diff options
author | Lorry Tar Creator <lorry-tar-importer@baserock.org> | 2015-02-17 17:25:57 +0000 |
---|---|---|
committer | <> | 2015-03-17 16:26:24 +0000 |
commit | 780b92ada9afcf1d58085a83a0b9e6bc982203d1 (patch) | |
tree | 598f8b9fa431b228d29897e798de4ac0c1d3d970 /lang/sql/sqlite/src/analyze.c | |
parent | 7a2660ba9cc2dc03a69ddfcfd95369395cc87444 (diff) | |
download | berkeleydb-master.tar.gz |
Diffstat (limited to 'lang/sql/sqlite/src/analyze.c')
-rw-r--r-- | lang/sql/sqlite/src/analyze.c | 1712 |
1 files changed, 1379 insertions, 333 deletions
diff --git a/lang/sql/sqlite/src/analyze.c b/lang/sql/sqlite/src/analyze.c index 17c1de83..3d5c4f6b 100644 --- a/lang/sql/sqlite/src/analyze.c +++ b/lang/sql/sqlite/src/analyze.c @@ -1,5 +1,5 @@ /* -** 2005 July 8 +** 2005-07-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: @@ -10,25 +10,164 @@ ** ************************************************************************* ** This file contains code associated with the ANALYZE command. +** +** The ANALYZE command gather statistics about the content of tables +** and indices. These statistics are made available to the query planner +** to help it make better decisions about how to perform queries. +** +** The following system tables are or have been supported: +** +** CREATE TABLE sqlite_stat1(tbl, idx, stat); +** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); +** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); +** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); +** +** Additional tables might be added in future releases of SQLite. +** The sqlite_stat2 table is not created or used unless the SQLite version +** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled +** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. +** The sqlite_stat2 table is superseded by sqlite_stat3, which is only +** created and used by SQLite versions 3.7.9 and later and with +** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 +** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced +** version of sqlite_stat3 and is only available when compiled with +** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is +** not possible to enable both STAT3 and STAT4 at the same time. If they +** are both enabled, then STAT4 takes precedence. +** +** For most applications, sqlite_stat1 provides all the statisics required +** for the query planner to make good choices. +** +** Format of sqlite_stat1: +** +** There is normally one row per index, with the index identified by the +** name in the idx column. The tbl column is the name of the table to +** which the index belongs. In each such row, the stat column will be +** a string consisting of a list of integers. The first integer in this +** list is the number of rows in the index. (This is the same as the +** number of rows in the table, except for partial indices.) The second +** integer is the average number of rows in the index that have the same +** value in the first column of the index. The third integer is the average +** number of rows in the index that have the same value for the first two +** columns. The N-th integer (for N>1) is the average number of rows in +** the index which have the same value for the first N-1 columns. For +** a K-column index, there will be K+1 integers in the stat column. If +** the index is unique, then the last integer will be 1. +** +** The list of integers in the stat column can optionally be followed +** by the keyword "unordered". The "unordered" keyword, if it is present, +** must be separated from the last integer by a single space. If the +** "unordered" keyword is present, then the query planner assumes that +** the index is unordered and will not use the index for a range query. +** +** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat +** column contains a single integer which is the (estimated) number of +** rows in the table identified by sqlite_stat1.tbl. +** +** Format of sqlite_stat2: +** +** The sqlite_stat2 is only created and is only used if SQLite is compiled +** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between +** 3.6.18 and 3.7.8. The "stat2" table contains additional information +** about the distribution of keys within an index. The index is identified by +** the "idx" column and the "tbl" column is the name of the table to which +** the index belongs. There are usually 10 rows in the sqlite_stat2 +** table for each index. +** +** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 +** inclusive are samples of the left-most key value in the index taken at +** evenly spaced points along the index. Let the number of samples be S +** (10 in the standard build) and let C be the number of rows in the index. +** Then the sampled rows are given by: +** +** rownumber = (i*C*2 + C)/(S*2) +** +** For i between 0 and S-1. Conceptually, the index space is divided into +** S uniform buckets and the samples are the middle row from each bucket. +** +** The format for sqlite_stat2 is recorded here for legacy reference. This +** version of SQLite does not support sqlite_stat2. It neither reads nor +** writes the sqlite_stat2 table. This version of SQLite only supports +** sqlite_stat3. +** +** Format for sqlite_stat3: +** +** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the +** sqlite_stat4 format will be described first. Further information +** about sqlite_stat3 follows the sqlite_stat4 description. +** +** Format for sqlite_stat4: +** +** As with sqlite_stat2, the sqlite_stat4 table contains histogram data +** to aid the query planner in choosing good indices based on the values +** that indexed columns are compared against in the WHERE clauses of +** queries. +** +** The sqlite_stat4 table contains multiple entries for each index. +** The idx column names the index and the tbl column is the table of the +** index. If the idx and tbl columns are the same, then the sample is +** of the INTEGER PRIMARY KEY. The sample column is a blob which is the +** binary encoding of a key from the index. The nEq column is a +** list of integers. The first integer is the approximate number +** of entries in the index whose left-most column exactly matches +** the left-most column of the sample. The second integer in nEq +** is the approximate number of entries in the index where the +** first two columns match the first two columns of the sample. +** And so forth. nLt is another list of integers that show the approximate +** number of entries that are strictly less than the sample. The first +** integer in nLt contains the number of entries in the index where the +** left-most column is less than the left-most column of the sample. +** The K-th integer in the nLt entry is the number of index entries +** where the first K columns are less than the first K columns of the +** sample. The nDLt column is like nLt except that it contains the +** number of distinct entries in the index that are less than the +** sample. +** +** There can be an arbitrary number of sqlite_stat4 entries per index. +** The ANALYZE command will typically generate sqlite_stat4 tables +** that contain between 10 and 40 samples which are distributed across +** the key space, though not uniformly, and which include samples with +** large nEq values. +** +** Format for sqlite_stat3 redux: +** +** The sqlite_stat3 table is like sqlite_stat4 except that it only +** looks at the left-most column of the index. The sqlite_stat3.sample +** column contains the actual value of the left-most column instead +** of a blob encoding of the complete index key as is found in +** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 +** all contain just a single integer which is the same as the first +** integer in the equivalent columns in sqlite_stat4. */ #ifndef SQLITE_OMIT_ANALYZE #include "sqliteInt.h" +#if defined(SQLITE_ENABLE_STAT4) +# define IsStat4 1 +# define IsStat3 0 +#elif defined(SQLITE_ENABLE_STAT3) +# define IsStat4 0 +# define IsStat3 1 +#else +# define IsStat4 0 +# define IsStat3 0 +# undef SQLITE_STAT4_SAMPLES +# define SQLITE_STAT4_SAMPLES 1 +#endif +#define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ + /* -** This routine generates code that opens the sqlite_stat1 table for -** writing with cursor iStatCur. If the library was built with the -** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is -** opened for writing using cursor (iStatCur+1) +** This routine generates code that opens the sqlite_statN tables. +** The sqlite_stat1 table is always relevant. sqlite_stat2 is now +** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when +** appropriate compile-time options are provided. ** -** If the sqlite_stat1 tables does not previously exist, it is created. -** Similarly, if the sqlite_stat2 table does not exist and the library -** is compiled with SQLITE_ENABLE_STAT2 defined, it is created. +** If the sqlite_statN tables do not previously exist, it is created. ** ** Argument zWhere may be a pointer to a buffer containing a table name, ** or it may be a NULL pointer. If it is not NULL, then all entries in -** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated -** with the named table are deleted. If zWhere==0, then code is generated -** to delete all stat table entries. +** the sqlite_statN tables associated with the named table are deleted. +** If zWhere==0, then code is generated to delete all stat table entries. */ static void openStatTable( Parse *pParse, /* Parsing context */ @@ -42,62 +181,744 @@ static void openStatTable( const char *zCols; } aTable[] = { { "sqlite_stat1", "tbl,idx,stat" }, -#ifdef SQLITE_ENABLE_STAT2 - { "sqlite_stat2", "tbl,idx,sampleno,sample" }, +#if defined(SQLITE_ENABLE_STAT4) + { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, + { "sqlite_stat3", 0 }, +#elif defined(SQLITE_ENABLE_STAT3) + { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, + { "sqlite_stat4", 0 }, +#else + { "sqlite_stat3", 0 }, + { "sqlite_stat4", 0 }, #endif }; - - int aRoot[] = {0, 0}; - u8 aCreateTbl[] = {0, 0}; - int i; sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = sqlite3GetVdbe(pParse); + int aRoot[ArraySize(aTable)]; + u8 aCreateTbl[ArraySize(aTable)]; + if( v==0 ) return; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3VdbeDb(v)==db ); pDb = &db->aDb[iDb]; + /* Create new statistic tables if they do not exist, or clear them + ** if they do already exist. + */ for(i=0; i<ArraySize(aTable); i++){ const char *zTab = aTable[i].zName; Table *pStat; if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ - /* The sqlite_stat[12] table does not exist. Create it. Note that a - ** side-effect of the CREATE TABLE statement is to leave the rootpage - ** of the new table in register pParse->regRoot. This is important - ** because the OpenWrite opcode below will be needing it. */ - sqlite3NestedParse(pParse, - "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols - ); - aRoot[i] = pParse->regRoot; - aCreateTbl[i] = 1; + if( aTable[i].zCols ){ + /* The sqlite_statN table does not exist. Create it. Note that a + ** side-effect of the CREATE TABLE statement is to leave the rootpage + ** of the new table in register pParse->regRoot. This is important + ** because the OpenWrite opcode below will be needing it. */ + sqlite3NestedParse(pParse, + "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols + ); + aRoot[i] = pParse->regRoot; + aCreateTbl[i] = OPFLAG_P2ISREG; + } }else{ /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; + aCreateTbl[i] = 0; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ sqlite3NestedParse(pParse, - "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere + "DELETE FROM %Q.%s WHERE %s=%Q", + pDb->zName, zTab, zWhereType, zWhere ); }else{ - /* The sqlite_stat[12] table already exists. Delete all rows. */ + /* The sqlite_stat[134] table already exists. Delete all rows. */ sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); } } } - /* Open the sqlite_stat[12] tables for writing. */ - for(i=0; i<ArraySize(aTable); i++){ - sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb); - sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32); + /* Open the sqlite_stat[134] tables for writing. */ + for(i=0; aTable[i].zCols; i++){ + assert( i<ArraySize(aTable) ); + sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); sqlite3VdbeChangeP5(v, aCreateTbl[i]); } } /* +** Recommended number of samples for sqlite_stat4 +*/ +#ifndef SQLITE_STAT4_SAMPLES +# define SQLITE_STAT4_SAMPLES 24 +#endif + +/* +** Three SQL functions - stat_init(), stat_push(), and stat_get() - +** share an instance of the following structure to hold their state +** information. +*/ +typedef struct Stat4Accum Stat4Accum; +typedef struct Stat4Sample Stat4Sample; +struct Stat4Sample { + tRowcnt *anEq; /* sqlite_stat4.nEq */ + tRowcnt *anDLt; /* sqlite_stat4.nDLt */ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + tRowcnt *anLt; /* sqlite_stat4.nLt */ + union { + i64 iRowid; /* Rowid in main table of the key */ + u8 *aRowid; /* Key for WITHOUT ROWID tables */ + } u; + u32 nRowid; /* Sizeof aRowid[] */ + u8 isPSample; /* True if a periodic sample */ + int iCol; /* If !isPSample, the reason for inclusion */ + u32 iHash; /* Tiebreaker hash */ +#endif +}; +struct Stat4Accum { + tRowcnt nRow; /* Number of rows in the entire table */ + tRowcnt nPSample; /* How often to do a periodic sample */ + int nCol; /* Number of columns in index + rowid */ + int mxSample; /* Maximum number of samples to accumulate */ + Stat4Sample current; /* Current row as a Stat4Sample */ + u32 iPrn; /* Pseudo-random number used for sampling */ + Stat4Sample *aBest; /* Array of nCol best samples */ + int iMin; /* Index in a[] of entry with minimum score */ + int nSample; /* Current number of samples */ + int iGet; /* Index of current sample accessed by stat_get() */ + Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ + sqlite3 *db; /* Database connection, for malloc() */ +}; + +/* Reclaim memory used by a Stat4Sample +*/ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 +static void sampleClear(sqlite3 *db, Stat4Sample *p){ + assert( db!=0 ); + if( p->nRowid ){ + sqlite3DbFree(db, p->u.aRowid); + p->nRowid = 0; + } +} +#endif + +/* Initialize the BLOB value of a ROWID +*/ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 +static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ + assert( db!=0 ); + if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); + p->u.aRowid = sqlite3DbMallocRaw(db, n); + if( p->u.aRowid ){ + p->nRowid = n; + memcpy(p->u.aRowid, pData, n); + }else{ + p->nRowid = 0; + } +} +#endif + +/* Initialize the INTEGER value of a ROWID. +*/ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 +static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ + assert( db!=0 ); + if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); + p->nRowid = 0; + p->u.iRowid = iRowid; +} +#endif + + +/* +** Copy the contents of object (*pFrom) into (*pTo). +*/ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 +static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ + pTo->isPSample = pFrom->isPSample; + pTo->iCol = pFrom->iCol; + pTo->iHash = pFrom->iHash; + memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); + memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); + memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); + if( pFrom->nRowid ){ + sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); + }else{ + sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); + } +} +#endif + +/* +** Reclaim all memory of a Stat4Accum structure. +*/ +static void stat4Destructor(void *pOld){ + Stat4Accum *p = (Stat4Accum*)pOld; +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + int i; + for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); + for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); + sampleClear(p->db, &p->current); +#endif + sqlite3DbFree(p->db, p); +} + +/* +** Implementation of the stat_init(N,C) SQL function. The two parameters +** are the number of rows in the table or index (C) and the number of columns +** in the index (N). The second argument (C) is only used for STAT3 and STAT4. +** +** This routine allocates the Stat4Accum object in heap memory. The return +** value is a pointer to the the Stat4Accum object encoded as a blob (i.e. +** the size of the blob is sizeof(void*) bytes). +*/ +static void statInit( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + Stat4Accum *p; + int nCol; /* Number of columns in index being sampled */ + int nColUp; /* nCol rounded up for alignment */ + int n; /* Bytes of space to allocate */ + sqlite3 *db; /* Database connection */ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + int mxSample = SQLITE_STAT4_SAMPLES; +#endif + + /* Decode the three function arguments */ + UNUSED_PARAMETER(argc); + nCol = sqlite3_value_int(argv[0]); + assert( nCol>1 ); /* >1 because it includes the rowid column */ + nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; + + /* Allocate the space required for the Stat4Accum object */ + n = sizeof(*p) + + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ + + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ + + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ + + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) +#endif + ; + db = sqlite3_context_db_handle(context); + p = sqlite3DbMallocZero(db, n); + if( p==0 ){ + sqlite3_result_error_nomem(context); + return; + } + + p->db = db; + p->nRow = 0; + p->nCol = nCol; + p->current.anDLt = (tRowcnt*)&p[1]; + p->current.anEq = &p->current.anDLt[nColUp]; + +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + { + u8 *pSpace; /* Allocated space not yet assigned */ + int i; /* Used to iterate through p->aSample[] */ + + p->iGet = -1; + p->mxSample = mxSample; + p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[1])/(mxSample/3+1) + 1); + p->current.anLt = &p->current.anEq[nColUp]; + p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[1])*0xd0944565; + + /* Set up the Stat4Accum.a[] and aBest[] arrays */ + p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; + p->aBest = &p->a[mxSample]; + pSpace = (u8*)(&p->a[mxSample+nCol]); + for(i=0; i<(mxSample+nCol); i++){ + p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); + p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); + p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); + } + assert( (pSpace - (u8*)p)==n ); + + for(i=0; i<nCol; i++){ + p->aBest[i].iCol = i; + } + } +#endif + + /* Return a pointer to the allocated object to the caller */ + sqlite3_result_blob(context, p, sizeof(p), stat4Destructor); +} +static const FuncDef statInitFuncdef = { + 1+IsStat34, /* nArg */ + SQLITE_UTF8, /* funcFlags */ + 0, /* pUserData */ + 0, /* pNext */ + statInit, /* xFunc */ + 0, /* xStep */ + 0, /* xFinalize */ + "stat_init", /* zName */ + 0, /* pHash */ + 0 /* pDestructor */ +}; + +#ifdef SQLITE_ENABLE_STAT4 +/* +** pNew and pOld are both candidate non-periodic samples selected for +** the same column (pNew->iCol==pOld->iCol). Ignoring this column and +** considering only any trailing columns and the sample hash value, this +** function returns true if sample pNew is to be preferred over pOld. +** In other words, if we assume that the cardinalities of the selected +** column for pNew and pOld are equal, is pNew to be preferred over pOld. +** +** This function assumes that for each argument sample, the contents of +** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. +*/ +static int sampleIsBetterPost( + Stat4Accum *pAccum, + Stat4Sample *pNew, + Stat4Sample *pOld +){ + int nCol = pAccum->nCol; + int i; + assert( pNew->iCol==pOld->iCol ); + for(i=pNew->iCol+1; i<nCol; i++){ + if( pNew->anEq[i]>pOld->anEq[i] ) return 1; + if( pNew->anEq[i]<pOld->anEq[i] ) return 0; + } + if( pNew->iHash>pOld->iHash ) return 1; + return 0; +} +#endif + +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 +/* +** Return true if pNew is to be preferred over pOld. +** +** This function assumes that for each argument sample, the contents of +** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. +*/ +static int sampleIsBetter( + Stat4Accum *pAccum, + Stat4Sample *pNew, + Stat4Sample *pOld +){ + tRowcnt nEqNew = pNew->anEq[pNew->iCol]; + tRowcnt nEqOld = pOld->anEq[pOld->iCol]; + + assert( pOld->isPSample==0 && pNew->isPSample==0 ); + assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); + + if( (nEqNew>nEqOld) ) return 1; +#ifdef SQLITE_ENABLE_STAT4 + if( nEqNew==nEqOld ){ + if( pNew->iCol<pOld->iCol ) return 1; + return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); + } + return 0; +#else + return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); +#endif +} + +/* +** Copy the contents of sample *pNew into the p->a[] array. If necessary, +** remove the least desirable sample from p->a[] to make room. +*/ +static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ + Stat4Sample *pSample = 0; + int i; + + assert( IsStat4 || nEqZero==0 ); + +#ifdef SQLITE_ENABLE_STAT4 + if( pNew->isPSample==0 ){ + Stat4Sample *pUpgrade = 0; + assert( pNew->anEq[pNew->iCol]>0 ); + + /* This sample is being added because the prefix that ends in column + ** iCol occurs many times in the table. However, if we have already + ** added a sample that shares this prefix, there is no need to add + ** this one. Instead, upgrade the priority of the highest priority + ** existing sample that shares this prefix. */ + for(i=p->nSample-1; i>=0; i--){ + Stat4Sample *pOld = &p->a[i]; + if( pOld->anEq[pNew->iCol]==0 ){ + if( pOld->isPSample ) return; + assert( pOld->iCol>pNew->iCol ); + assert( sampleIsBetter(p, pNew, pOld) ); + if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ + pUpgrade = pOld; + } + } + } + if( pUpgrade ){ + pUpgrade->iCol = pNew->iCol; + pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; + goto find_new_min; + } + } +#endif + + /* If necessary, remove sample iMin to make room for the new sample. */ + if( p->nSample>=p->mxSample ){ + Stat4Sample *pMin = &p->a[p->iMin]; + tRowcnt *anEq = pMin->anEq; + tRowcnt *anLt = pMin->anLt; + tRowcnt *anDLt = pMin->anDLt; + sampleClear(p->db, pMin); + memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); + pSample = &p->a[p->nSample-1]; + pSample->nRowid = 0; + pSample->anEq = anEq; + pSample->anDLt = anDLt; + pSample->anLt = anLt; + p->nSample = p->mxSample-1; + } + + /* The "rows less-than" for the rowid column must be greater than that + ** for the last sample in the p->a[] array. Otherwise, the samples would + ** be out of order. */ +#ifdef SQLITE_ENABLE_STAT4 + assert( p->nSample==0 + || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); +#endif + + /* Insert the new sample */ + pSample = &p->a[p->nSample]; + sampleCopy(p, pSample, pNew); + p->nSample++; + + /* Zero the first nEqZero entries in the anEq[] array. */ + memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); + +#ifdef SQLITE_ENABLE_STAT4 + find_new_min: +#endif + if( p->nSample>=p->mxSample ){ + int iMin = -1; + for(i=0; i<p->mxSample; i++){ + if( p->a[i].isPSample ) continue; + if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ + iMin = i; + } + } + assert( iMin>=0 ); + p->iMin = iMin; + } +} +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ + +/* +** Field iChng of the index being scanned has changed. So at this point +** p->current contains a sample that reflects the previous row of the +** index. The value of anEq[iChng] and subsequent anEq[] elements are +** correct at this point. +*/ +static void samplePushPrevious(Stat4Accum *p, int iChng){ +#ifdef SQLITE_ENABLE_STAT4 + int i; + + /* Check if any samples from the aBest[] array should be pushed + ** into IndexSample.a[] at this point. */ + for(i=(p->nCol-2); i>=iChng; i--){ + Stat4Sample *pBest = &p->aBest[i]; + pBest->anEq[i] = p->current.anEq[i]; + if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ + sampleInsert(p, pBest, i); + } + } + + /* Update the anEq[] fields of any samples already collected. */ + for(i=p->nSample-1; i>=0; i--){ + int j; + for(j=iChng; j<p->nCol; j++){ + if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; + } + } +#endif + +#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) + if( iChng==0 ){ + tRowcnt nLt = p->current.anLt[0]; + tRowcnt nEq = p->current.anEq[0]; + + /* Check if this is to be a periodic sample. If so, add it. */ + if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ + p->current.isPSample = 1; + sampleInsert(p, &p->current, 0); + p->current.isPSample = 0; + }else + + /* Or if it is a non-periodic sample. Add it in this case too. */ + if( p->nSample<p->mxSample + || sampleIsBetter(p, &p->current, &p->a[p->iMin]) + ){ + sampleInsert(p, &p->current, 0); + } + } +#endif + +#ifndef SQLITE_ENABLE_STAT3_OR_STAT4 + UNUSED_PARAMETER( p ); + UNUSED_PARAMETER( iChng ); +#endif +} + +/* +** Implementation of the stat_push SQL function: stat_push(P,C,R) +** Arguments: +** +** P Pointer to the Stat4Accum object created by stat_init() +** C Index of left-most column to differ from previous row +** R Rowid for the current row. Might be a key record for +** WITHOUT ROWID tables. +** +** The SQL function always returns NULL. +** +** The R parameter is only used for STAT3 and STAT4 +*/ +static void statPush( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + + /* The three function arguments */ + Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); + int iChng = sqlite3_value_int(argv[1]); + + UNUSED_PARAMETER( argc ); + UNUSED_PARAMETER( context ); + assert( p->nCol>1 ); /* Includes rowid field */ + assert( iChng<p->nCol ); + + if( p->nRow==0 ){ + /* This is the first call to this function. Do initialization. */ + for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; + }else{ + /* Second and subsequent calls get processed here */ + samplePushPrevious(p, iChng); + + /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply + ** to the current row of the index. */ + for(i=0; i<iChng; i++){ + p->current.anEq[i]++; + } + for(i=iChng; i<p->nCol; i++){ + p->current.anDLt[i]++; +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + p->current.anLt[i] += p->current.anEq[i]; +#endif + p->current.anEq[i] = 1; + } + } + p->nRow++; +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ + sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); + }else{ + sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), + sqlite3_value_blob(argv[2])); + } + p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; +#endif + +#ifdef SQLITE_ENABLE_STAT4 + { + tRowcnt nLt = p->current.anLt[p->nCol-1]; + + /* Check if this is to be a periodic sample. If so, add it. */ + if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ + p->current.isPSample = 1; + p->current.iCol = 0; + sampleInsert(p, &p->current, p->nCol-1); + p->current.isPSample = 0; + } + + /* Update the aBest[] array. */ + for(i=0; i<(p->nCol-1); i++){ + p->current.iCol = i; + if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ + sampleCopy(p, &p->aBest[i], &p->current); + } + } + } +#endif +} +static const FuncDef statPushFuncdef = { + 2+IsStat34, /* nArg */ + SQLITE_UTF8, /* funcFlags */ + 0, /* pUserData */ + 0, /* pNext */ + statPush, /* xFunc */ + 0, /* xStep */ + 0, /* xFinalize */ + "stat_push", /* zName */ + 0, /* pHash */ + 0 /* pDestructor */ +}; + +#define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ +#define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ +#define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ +#define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ +#define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ + +/* +** Implementation of the stat_get(P,J) SQL function. This routine is +** used to query the results. Content is returned for parameter J +** which is one of the STAT_GET_xxxx values defined above. +** +** If neither STAT3 nor STAT4 are enabled, then J is always +** STAT_GET_STAT1 and is hence omitted and this routine becomes +** a one-parameter function, stat_get(P), that always returns the +** stat1 table entry information. +*/ +static void statGet( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + /* STAT3 and STAT4 have a parameter on this routine. */ + int eCall = sqlite3_value_int(argv[1]); + assert( argc==2 ); + assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ + || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT + || eCall==STAT_GET_NDLT + ); + if( eCall==STAT_GET_STAT1 ) +#else + assert( argc==1 ); +#endif + { + /* Return the value to store in the "stat" column of the sqlite_stat1 + ** table for this index. + ** + ** The value is a string composed of a list of integers describing + ** the index. The first integer in the list is the total number of + ** entries in the index. There is one additional integer in the list + ** for each indexed column. This additional integer is an estimate of + ** the number of rows matched by a stabbing query on the index using + ** a key with the corresponding number of fields. In other words, + ** if the index is on columns (a,b) and the sqlite_stat1 value is + ** "100 10 2", then SQLite estimates that: + ** + ** * the index contains 100 rows, + ** * "WHERE a=?" matches 10 rows, and + ** * "WHERE a=? AND b=?" matches 2 rows. + ** + ** If D is the count of distinct values and K is the total number of + ** rows, then each estimate is computed as: + ** + ** I = (K+D-1)/D + */ + char *z; + int i; + + char *zRet = sqlite3MallocZero(p->nCol * 25); + if( zRet==0 ){ + sqlite3_result_error_nomem(context); + return; + } + + sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); + z = zRet + sqlite3Strlen30(zRet); + for(i=0; i<(p->nCol-1); i++){ + u64 nDistinct = p->current.anDLt[i] + 1; + u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; + sqlite3_snprintf(24, z, " %llu", iVal); + z += sqlite3Strlen30(z); + assert( p->current.anEq[i] ); + } + assert( z[0]=='\0' && z>zRet ); + + sqlite3_result_text(context, zRet, -1, sqlite3_free); + } +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + else if( eCall==STAT_GET_ROWID ){ + if( p->iGet<0 ){ + samplePushPrevious(p, 0); + p->iGet = 0; + } + if( p->iGet<p->nSample ){ + Stat4Sample *pS = p->a + p->iGet; + if( pS->nRowid==0 ){ + sqlite3_result_int64(context, pS->u.iRowid); + }else{ + sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, + SQLITE_TRANSIENT); + } + } + }else{ + tRowcnt *aCnt = 0; + + assert( p->iGet<p->nSample ); + switch( eCall ){ + case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; + case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; + default: { + aCnt = p->a[p->iGet].anDLt; + p->iGet++; + break; + } + } + + if( IsStat3 ){ + sqlite3_result_int64(context, (i64)aCnt[0]); + }else{ + char *zRet = sqlite3MallocZero(p->nCol * 25); + if( zRet==0 ){ + sqlite3_result_error_nomem(context); + }else{ + int i; + char *z = zRet; + for(i=0; i<p->nCol; i++){ + sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); + z += sqlite3Strlen30(z); + } + assert( z[0]=='\0' && z>zRet ); + z[-1] = '\0'; + sqlite3_result_text(context, zRet, -1, sqlite3_free); + } + } + } +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ +#ifndef SQLITE_DEBUG + UNUSED_PARAMETER( argc ); +#endif +} +static const FuncDef statGetFuncdef = { + 1+IsStat34, /* nArg */ + SQLITE_UTF8, /* funcFlags */ + 0, /* pUserData */ + 0, /* pNext */ + statGet, /* xFunc */ + 0, /* xStep */ + 0, /* xFinalize */ + "stat_get", /* zName */ + 0, /* pHash */ + 0 /* pDestructor */ +}; + +static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ + assert( regOut!=regStat4 && regOut!=regStat4+1 ); +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); +#elif SQLITE_DEBUG + assert( iParam==STAT_GET_STAT1 ); +#else + UNUSED_PARAMETER( iParam ); +#endif + sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut); + sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 1 + IsStat34); +} + +/* ** Generate code to do an analysis of all indices associated with ** a single table. */ @@ -106,34 +927,31 @@ static void analyzeOneTable( Table *pTab, /* Table whose indices are to be analyzed */ Index *pOnlyIdx, /* If not NULL, only analyze this one index */ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ - int iMem /* Available memory locations begin here */ + int iMem, /* Available memory locations begin here */ + int iTab /* Next available cursor */ ){ sqlite3 *db = pParse->db; /* Database handle */ Index *pIdx; /* An index to being analyzed */ int iIdxCur; /* Cursor open on index being analyzed */ + int iTabCur; /* Table cursor */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ - int topOfLoop; /* The top of the loop */ - int endOfLoop; /* The end of the loop */ int jZeroRows = -1; /* Jump from here if number of rows is zero */ int iDb; /* Index of database containing pTab */ + u8 needTableCnt = 1; /* True to count the table */ + int regNewRowid = iMem++; /* Rowid for the inserted record */ + int regStat4 = iMem++; /* Register to hold Stat4Accum object */ + int regChng = iMem++; /* Index of changed index field */ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + int regRowid = iMem++; /* Rowid argument passed to stat_push() */ +#endif + int regTemp = iMem++; /* Temporary use register */ int regTabname = iMem++; /* Register containing table name */ int regIdxname = iMem++; /* Register containing index name */ - int regSampleno = iMem++; /* Register containing next sample number */ - int regCol = iMem++; /* Content of a column analyzed table */ - int regRec = iMem++; /* Register holding completed record */ - int regTemp = iMem++; /* Temporary use register */ - int regRowid = iMem++; /* Rowid for the inserted record */ - -#ifdef SQLITE_ENABLE_STAT2 - int addr = 0; /* Instruction address */ - int regTemp2 = iMem++; /* Temporary use register */ - int regSamplerecno = iMem++; /* Index of next sample to record */ - int regRecno = iMem++; /* Current sample index */ - int regLast = iMem++; /* Index of last sample to record */ - int regFirst = iMem++; /* Index of first sample to record */ -#endif + int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ + int regPrev = iMem; /* MUST BE LAST (see below) */ + pParse->nMem = MAX(pParse->nMem, iMem); v = sqlite3GetVdbe(pParse); if( v==0 || NEVER(pTab==0) ){ return; @@ -142,7 +960,7 @@ static void analyzeOneTable( /* Do not gather statistics on views or virtual tables */ return; } - if( memcmp(pTab->zName, "sqlite_", 7)==0 ){ + if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ /* Do not gather statistics on system tables */ return; } @@ -157,214 +975,247 @@ static void analyzeOneTable( } #endif - /* Establish a read-lock on the table at the shared-cache level. */ + /* Establish a read-lock on the table at the shared-cache level. + ** Open a read-only cursor on the table. Also allocate a cursor number + ** to use for scanning indexes (iIdxCur). No index cursor is opened at + ** this time though. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); - - iIdxCur = pParse->nTab++; + iTabCur = iTab++; + iIdxCur = iTab++; + pParse->nTab = MAX(pParse->nTab, iTab); + sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ - int nCol; - KeyInfo *pKey; + int nCol; /* Number of columns indexed by pIdx */ + int *aGotoChng; /* Array of jump instruction addresses */ + int addrRewind; /* Address of "OP_Rewind iIdxCur" */ + int addrGotoChng0; /* Address of "Goto addr_chng_0" */ + int addrNextRow; /* Address of "next_row:" */ + const char *zIdxName; /* Name of the index */ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; - nCol = pIdx->nColumn; - pKey = sqlite3IndexKeyinfo(pParse, pIdx); - if( iMem+1+(nCol*2)>pParse->nMem ){ - pParse->nMem = iMem+1+(nCol*2); - } - - /* Open a cursor to the index to be analyzed. */ - assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); - sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, - (char *)pKey, P4_KEYINFO_HANDOFF); - VdbeComment((v, "%s", pIdx->zName)); + if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; + VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName)); + nCol = pIdx->nKeyCol; + aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1)); + if( aGotoChng==0 ) continue; /* Populate the register containing the index name. */ - sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0); + if( pIdx->autoIndex==2 && !HasRowid(pTab) ){ + zIdxName = pTab->zName; + }else{ + zIdxName = pIdx->zName; + } + sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0); -#ifdef SQLITE_ENABLE_STAT2 + /* + ** Pseudo-code for loop that calls stat_push(): + ** + ** Rewind csr + ** if eof(csr) goto end_of_scan; + ** regChng = 0 + ** goto chng_addr_0; + ** + ** next_row: + ** regChng = 0 + ** if( idx(0) != regPrev(0) ) goto chng_addr_0 + ** regChng = 1 + ** if( idx(1) != regPrev(1) ) goto chng_addr_1 + ** ... + ** regChng = N + ** goto chng_addr_N + ** + ** chng_addr_0: + ** regPrev(0) = idx(0) + ** chng_addr_1: + ** regPrev(1) = idx(1) + ** ... + ** + ** chng_addr_N: + ** regRowid = idx(rowid) + ** stat_push(P, regChng, regRowid) + ** Next csr + ** if !eof(csr) goto next_row; + ** + ** end_of_scan: + */ - /* If this iteration of the loop is generating code to analyze the - ** first index in the pTab->pIndex list, then register regLast has - ** not been populated. In this case populate it now. */ - if( pTab->pIndex==pIdx ){ - sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno); - sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp); - sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2); + /* Make sure there are enough memory cells allocated to accommodate + ** the regPrev array and a trailing rowid (the rowid slot is required + ** when building a record to insert into the sample column of + ** the sqlite_stat4 table. */ + pParse->nMem = MAX(pParse->nMem, regPrev+nCol); - sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast); - sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst); - addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast); - sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst); - sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast); - sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2); - sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regLast); - sqlite3VdbeJumpHere(v, addr); - } + /* Open a read-only cursor on the index being analyzed. */ + assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); + sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); + sqlite3VdbeSetP4KeyInfo(pParse, pIdx); + VdbeComment((v, "%s", pIdx->zName)); - /* Zero the regSampleno and regRecno registers. */ - sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno); - sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno); - sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno); + /* Invoke the stat_init() function. The arguments are: + ** + ** (1) the number of columns in the index including the rowid, + ** (2) the number of rows in the index, + ** + ** The second argument is only used for STAT3 and STAT4 + */ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+2); #endif + sqlite3VdbeAddOp2(v, OP_Integer, nCol+1, regStat4+1); + sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4); + sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 1+IsStat34); - /* The block of memory cells initialized here is used as follows. - ** - ** iMem: - ** The total number of rows in the table. - ** - ** iMem+1 .. iMem+nCol: - ** Number of distinct entries in index considering the - ** left-most N columns only, where N is between 1 and nCol, - ** inclusive. + /* Implementation of the following: ** - ** iMem+nCol+1 .. Mem+2*nCol: - ** Previous value of indexed columns, from left to right. + ** Rewind csr + ** if eof(csr) goto end_of_scan; + ** regChng = 0 + ** goto next_push_0; ** - ** Cells iMem through iMem+nCol are initialized to 0. The others are - ** initialized to contain an SQL NULL. */ - for(i=0; i<=nCol; i++){ - sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i); - } - for(i=0; i<nCol; i++){ - sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1); - } - - /* Start the analysis loop. This loop runs through all the entries in - ** the index b-tree. */ - endOfLoop = sqlite3VdbeMakeLabel(v); - sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop); - topOfLoop = sqlite3VdbeCurrentAddr(v); - sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); + addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); + sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); + addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto); + /* + ** next_row: + ** regChng = 0 + ** if( idx(0) != regPrev(0) ) goto chng_addr_0 + ** regChng = 1 + ** if( idx(1) != regPrev(1) ) goto chng_addr_1 + ** ... + ** regChng = N + ** goto chng_addr_N + */ + addrNextRow = sqlite3VdbeCurrentAddr(v); for(i=0; i<nCol; i++){ - CollSeq *pColl; - sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol); - if( i==0 ){ -#ifdef SQLITE_ENABLE_STAT2 - /* Check if the record that cursor iIdxCur points to contains a - ** value that should be stored in the sqlite_stat2 table. If so, - ** store it. */ - int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno); - assert( regTabname+1==regIdxname - && regTabname+2==regSampleno - && regTabname+3==regCol - ); - sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); - sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0); - sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid); - sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid); - - /* Calculate new values for regSamplerecno and regSampleno. - ** - ** sampleno = sampleno + 1 - ** samplerecno = samplerecno+(remaining records)/(remaining samples) - */ - sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1); - sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp); - sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); - sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2); - sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2); - sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp); - sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno); - - sqlite3VdbeJumpHere(v, ne); - sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1); -#endif - - /* Always record the very first row */ - sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1); - } - assert( pIdx->azColl!=0 ); - assert( pIdx->azColl[i]!=0 ); - pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); - sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1, - (char*)pColl, P4_COLLSEQ); + char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); + sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); + aGotoChng[i] = + sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); } - if( db->mallocFailed ){ - /* If a malloc failure has occurred, then the result of the expression - ** passed as the second argument to the call to sqlite3VdbeJumpHere() - ** below may be negative. Which causes an assert() to fail (or an - ** out-of-bounds write if SQLITE_DEBUG is not defined). */ - return; - } - sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop); + sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng); + aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto); + + /* + ** chng_addr_0: + ** regPrev(0) = idx(0) + ** chng_addr_1: + ** regPrev(1) = idx(1) + ** ... + */ + sqlite3VdbeJumpHere(v, addrGotoChng0); for(i=0; i<nCol; i++){ - int addr2 = sqlite3VdbeCurrentAddr(v) - (nCol*2); - if( i==0 ){ - sqlite3VdbeJumpHere(v, addr2-1); /* Set jump dest for the OP_IfNot */ - } - sqlite3VdbeJumpHere(v, addr2); /* Set jump dest for the OP_Ne */ - sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); - sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); + sqlite3VdbeJumpHere(v, aGotoChng[i]); + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); } - /* End of the analysis loop. */ - sqlite3VdbeResolveLabel(v, endOfLoop); - sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); - sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); - - /* Store the results in sqlite_stat1. - ** - ** The result is a single row of the sqlite_stat1 table. The first - ** two columns are the names of the table and index. The third column - ** is a string composed of a list of integer statistics about the - ** index. The first integer in the list is the total number of entries - ** in the index. There is one additional integer in the list for each - ** column of the table. This additional integer is a guess of how many - ** rows of the table the index will select. If D is the count of distinct - ** values and K is the total number of rows, then the integer is computed - ** as: - ** - ** I = (K+D-1)/D - ** - ** If K==0 then no entry is made into the sqlite_stat1 table. - ** If K>0 then it is always the case the D>0 so division by zero - ** is never possible. + /* + ** chng_addr_N: + ** regRowid = idx(rowid) // STAT34 only + ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only + ** Next csr + ** if !eof(csr) goto next_row; */ - sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno); - if( jZeroRows<0 ){ - jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); + sqlite3VdbeJumpHere(v, aGotoChng[nCol]); +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + assert( regRowid==(regStat4+2) ); + if( HasRowid(pTab) ){ + sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); + }else{ + Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); + int j, k, regKey; + regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); + for(j=0; j<pPk->nKeyCol; j++){ + k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); + VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); + } + sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); + sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } - for(i=0; i<nCol; i++){ - sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); - sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno); - sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp); - sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); - sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp); - sqlite3VdbeAddOp1(v, OP_ToInt, regTemp); - sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno); - } - sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); - sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid); - sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid); +#endif + assert( regChng==(regStat4+1) ); + sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); + sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, 2+IsStat34); + sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); + + /* Add the entry to the stat1 table. */ + callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); + sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); + sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); + sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + + /* Add the entries to the stat3 or stat4 table. */ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + { + int regEq = regStat1; + int regLt = regStat1+1; + int regDLt = regStat1+2; + int regSample = regStat1+3; + int regCol = regStat1+4; + int regSampleRowid = regCol + nCol; + int addrNext; + int addrIsNull; + u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; + + pParse->nMem = MAX(pParse->nMem, regCol+nCol+1); + + addrNext = sqlite3VdbeCurrentAddr(v); + callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); + addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); + callStatGet(v, regStat4, STAT_GET_NEQ, regEq); + callStatGet(v, regStat4, STAT_GET_NLT, regLt); + callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); + sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); +#ifdef SQLITE_ENABLE_STAT3 + sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, + pIdx->aiColumn[0], regSample); +#else + for(i=0; i<nCol; i++){ + i16 iCol = pIdx->aiColumn[i]; + sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); + } + sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample); +#endif + sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regTemp, "bbbbbb", 0); + sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); + sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); + sqlite3VdbeJumpHere(v, addrIsNull); + } +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ + + /* End of analysis */ + sqlite3VdbeJumpHere(v, addrRewind); + sqlite3DbFree(db, aGotoChng); } - /* If the table has no indices, create a single sqlite_stat1 entry - ** containing NULL as the index name and the row count as the content. + + /* Create a single sqlite_stat1 entry containing NULL as the index + ** name and the row count as the content. */ - if( pTab->pIndex==0 ){ - sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb); + if( pOnlyIdx==0 && needTableCnt ){ VdbeComment((v, "%s", pTab->zName)); - sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno); - sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); - jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regSampleno); - }else{ + sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); + jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); + sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); + sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); + sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); + sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeJumpHere(v, jZeroRows); - jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto); - } - sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); - sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); - sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid); - sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid); - sqlite3VdbeChangeP5(v, OPFLAG_APPEND); - if( pParse->nMem<regRec ) pParse->nMem = regRec; - sqlite3VdbeJumpHere(v, jZeroRows); + } } + /* ** Generate code that will cause the most recent index analysis to ** be loaded into internal hash tables where is can be used. @@ -385,16 +1236,18 @@ static void analyzeDatabase(Parse *pParse, int iDb){ HashElem *k; int iStatCur; int iMem; + int iTab; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; - pParse->nTab += 2; + pParse->nTab += 3; openStatTable(pParse, iDb, iStatCur, 0, 0); iMem = pParse->nMem+1; + iTab = pParse->nTab; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); - analyzeOneTable(pParse, pTab, 0, iStatCur, iMem); + analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); } loadAnalysis(pParse, iDb); } @@ -413,13 +1266,13 @@ static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; - pParse->nTab += 2; + pParse->nTab += 3; if( pOnlyIdx ){ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); }else{ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); } - analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1); + analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); loadAnalysis(pParse, iDb); } @@ -503,6 +1356,52 @@ struct analysisInfo { }; /* +** The first argument points to a nul-terminated string containing a +** list of space separated integers. Read the first nOut of these into +** the array aOut[]. +*/ +static void decodeIntArray( + char *zIntArray, /* String containing int array to decode */ + int nOut, /* Number of slots in aOut[] */ + tRowcnt *aOut, /* Store integers here */ + Index *pIndex /* Handle extra flags for this index, if not NULL */ +){ + char *z = zIntArray; + int c; + int i; + tRowcnt v; + +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 + if( z==0 ) z = ""; +#else + if( NEVER(z==0) ) z = ""; +#endif + for(i=0; *z && i<nOut; i++){ + v = 0; + while( (c=z[0])>='0' && c<='9' ){ + v = v*10 + c - '0'; + z++; + } + aOut[i] = v; + if( *z==' ' ) z++; + } +#ifndef SQLITE_ENABLE_STAT3_OR_STAT4 + assert( pIndex!=0 ); +#else + if( pIndex ) +#endif + { + if( strcmp(z, "unordered")==0 ){ + pIndex->bUnordered = 1; + }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ + int v32 = 0; + sqlite3GetInt32(z+3, &v32); + pIndex->szIdxRow = sqlite3LogEst(v32); + } + } +} + +/* ** This callback is invoked once for each index when reading the ** sqlite_stat1 table. ** @@ -517,8 +1416,6 @@ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ analysisInfo *pInfo = (analysisInfo*)pData; Index *pIndex; Table *pTable; - int i, c, n; - unsigned int v; const char *z; assert( argc==3 ); @@ -531,28 +1428,25 @@ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ if( pTable==0 ){ return 0; } - if( argv[1] ){ - pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); - }else{ + if( argv[1]==0 ){ pIndex = 0; + }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ + pIndex = sqlite3PrimaryKeyIndex(pTable); + }else{ + pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); } - n = pIndex ? pIndex->nColumn : 0; z = argv[2]; - for(i=0; *z && i<=n; i++){ - v = 0; - while( (c=z[0])>='0' && c<='9' ){ - v = v*10 + c - '0'; - z++; - } - if( i==0 ) pTable->nRowEst = v; - if( pIndex==0 ) break; - pIndex->aiRowEst[i] = v; - if( *z==' ' ) z++; - if( memcmp(z, "unordered", 10)==0 ){ - pIndex->bUnordered = 1; - break; - } + + if( pIndex ){ + decodeIntArray((char*)z, pIndex->nKeyCol+1, pIndex->aiRowEst, pIndex); + if( pIndex->pPartIdxWhere==0 ) pTable->nRowEst = pIndex->aiRowEst[0]; + }else{ + Index fakeIdx; + fakeIdx.szIdxRow = pTable->szTabRow; + decodeIntArray((char*)z, 1, &pTable->nRowEst, &fakeIdx); + pTable->szTabRow = fakeIdx.szIdxRow; } + return 0; } @@ -561,36 +1455,251 @@ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ ** and its contents. */ void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ -#ifdef SQLITE_ENABLE_STAT2 +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( pIdx->aSample ){ int j; - for(j=0; j<SQLITE_INDEX_SAMPLES; j++){ + for(j=0; j<pIdx->nSample; j++){ IndexSample *p = &pIdx->aSample[j]; - if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){ - sqlite3DbFree(db, p->u.z); - } + sqlite3DbFree(db, p->p); } sqlite3DbFree(db, pIdx->aSample); } + if( db && db->pnBytesFreed==0 ){ + pIdx->nSample = 0; + pIdx->aSample = 0; + } #else UNUSED_PARAMETER(db); UNUSED_PARAMETER(pIdx); -#endif +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ +} + +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 +/* +** Populate the pIdx->aAvgEq[] array based on the samples currently +** stored in pIdx->aSample[]. +*/ +static void initAvgEq(Index *pIdx){ + if( pIdx ){ + IndexSample *aSample = pIdx->aSample; + IndexSample *pFinal = &aSample[pIdx->nSample-1]; + int iCol; + for(iCol=0; iCol<pIdx->nKeyCol; iCol++){ + int i; /* Used to iterate through samples */ + tRowcnt sumEq = 0; /* Sum of the nEq values */ + tRowcnt nSum = 0; /* Number of terms contributing to sumEq */ + tRowcnt avgEq = 0; + tRowcnt nDLt = pFinal->anDLt[iCol]; + + /* Set nSum to the number of distinct (iCol+1) field prefixes that + ** occur in the stat4 table for this index before pFinal. Set + ** sumEq to the sum of the nEq values for column iCol for the same + ** set (adding the value only once where there exist dupicate + ** prefixes). */ + for(i=0; i<(pIdx->nSample-1); i++){ + if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){ + sumEq += aSample[i].anEq[iCol]; + nSum++; + } + } + if( nDLt>nSum ){ + avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum); + } + if( avgEq==0 ) avgEq = 1; + pIdx->aAvgEq[iCol] = avgEq; + if( pIdx->nSampleCol==1 ) break; + } + } } /* -** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The +** Look up an index by name. Or, if the name of a WITHOUT ROWID table +** is supplied instead, find the PRIMARY KEY index for that table. +*/ +static Index *findIndexOrPrimaryKey( + sqlite3 *db, + const char *zName, + const char *zDb +){ + Index *pIdx = sqlite3FindIndex(db, zName, zDb); + if( pIdx==0 ){ + Table *pTab = sqlite3FindTable(db, zName, zDb); + if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); + } + return pIdx; +} + +/* +** Load the content from either the sqlite_stat4 or sqlite_stat3 table +** into the relevant Index.aSample[] arrays. +** +** Arguments zSql1 and zSql2 must point to SQL statements that return +** data equivalent to the following (statements are different for stat3, +** see the caller of this function for details): +** +** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx +** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 +** +** where %Q is replaced with the database name before the SQL is executed. +*/ +static int loadStatTbl( + sqlite3 *db, /* Database handle */ + int bStat3, /* Assume single column records only */ + const char *zSql1, /* SQL statement 1 (see above) */ + const char *zSql2, /* SQL statement 2 (see above) */ + const char *zDb /* Database name (e.g. "main") */ +){ + int rc; /* Result codes from subroutines */ + sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ + char *zSql; /* Text of the SQL statement */ + Index *pPrevIdx = 0; /* Previous index in the loop */ + IndexSample *pSample; /* A slot in pIdx->aSample[] */ + + assert( db->lookaside.bEnabled==0 ); + zSql = sqlite3MPrintf(db, zSql1, zDb); + if( !zSql ){ + return SQLITE_NOMEM; + } + rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); + sqlite3DbFree(db, zSql); + if( rc ) return rc; + + while( sqlite3_step(pStmt)==SQLITE_ROW ){ + int nIdxCol = 1; /* Number of columns in stat4 records */ + int nAvgCol = 1; /* Number of entries in Index.aAvgEq */ + + char *zIndex; /* Index name */ + Index *pIdx; /* Pointer to the index object */ + int nSample; /* Number of samples */ + int nByte; /* Bytes of space required */ + int i; /* Bytes of space required */ + tRowcnt *pSpace; + + zIndex = (char *)sqlite3_column_text(pStmt, 0); + if( zIndex==0 ) continue; + nSample = sqlite3_column_int(pStmt, 1); + pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); + assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); + /* Index.nSample is non-zero at this point if data has already been + ** loaded from the stat4 table. In this case ignore stat3 data. */ + if( pIdx==0 || pIdx->nSample ) continue; + if( bStat3==0 ){ + nIdxCol = pIdx->nKeyCol+1; + nAvgCol = pIdx->nKeyCol; + } + pIdx->nSampleCol = nIdxCol; + nByte = sizeof(IndexSample) * nSample; + nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; + nByte += nAvgCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ + + pIdx->aSample = sqlite3DbMallocZero(db, nByte); + if( pIdx->aSample==0 ){ + sqlite3_finalize(pStmt); + return SQLITE_NOMEM; + } + pSpace = (tRowcnt*)&pIdx->aSample[nSample]; + pIdx->aAvgEq = pSpace; pSpace += nAvgCol; + for(i=0; i<nSample; i++){ + pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; + pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; + pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; + } + assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); + } + rc = sqlite3_finalize(pStmt); + if( rc ) return rc; + + zSql = sqlite3MPrintf(db, zSql2, zDb); + if( !zSql ){ + return SQLITE_NOMEM; + } + rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); + sqlite3DbFree(db, zSql); + if( rc ) return rc; + + while( sqlite3_step(pStmt)==SQLITE_ROW ){ + char *zIndex; /* Index name */ + Index *pIdx; /* Pointer to the index object */ + int nCol = 1; /* Number of columns in index */ + + zIndex = (char *)sqlite3_column_text(pStmt, 0); + if( zIndex==0 ) continue; + pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); + if( pIdx==0 ) continue; + /* This next condition is true if data has already been loaded from + ** the sqlite_stat4 table. In this case ignore stat3 data. */ + nCol = pIdx->nSampleCol; + if( bStat3 && nCol>1 ) continue; + if( pIdx!=pPrevIdx ){ + initAvgEq(pPrevIdx); + pPrevIdx = pIdx; + } + pSample = &pIdx->aSample[pIdx->nSample]; + decodeIntArray((char*)sqlite3_column_text(pStmt,1), nCol, pSample->anEq, 0); + decodeIntArray((char*)sqlite3_column_text(pStmt,2), nCol, pSample->anLt, 0); + decodeIntArray((char*)sqlite3_column_text(pStmt,3), nCol, pSample->anDLt,0); + + /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. + ** This is in case the sample record is corrupted. In that case, the + ** sqlite3VdbeRecordCompare() may read up to two varints past the + ** end of the allocated buffer before it realizes it is dealing with + ** a corrupt record. Adding the two 0x00 bytes prevents this from causing + ** a buffer overread. */ + pSample->n = sqlite3_column_bytes(pStmt, 4); + pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); + if( pSample->p==0 ){ + sqlite3_finalize(pStmt); + return SQLITE_NOMEM; + } + memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); + pIdx->nSample++; + } + rc = sqlite3_finalize(pStmt); + if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); + return rc; +} + +/* +** Load content from the sqlite_stat4 and sqlite_stat3 tables into +** the Index.aSample[] arrays of all indices. +*/ +static int loadStat4(sqlite3 *db, const char *zDb){ + int rc = SQLITE_OK; /* Result codes from subroutines */ + + assert( db->lookaside.bEnabled==0 ); + if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ + rc = loadStatTbl(db, 0, + "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", + "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", + zDb + ); + } + + if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ + rc = loadStatTbl(db, 1, + "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", + "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", + zDb + ); + } + + return rc; +} +#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ + +/* +** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] -** arrays. The contents of sqlite_stat2 are used to populate the +** arrays. The contents of sqlite_stat3/4 are used to populate the ** Index.aSample[] arrays. ** ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR -** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined -** during compilation and the sqlite_stat2 table is present, no data is +** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined +** during compilation and the sqlite_stat3/4 table is present, no data is ** read from it. ** -** If SQLITE_ENABLE_STAT2 was defined during compilation and the -** sqlite_stat2 table is not present in the database, SQLITE_ERROR is +** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the +** sqlite_stat4 table is not present in the database, SQLITE_ERROR is ** returned. However, in this case, data is read from the sqlite_stat1 ** table (if it is present) before returning. ** @@ -612,8 +1721,10 @@ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3DefaultRowEst(pIdx); +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3DeleteIndexSamples(db, pIdx); pIdx->aSample = 0; +#endif } /* Check to make sure the sqlite_stat1 table exists */ @@ -625,7 +1736,7 @@ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ /* Load new statistics out of the sqlite_stat1 table */ zSql = sqlite3MPrintf(db, - "SELECT tbl, idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase); + "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ @@ -634,78 +1745,13 @@ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ } - /* Load the statistics from the sqlite_stat2 table. */ -#ifdef SQLITE_ENABLE_STAT2 - if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){ - rc = SQLITE_ERROR; - } + /* Load the statistics from the sqlite_stat4 table. */ +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( rc==SQLITE_OK ){ - sqlite3_stmt *pStmt = 0; - - zSql = sqlite3MPrintf(db, - "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase); - if( !zSql ){ - rc = SQLITE_NOMEM; - }else{ - rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); - sqlite3DbFree(db, zSql); - } - - if( rc==SQLITE_OK ){ - while( sqlite3_step(pStmt)==SQLITE_ROW ){ - char *zIndex; /* Index name */ - Index *pIdx; /* Pointer to the index object */ - - zIndex = (char *)sqlite3_column_text(pStmt, 0); - pIdx = zIndex ? sqlite3FindIndex(db, zIndex, sInfo.zDatabase) : 0; - if( pIdx ){ - int iSample = sqlite3_column_int(pStmt, 1); - if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){ - int eType = sqlite3_column_type(pStmt, 2); - - if( pIdx->aSample==0 ){ - static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES; - pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz); - if( pIdx->aSample==0 ){ - db->mallocFailed = 1; - break; - } - memset(pIdx->aSample, 0, sz); - } - - assert( pIdx->aSample ); - { - IndexSample *pSample = &pIdx->aSample[iSample]; - pSample->eType = (u8)eType; - if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ - pSample->u.r = sqlite3_column_double(pStmt, 2); - }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ - const char *z = (const char *)( - (eType==SQLITE_BLOB) ? - sqlite3_column_blob(pStmt, 2): - sqlite3_column_text(pStmt, 2) - ); - int n = sqlite3_column_bytes(pStmt, 2); - if( n>24 ){ - n = 24; - } - pSample->nByte = (u8)n; - if( n < 1){ - pSample->u.z = 0; - }else{ - pSample->u.z = sqlite3DbStrNDup(0, z, n); - if( pSample->u.z==0 ){ - db->mallocFailed = 1; - break; - } - } - } - } - } - } - } - rc = sqlite3_finalize(pStmt); - } + int lookasideEnabled = db->lookaside.bEnabled; + db->lookaside.bEnabled = 0; + rc = loadStat4(db, sInfo.zDatabase); + db->lookaside.bEnabled = lookasideEnabled; } #endif |