_adjusted, k, IGNORE_OFF_PAGE);
if (EXPECT(op != NULL, TRUE)) {
GC_bytes_allocd += lb_adjusted;
}
return op;
}
#endif
#ifdef GC_COLLECT_AT_MALLOC
/* Parameter to force GC at every malloc of size greater or equal to */
/* the given value. This might be handy during debugging. */
# if defined(CPPCHECK)
size_t GC_dbg_collect_at_malloc_min_lb = 16*1024; /* e.g. */
# else
size_t GC_dbg_collect_at_malloc_min_lb = (GC_COLLECT_AT_MALLOC);
# endif
#endif
GC_INNER void * GC_generic_malloc_aligned(size_t lb, int k, size_t align_m1)
{
void * result;
GC_ASSERT(k < MAXOBJKINDS);
if (EXPECT(get_have_errors(), FALSE))
GC_print_all_errors();
GC_INVOKE_FINALIZERS();
GC_DBG_COLLECT_AT_MALLOC(lb);
if (SMALL_OBJ(lb) && EXPECT(align_m1 < GRANULE_BYTES, TRUE)) {
LOCK();
result = GC_generic_malloc_inner(lb, k);
UNLOCK();
} else {
size_t lg;
size_t lb_rounded;
GC_bool init;
lg = ROUNDED_UP_GRANULES(lb);
lb_rounded = GRANULES_TO_BYTES(lg);
init = GC_obj_kinds[k].ok_init;
if (EXPECT(align_m1 < GRANULE_BYTES, TRUE)) {
align_m1 = 0;
} else if (align_m1 < HBLKSIZE) {
align_m1 = HBLKSIZE - 1;
}
LOCK();
result = (ptr_t)GC_alloc_large(lb_rounded, k, 0 /* flags */, align_m1);
if (EXPECT(result != NULL, TRUE)) {
if (GC_debugging_started) {
BZERO(result, HBLKSIZE * OBJ_SZ_TO_BLOCKS(lb_rounded));
} else {
# ifdef THREADS
/* Clear any memory that might be used for GC descriptors */
/* before we release the lock. */
((word *)result)[0] = 0;
((word *)result)[1] = 0;
((word *)result)[GRANULES_TO_WORDS(lg)-1] = 0;
((word *)result)[GRANULES_TO_WORDS(lg)-2] = 0;
# endif
}
GC_bytes_allocd += lb_rounded;
}
UNLOCK();
if (init && !GC_debugging_started && 0 != result) {
BZERO(result, HBLKSIZE * OBJ_SZ_TO_BLOCKS(lb_rounded));
}
}
if (EXPECT(NULL == result, FALSE))
result = (*GC_get_oom_fn())(lb); /* might be misaligned */
return result;
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_malloc(size_t lb, int k)
{
return GC_generic_malloc_aligned(lb, k, 0 /* align_m1 */);
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_kind_global(size_t lb, int k)
{
GC_ASSERT(k < MAXOBJKINDS);
if (SMALL_OBJ(lb)) {
void *op;
void **opp;
size_t lg;
GC_DBG_COLLECT_AT_MALLOC(lb);
LOCK();
lg = GC_size_map[lb];
opp = &GC_obj_kinds[k].ok_freelist[lg];
op = *opp;
if (EXPECT(op != NULL, TRUE)) {
if (k == PTRFREE) {
*opp = obj_link(op);
} else {
GC_ASSERT(0 == obj_link(op)
|| ((word)obj_link(op)
<= (word)GC_greatest_plausible_heap_addr
&& (word)obj_link(op)
>= (word)GC_least_plausible_heap_addr));
*opp = obj_link(op);
obj_link(op) = 0;
}
GC_bytes_allocd += GRANULES_TO_BYTES((word)lg);
UNLOCK();
return op;
}
UNLOCK();
}
/* We make the GC_clear_stack() call a tail one, hoping to get more */
/* of the stack. */
return GC_clear_stack(GC_generic_malloc(lb, k));
}
#if defined(THREADS) && !defined(THREAD_LOCAL_ALLOC)
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_kind(size_t lb, int k)
{
return GC_malloc_kind_global(lb, k);
}
#endif
/* Allocate lb bytes of atomic (pointer-free) data. */
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_atomic(size_t lb)
{
return GC_malloc_kind(lb, PTRFREE);
}
/* Allocate lb bytes of composite (pointerful) data. */
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc(size_t lb)
{
return GC_malloc_kind(lb, NORMAL);
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_malloc_uncollectable(
size_t lb, int k)
{
void *op;
GC_ASSERT(k < MAXOBJKINDS);
if (SMALL_OBJ(lb)) {
void **opp;
size_t lg;
GC_DBG_COLLECT_AT_MALLOC(lb);
if (EXTRA_BYTES != 0 && lb != 0) lb--;
/* We don't need the extra byte, since this won't be */
/* collected anyway. */
LOCK();
lg = GC_size_map[lb];
opp = &GC_obj_kinds[k].ok_freelist[lg];
op = *opp;
if (EXPECT(op != NULL, TRUE)) {
*opp = obj_link(op);
obj_link(op) = 0;
GC_bytes_allocd += GRANULES_TO_BYTES((word)lg);
/* Mark bit was already set on free list. It will be */
/* cleared only temporarily during a collection, as a */
/* result of the normal free list mark bit clearing. */
GC_non_gc_bytes += GRANULES_TO_BYTES((word)lg);
UNLOCK();
} else {
UNLOCK();
op = GC_generic_malloc(lb, k);
/* For small objects, the free lists are completely marked. */
}
GC_ASSERT(0 == op || GC_is_marked(op));
} else {
op = GC_generic_malloc(lb, k);
if (op /* != NULL */) { /* CPPCHECK */
hdr * hhdr = HDR(op);
GC_ASSERT(HBLKDISPL(op) == 0); /* large block */
/* We don't need the lock here, since we have an undisguised */
/* pointer. We do need to hold the lock while we adjust */
/* mark bits. */
LOCK();
set_mark_bit_from_hdr(hhdr, 0); /* Only object. */
# ifndef THREADS
GC_ASSERT(hhdr -> hb_n_marks == 0);
/* This is not guaranteed in the multi-threaded case */
/* because the counter could be updated before locking. */
# endif
hhdr -> hb_n_marks = 1;
UNLOCK();
}
}
return op;
}
/* Allocate lb bytes of pointerful, traced, but not collectible data. */
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_uncollectable(size_t lb)
{
return GC_generic_malloc_uncollectable(lb, UNCOLLECTABLE);
}
#ifdef GC_ATOMIC_UNCOLLECTABLE
/* Allocate lb bytes of pointer-free, untraced, uncollectible data */
/* This is normally roughly equivalent to the system malloc. */
/* But it may be useful if malloc is redefined. */
GC_API GC_ATTR_MALLOC void * GC_CALL
GC_malloc_atomic_uncollectable(size_t lb)
{
return GC_generic_malloc_uncollectable(lb, AUNCOLLECTABLE);
}
#endif /* GC_ATOMIC_UNCOLLECTABLE */
#if defined(REDIRECT_MALLOC) && !defined(REDIRECT_MALLOC_IN_HEADER)
# ifndef MSWINCE
# include <errno.h>
# endif
/* Avoid unnecessary nested procedure calls here, by #defining some */
/* malloc replacements. Otherwise we end up saving a meaningless */
/* return address in the object. It also speeds things up, but it is */
/* admittedly quite ugly. */
# define GC_debug_malloc_replacement(lb) GC_debug_malloc(lb, GC_DBG_EXTRAS)
# if defined(CPPCHECK)
# define REDIRECT_MALLOC_F GC_malloc /* e.g. */
# else
# define REDIRECT_MALLOC_F REDIRECT_MALLOC
# endif
void * malloc(size_t lb)
{
/* It might help to manually inline the GC_malloc call here. */
/* But any decent compiler should reduce the extra procedure call */
/* to at most a jump instruction in this case. */
# if defined(I386) && defined(GC_SOLARIS_THREADS)
/* Thread initialization can call malloc before we are ready for. */
/* It is not clear that this is enough to help matters. */
/* The thread implementation may well call malloc at other */
/* inopportune times. */
if (!EXPECT(GC_is_initialized, TRUE)) return sbrk(lb);
# endif
return (void *)REDIRECT_MALLOC_F(lb);
}
# if defined(GC_LINUX_THREADS)
# ifdef HAVE_LIBPTHREAD_SO
STATIC ptr_t GC_libpthread_start = NULL;
STATIC ptr_t GC_libpthread_end = NULL;
# endif
STATIC ptr_t GC_libld_start = NULL;
STATIC ptr_t GC_libld_end = NULL;
STATIC void GC_init_lib_bounds(void)
{
IF_CANCEL(int cancel_state;)
DISABLE_CANCEL(cancel_state);
GC_init(); /* if not called yet */
# ifdef HAVE_LIBPTHREAD_SO
if (!GC_text_mapping("libpthread-",
&GC_libpthread_start, &GC_libpthread_end)) {
WARN("Failed to find libpthread.so text mapping: Expect crash\n", 0);
/* This might still work with some versions of libpthread, */
/* so we do not abort. */
}
# endif
if (!GC_text_mapping("ld-", &GC_libld_start, &GC_libld_end)) {
WARN("Failed to find ld.so text mapping: Expect crash\n", 0);
}
RESTORE_CANCEL(cancel_state);
}
# endif /* GC_LINUX_THREADS */
void * calloc(size_t n, size_t lb)
{
if (EXPECT((lb | n) > GC_SQRT_SIZE_MAX, FALSE) /* fast initial test */
&& lb && n > GC_SIZE_MAX / lb)
return (*GC_get_oom_fn())(GC_SIZE_MAX); /* n*lb overflow */
# if defined(GC_LINUX_THREADS)
/* The linker may allocate some memory that is only pointed to by */
/* mmapped thread stacks. Make sure it is not collectible. */
{
static GC_bool lib_bounds_set = FALSE;
ptr_t caller = (ptr_t)__builtin_return_address(0);
/* This test does not need to ensure memory visibility, since */
/* the bounds will be set when/if we create another thread. */
if (!EXPECT(lib_bounds_set, TRUE)) {
GC_init_lib_bounds();
lib_bounds_set = TRUE;
}
if (((word)caller >= (word)GC_libld_start
&& (word)caller < (word)GC_libld_end)
# ifdef HAVE_LIBPTHREAD_SO
|| ((word)caller >= (word)GC_libpthread_start
&& (word)caller < (word)GC_libpthread_end)
/* The two ranges are actually usually adjacent, */
/* so there may be a way to speed this up. */
# endif
) {
return GC_generic_malloc_uncollectable(n * lb, UNCOLLECTABLE);
}
}
# endif
return (void *)REDIRECT_MALLOC_F(n * lb);
}
# ifndef strdup
char *strdup(const char *s)
{
size_t lb = strlen(s) + 1;
char *result = (char *)REDIRECT_MALLOC_F(lb);
if (EXPECT(NULL == result, FALSE)) {
errno = ENOMEM;
return NULL;
}
BCOPY(s, result, lb);
return result;
}
# endif /* !defined(strdup) */
/* If strdup is macro defined, we assume that it actually calls malloc, */
/* and thus the right thing will happen even without overriding it. */
/* This seems to be true on most Linux systems. */
# ifndef strndup
/* This is similar to strdup(). */
char *strndup(const char *str, size_t size)
{
char *copy;
size_t len = strlen(str);
if (EXPECT(len > size, FALSE))
len = size;
copy = (char *)REDIRECT_MALLOC_F(len + 1);
if (EXPECT(NULL == copy, FALSE)) {
errno = ENOMEM;
return NULL;
}
if (EXPECT(len > 0, TRUE))
BCOPY(str, copy, len);
copy[len] = '\0';
return copy;
}
# endif /* !strndup */
# undef GC_debug_malloc_replacement
#endif /* REDIRECT_MALLOC */
/* Explicitly deallocate the object. hhdr should correspond to p. */
static void free_internal(void *p, hdr *hhdr)
{
size_t sz = (size_t)(hhdr -> hb_sz); /* in bytes */
size_t ngranules = BYTES_TO_GRANULES(sz); /* size in granules */
int knd = hhdr -> hb_obj_kind;
GC_bytes_freed += sz;
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
if (EXPECT(ngranules <= MAXOBJGRANULES, TRUE)) {
struct obj_kind *ok = &GC_obj_kinds[knd];
void **flh;
/* It is unnecessary to clear the mark bit. If the object is */
/* reallocated, it does not matter. Otherwise, the collector will */
/* do it, since it is on a free list. */
if (ok -> ok_init && EXPECT(sz > sizeof(word), TRUE)) {
BZERO((word *)p + 1, sz - sizeof(word));
}
flh = &(ok -> ok_freelist[ngranules]);
obj_link(p) = *flh;
*flh = (ptr_t)p;
} else {
if (sz > HBLKSIZE) {
GC_large_allocd_bytes -= HBLKSIZE * OBJ_SZ_TO_BLOCKS(sz);
}
GC_freehblk(HBLKPTR(p));
}
}
GC_API void GC_CALL GC_free(void * p)
{
hdr *hhdr;
if (p /* != NULL */) {
/* CPPCHECK */
} else {
/* Required by ANSI. It's not my fault ... */
return;
}
# ifdef LOG_ALLOCS
GC_log_printf("GC_free(%p) after GC #%lu\n",
p, (unsigned long)GC_gc_no);
# endif
hhdr = HDR(p);
# if defined(REDIRECT_MALLOC) && \
((defined(NEED_CALLINFO) && defined(GC_HAVE_BUILTIN_BACKTRACE)) \
|| defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \
|| defined(MSWIN32))
/* This might be called indirectly by GC_print_callers to free */
/* the result of backtrace_symbols. */
/* For Solaris, we have to redirect malloc calls during */
/* initialization. For the others, this seems to happen */
/* implicitly. */
/* Don't try to deallocate that memory. */
if (EXPECT(NULL == hhdr, FALSE)) return;
# endif
GC_ASSERT(GC_base(p) == p);
LOCK();
free_internal(p, hhdr);
UNLOCK();
}
#ifdef THREADS
GC_INNER void GC_free_inner(void * p)
{
GC_ASSERT(I_HOLD_LOCK());
free_internal(p, HDR(p));
}
#endif /* THREADS */
#if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE)
# define REDIRECT_FREE GC_free
#endif
#if defined(REDIRECT_FREE) && !defined(REDIRECT_MALLOC_IN_HEADER)
# if defined(CPPCHECK)
# define REDIRECT_FREE_F GC_free /* e.g. */
# else
# define REDIRECT_FREE_F REDIRECT_FREE
# endif
void free(void * p)
{
# ifndef IGNORE_FREE
# if defined(GC_LINUX_THREADS) && !defined(USE_PROC_FOR_LIBRARIES)
/* Don't bother with initialization checks. If nothing */
/* has been initialized, the check fails, and that's safe, */
/* since we have not allocated uncollectible objects neither. */
ptr_t caller = (ptr_t)__builtin_return_address(0);
/* This test does not need to ensure memory visibility, since */
/* the bounds will be set when/if we create another thread. */
if (((word)caller >= (word)GC_libld_start
&& (word)caller < (word)GC_libld_end)
# ifdef HAVE_LIBPTHREAD_SO
|| ((word)caller >= (word)GC_libpthread_start
&& (word)caller < (word)GC_libpthread_end)
# endif
) {
GC_free(p);
return;
}
# endif
REDIRECT_FREE_F(p);
# endif
}
#endif /* REDIRECT_FREE */
|