summaryrefslogtreecommitdiff
path: root/src/crypto/mersenne/mt19937db.c
blob: 2d53c31224880c4906f6e5622c247d911b7d519d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * $Id$
 */
#include "db_config.h"

#include "db_int.h"
#include "dbinc/crypto.h"
#include "dbinc/hmac.h"

/* A C-program for MT19937: Integer version (1999/10/28)          */
/*  genrand() generates one pseudorandom unsigned integer (32bit) */
/* which is uniformly distributed among 0 to 2^32-1  for each     */
/* call. sgenrand(seed) sets initial values to the working area   */
/* of 624 words. Before genrand(), sgenrand(seed) must be         */
/* called once. (seed is any 32-bit integer.)                     */
/*   Coded by Takuji Nishimura, considering the suggestions by    */
/* Topher Cooper and Marc Rieffel in July-Aug. 1997.              */

/* This library is free software under the Artistic license:       */
/* see the file COPYING distributed together with this code.       */
/* For the verification of the code, its output sequence file      */
/* mt19937int.out is attached (2001/4/2)                           */

/* Copyright (C) 1997, 1999 Makoto Matsumoto and Takuji Nishimura. */
/* Any feedback is very welcome. For any question, comments,       */
/* see http://www.math.keio.ac.jp/matumoto/emt.html or email       */
/* matumoto@math.keio.ac.jp                                        */

/* REFERENCE                                                       */
/* M. Matsumoto and T. Nishimura,                                  */
/* "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform  */
/* Pseudo-Random Number Generator",                                */
/* ACM Transactions on Modeling and Computer Simulation,           */
/* Vol. 8, No. 1, January 1998, pp 3--30.                          */

/* Period parameters */
#define	N 624
#define	M 397
#define	MATRIX_A 0x9908b0df   /* constant vector a */
#define	UPPER_MASK 0x80000000 /* most significant w-r bits */
#define	LOWER_MASK 0x7fffffff /* least significant r bits */

/* Tempering parameters */
#define	TEMPERING_MASK_B 0x9d2c5680
#define	TEMPERING_MASK_C 0xefc60000
#define	TEMPERING_SHIFT_U(y)  (y >> 11)
#define	TEMPERING_SHIFT_S(y)  (y << 7)
#define	TEMPERING_SHIFT_T(y)  (y << 15)
#define	TEMPERING_SHIFT_L(y)  (y >> 18)

static void __db_sgenrand __P((unsigned long, unsigned long *, int *));
#ifdef	NOT_USED
static void __db_lsgenrand __P((unsigned long *, unsigned long *, int *));
#endif
static unsigned long __db_genrand __P((ENV *));

/*
 * __db_generate_iv --
 *	Generate an initialization vector (IV)
 *
 * PUBLIC: int __db_generate_iv __P((ENV *, u_int32_t *));
 */
int
__db_generate_iv(env, iv)
	ENV *env;
	u_int32_t *iv;
{
	int i, n, ret;

	ret = 0;
	n = DB_IV_BYTES / sizeof(u_int32_t);
	MUTEX_LOCK(env, env->mtx_mt);
	if (env->mt == NULL) {
		if ((ret = __os_calloc(env, 1, N*sizeof(unsigned long),
		    &env->mt)) != 0)
			return (ret);
		/* mti==N+1 means mt[N] is not initialized */
		env->mti = N + 1;
	}
	for (i = 0; i < n; i++) {
		/*
		 * We do not allow 0.  If we get one just try again.
		 */
		do {
			iv[i] = (u_int32_t)__db_genrand(env);
		} while (iv[i] == 0);
	}

	MUTEX_UNLOCK(env, env->mtx_mt);
	return (0);
}

/* Initializing the array with a seed */
static void
__db_sgenrand(seed, mt, mtip)
	unsigned long seed;
	unsigned long mt[];
	int *mtip;
{
    int i;

    DB_ASSERT(NULL, seed != 0);
    for (i=0;i<N;i++) {
	 mt[i] = seed & 0xffff0000;
	 seed = 69069 * seed + 1;
	 mt[i] |= (seed & 0xffff0000) >> 16;
	 seed = 69069 * seed + 1;
    }
    *mtip = N;
}

#ifdef	NOT_USED
/* Initialization by "sgenrand()" is an example. Theoretically,      */
/* there are 2^19937-1 possible states as an intial state.           */
/* This function allows to choose any of 2^19937-1 ones.             */
/* Essential bits in "seed_array[]" is following 19937 bits:         */
/*  (seed_array[0]&UPPER_MASK), seed_array[1], ..., seed_array[N-1]. */
/* (seed_array[0]&LOWER_MASK) is discarded.                          */
/* Theoretically,                                                    */
/*  (seed_array[0]&UPPER_MASK), seed_array[1], ..., seed_array[N-1]  */
/* can take any values except all zeros.                             */
static void
__db_lsgenrand(seed_array, mt, mtip)
    unsigned long seed_array[];
    unsigned long mt[];
    int *mtip;
    /* the length of seed_array[] must be at least N */
{
    int i;

    for (i=0;i<N;i++)
      mt[i] = seed_array[i];
    *mtip=N;
}
#endif

static unsigned long
__db_genrand(env)
    ENV *env;
{
    db_timespec ts;
    unsigned long y;
    static unsigned long mag01[2]={0x0, MATRIX_A};
    /* mag01[x] = x * MATRIX_A  for x=0,1 */
    u_int32_t seed;

    /*
     * We are called with ENV->mtx_mt locked.
     */
    if (env->mti >= N) { /* generate N words at one time */
	int kk;

	if (env->mti == N+1) {  /* if sgenrand() has not been called, */
		/*
		 * Seed the generator with the hashed time.  The __db_mac
		 * function will return 4 bytes if we don't send in a key.
		 */
		do {
			__os_gettime(env, &ts, 1);
			__db_chksum(NULL, (u_int8_t *)&ts.tv_sec,
			    sizeof(ts.tv_sec), NULL, (u_int8_t *)&seed);
		} while (seed == 0);
		__db_sgenrand((unsigned long)seed, env->mt, &env->mti);
	}

	for (kk=0;kk<N-M;kk++) {
	    y = (env->mt[kk]&UPPER_MASK)|(env->mt[kk+1]&LOWER_MASK);
	    env->mt[kk] = env->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
	}
	for (;kk<N-1;kk++) {
	    y = (env->mt[kk]&UPPER_MASK)|(env->mt[kk+1]&LOWER_MASK);
	    env->mt[kk] = env->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
	}
	y = (env->mt[N-1]&UPPER_MASK)|(env->mt[0]&LOWER_MASK);
	env->mt[N-1] = env->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];

	env->mti = 0;
    }

    y = env->mt[env->mti++];
    y ^= TEMPERING_SHIFT_U(y);
    y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
    y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
    y ^= TEMPERING_SHIFT_L(y);

    return y;
}