diff options
Diffstat (limited to 'gdb/arm-tdep.c')
-rw-r--r-- | gdb/arm-tdep.c | 2452 |
1 files changed, 0 insertions, 2452 deletions
diff --git a/gdb/arm-tdep.c b/gdb/arm-tdep.c deleted file mode 100644 index 501f3d64516..00000000000 --- a/gdb/arm-tdep.c +++ /dev/null @@ -1,2452 +0,0 @@ -/* Common target dependent code for GDB on ARM systems. - Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000, - 2001, 2002 Free Software Foundation, Inc. - - This file is part of GDB. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ - -#include "defs.h" -#include "frame.h" -#include "inferior.h" -#include "gdbcmd.h" -#include "gdbcore.h" -#include "symfile.h" -#include "gdb_string.h" -#include "coff/internal.h" /* Internal format of COFF symbols in BFD */ -#include "dis-asm.h" /* For register flavors. */ -#include <ctype.h> /* for isupper () */ -#include "regcache.h" -#include "doublest.h" -#include "value.h" -#include "solib-svr4.h" -#include "elf-bfd.h" -#include "coff/internal.h" - -/* Each OS has a different mechanism for accessing the various - registers stored in the sigcontext structure. - - SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or - function pointer) which may be used to determine the addresses - of the various saved registers in the sigcontext structure. - - For the ARM target, there are three parameters to this function. - The first is the pc value of the frame under consideration, the - second the stack pointer of this frame, and the last is the - register number to fetch. - - If the tm.h file does not define this macro, then it's assumed that - no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to - be 0. - - When it comes time to multi-arching this code, see the identically - named machinery in ia64-tdep.c for an example of how it could be - done. It should not be necessary to modify the code below where - this macro is used. */ - -#ifdef SIGCONTEXT_REGISTER_ADDRESS -#ifndef SIGCONTEXT_REGISTER_ADDRESS_P -#define SIGCONTEXT_REGISTER_ADDRESS_P() 1 -#endif -#else -#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0 -#define SIGCONTEXT_REGISTER_ADDRESS_P() 0 -#endif - -/* Macros for setting and testing a bit in a minimal symbol that marks - it as Thumb function. The MSB of the minimal symbol's "info" field - is used for this purpose. This field is already being used to store - the symbol size, so the assumption is that the symbol size cannot - exceed 2^31. - - MSYMBOL_SET_SPECIAL Actually sets the "special" bit. - MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. - MSYMBOL_SIZE Returns the size of the minimal symbol, - i.e. the "info" field with the "special" bit - masked out. */ - -#define MSYMBOL_SET_SPECIAL(msym) \ - MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \ - | 0x80000000) - -#define MSYMBOL_IS_SPECIAL(msym) \ - (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0) - -#define MSYMBOL_SIZE(msym) \ - ((long) MSYMBOL_INFO (msym) & 0x7fffffff) - -/* Number of different reg name sets (options). */ -static int num_flavor_options; - -/* We have more registers than the disassembler as gdb can print the value - of special registers as well. - The general register names are overwritten by whatever is being used by - the disassembler at the moment. We also adjust the case of cpsr and fps. */ - -/* Initial value: Register names used in ARM's ISA documentation. */ -static char * arm_register_name_strings[] = -{"r0", "r1", "r2", "r3", /* 0 1 2 3 */ - "r4", "r5", "r6", "r7", /* 4 5 6 7 */ - "r8", "r9", "r10", "r11", /* 8 9 10 11 */ - "r12", "sp", "lr", "pc", /* 12 13 14 15 */ - "f0", "f1", "f2", "f3", /* 16 17 18 19 */ - "f4", "f5", "f6", "f7", /* 20 21 22 23 */ - "fps", "cpsr" }; /* 24 25 */ -static char **arm_register_names = arm_register_name_strings; - -/* Valid register name flavors. */ -static const char **valid_flavors; - -/* Disassembly flavor to use. Default to "std" register names. */ -static const char *disassembly_flavor; -static int current_option; /* Index to that option in the opcodes table. */ - -/* This is used to keep the bfd arch_info in sync with the disassembly - flavor. */ -static void set_disassembly_flavor_sfunc(char *, int, - struct cmd_list_element *); -static void set_disassembly_flavor (void); - -static void convert_from_extended (void *ptr, void *dbl); - -/* Define other aspects of the stack frame. We keep the offsets of - all saved registers, 'cause we need 'em a lot! We also keep the - current size of the stack frame, and the offset of the frame - pointer from the stack pointer (for frameless functions, and when - we're still in the prologue of a function with a frame) */ - -struct frame_extra_info -{ - int framesize; - int frameoffset; - int framereg; -}; - -/* Addresses for calling Thumb functions have the bit 0 set. - Here are some macros to test, set, or clear bit 0 of addresses. */ -#define IS_THUMB_ADDR(addr) ((addr) & 1) -#define MAKE_THUMB_ADDR(addr) ((addr) | 1) -#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1) - -/* Will a function return an aggregate type in memory or in a - register? Return 0 if an aggregate type can be returned in a - register, 1 if it must be returned in memory. */ - -int -arm_use_struct_convention (int gcc_p, struct type *type) -{ - int nRc; - register enum type_code code; - - /* In the ARM ABI, "integer" like aggregate types are returned in - registers. For an aggregate type to be integer like, its size - must be less than or equal to REGISTER_SIZE and the offset of - each addressable subfield must be zero. Note that bit fields are - not addressable, and all addressable subfields of unions always - start at offset zero. - - This function is based on the behaviour of GCC 2.95.1. - See: gcc/arm.c: arm_return_in_memory() for details. - - Note: All versions of GCC before GCC 2.95.2 do not set up the - parameters correctly for a function returning the following - structure: struct { float f;}; This should be returned in memory, - not a register. Richard Earnshaw sent me a patch, but I do not - know of any way to detect if a function like the above has been - compiled with the correct calling convention. */ - - /* All aggregate types that won't fit in a register must be returned - in memory. */ - if (TYPE_LENGTH (type) > REGISTER_SIZE) - { - return 1; - } - - /* The only aggregate types that can be returned in a register are - structs and unions. Arrays must be returned in memory. */ - code = TYPE_CODE (type); - if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code)) - { - return 1; - } - - /* Assume all other aggregate types can be returned in a register. - Run a check for structures, unions and arrays. */ - nRc = 0; - - if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) - { - int i; - /* Need to check if this struct/union is "integer" like. For - this to be true, its size must be less than or equal to - REGISTER_SIZE and the offset of each addressable subfield - must be zero. Note that bit fields are not addressable, and - unions always start at offset zero. If any of the subfields - is a floating point type, the struct/union cannot be an - integer type. */ - - /* For each field in the object, check: - 1) Is it FP? --> yes, nRc = 1; - 2) Is it addressable (bitpos != 0) and - not packed (bitsize == 0)? - --> yes, nRc = 1 - */ - - for (i = 0; i < TYPE_NFIELDS (type); i++) - { - enum type_code field_type_code; - field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i)); - - /* Is it a floating point type field? */ - if (field_type_code == TYPE_CODE_FLT) - { - nRc = 1; - break; - } - - /* If bitpos != 0, then we have to care about it. */ - if (TYPE_FIELD_BITPOS (type, i) != 0) - { - /* Bitfields are not addressable. If the field bitsize is - zero, then the field is not packed. Hence it cannot be - a bitfield or any other packed type. */ - if (TYPE_FIELD_BITSIZE (type, i) == 0) - { - nRc = 1; - break; - } - } - } - } - - return nRc; -} - -static int -arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe) -{ - return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC)); -} - -/* Set to true if the 32-bit mode is in use. */ - -int arm_apcs_32 = 1; - -/* Flag set by arm_fix_call_dummy that tells whether the target - function is a Thumb function. This flag is checked by - arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and - its use in valops.c) to pass the function address as an additional - parameter. */ - -static int target_is_thumb; - -/* Flag set by arm_fix_call_dummy that tells whether the calling - function is a Thumb function. This flag is checked by - arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */ - -static int caller_is_thumb; - -/* Determine if the program counter specified in MEMADDR is in a Thumb - function. */ - -int -arm_pc_is_thumb (CORE_ADDR memaddr) -{ - struct minimal_symbol *sym; - - /* If bit 0 of the address is set, assume this is a Thumb address. */ - if (IS_THUMB_ADDR (memaddr)) - return 1; - - /* Thumb functions have a "special" bit set in minimal symbols. */ - sym = lookup_minimal_symbol_by_pc (memaddr); - if (sym) - { - return (MSYMBOL_IS_SPECIAL (sym)); - } - else - { - return 0; - } -} - -/* Determine if the program counter specified in MEMADDR is in a call - dummy being called from a Thumb function. */ - -int -arm_pc_is_thumb_dummy (CORE_ADDR memaddr) -{ - CORE_ADDR sp = read_sp (); - - /* FIXME: Until we switch for the new call dummy macros, this heuristic - is the best we can do. We are trying to determine if the pc is on - the stack, which (hopefully) will only happen in a call dummy. - We hope the current stack pointer is not so far alway from the dummy - frame location (true if we have not pushed large data structures or - gone too many levels deep) and that our 1024 is not enough to consider - code regions as part of the stack (true for most practical purposes) */ - if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024)) - return caller_is_thumb; - else - return 0; -} - -/* Remove useless bits from addresses in a running program. */ -CORE_ADDR -arm_addr_bits_remove (CORE_ADDR val) -{ - if (arm_pc_is_thumb (val)) - return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe)); - else - return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc)); -} - -/* When reading symbols, we need to zap the low bit of the address, - which may be set to 1 for Thumb functions. */ -CORE_ADDR -arm_smash_text_address (CORE_ADDR val) -{ - return val & ~1; -} - -CORE_ADDR -arm_saved_pc_after_call (struct frame_info *frame) -{ - return ADDR_BITS_REMOVE (read_register (LR_REGNUM)); -} - -/* Determine whether the function invocation represented by FI has a - frame on the stack associated with it. If it does return zero, - otherwise return 1. */ - -int -arm_frameless_function_invocation (struct frame_info *fi) -{ - CORE_ADDR func_start, after_prologue; - int frameless; - - /* Sometimes we have functions that do a little setup (like saving the - vN registers with the stmdb instruction, but DO NOT set up a frame. - The symbol table will report this as a prologue. However, it is - important not to try to parse these partial frames as frames, or we - will get really confused. - - So I will demand 3 instructions between the start & end of the - prologue before I call it a real prologue, i.e. at least - mov ip, sp, - stmdb sp!, {} - sub sp, ip, #4. */ - - func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET); - after_prologue = SKIP_PROLOGUE (func_start); - - /* There are some frameless functions whose first two instructions - follow the standard APCS form, in which case after_prologue will - be func_start + 8. */ - - frameless = (after_prologue < func_start + 12); - return frameless; -} - -/* The address of the arguments in the frame. */ -CORE_ADDR -arm_frame_args_address (struct frame_info *fi) -{ - return fi->frame; -} - -/* The address of the local variables in the frame. */ -CORE_ADDR -arm_frame_locals_address (struct frame_info *fi) -{ - return fi->frame; -} - -/* The number of arguments being passed in the frame. */ -int -arm_frame_num_args (struct frame_info *fi) -{ - /* We have no way of knowing. */ - return -1; -} - -/* A typical Thumb prologue looks like this: - push {r7, lr} - add sp, sp, #-28 - add r7, sp, #12 - Sometimes the latter instruction may be replaced by: - mov r7, sp - - or like this: - push {r7, lr} - mov r7, sp - sub sp, #12 - - or, on tpcs, like this: - sub sp,#16 - push {r7, lr} - (many instructions) - mov r7, sp - sub sp, #12 - - There is always one instruction of three classes: - 1 - push - 2 - setting of r7 - 3 - adjusting of sp - - When we have found at least one of each class we are done with the prolog. - Note that the "sub sp, #NN" before the push does not count. - */ - -static CORE_ADDR -thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end) -{ - CORE_ADDR current_pc; - int findmask = 0; /* findmask: - bit 0 - push { rlist } - bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) - bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) - */ - - for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2) - { - unsigned short insn = read_memory_unsigned_integer (current_pc, 2); - - if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ - { - findmask |= 1; /* push found */ - } - else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ - { - if ((findmask & 1) == 0) /* before push ? */ - continue; - else - findmask |= 4; /* add/sub sp found */ - } - else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ - { - findmask |= 2; /* setting of r7 found */ - } - else if (insn == 0x466f) /* mov r7, sp */ - { - findmask |= 2; /* setting of r7 found */ - } - else if (findmask == (4+2+1)) - { - break; /* We have found one of each type of prologue instruction */ - } - else - continue; /* something in the prolog that we don't care about or some - instruction from outside the prolog scheduled here for optimization */ - } - - return current_pc; -} - -/* The APCS (ARM Procedure Call Standard) defines the following - prologue: - - mov ip, sp - [stmfd sp!, {a1,a2,a3,a4}] - stmfd sp!, {...,fp,ip,lr,pc} - [stfe f7, [sp, #-12]!] - [stfe f6, [sp, #-12]!] - [stfe f5, [sp, #-12]!] - [stfe f4, [sp, #-12]!] - sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */ - -CORE_ADDR -arm_skip_prologue (CORE_ADDR pc) -{ - unsigned long inst; - CORE_ADDR skip_pc; - CORE_ADDR func_addr, func_end; - char *func_name; - struct symtab_and_line sal; - - /* See what the symbol table says. */ - - if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) - { - struct symbol *sym; - - /* Found a function. */ - sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL); - if (sym && SYMBOL_LANGUAGE (sym) != language_asm) - { - /* Don't use this trick for assembly source files. */ - sal = find_pc_line (func_addr, 0); - if ((sal.line != 0) && (sal.end < func_end)) - return sal.end; - } - } - - /* Check if this is Thumb code. */ - if (arm_pc_is_thumb (pc)) - return thumb_skip_prologue (pc, func_end); - - /* Can't find the prologue end in the symbol table, try it the hard way - by disassembling the instructions. */ - skip_pc = pc; - inst = read_memory_integer (skip_pc, 4); - if (inst != 0xe1a0c00d) /* mov ip, sp */ - return pc; - - skip_pc += 4; - inst = read_memory_integer (skip_pc, 4); - if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */ - { - skip_pc += 4; - inst = read_memory_integer (skip_pc, 4); - } - - if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */ - return pc; - - skip_pc += 4; - inst = read_memory_integer (skip_pc, 4); - - /* Any insns after this point may float into the code, if it makes - for better instruction scheduling, so we skip them only if we - find them, but still consdier the function to be frame-ful. */ - - /* We may have either one sfmfd instruction here, or several stfe - insns, depending on the version of floating point code we - support. */ - if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */ - { - skip_pc += 4; - inst = read_memory_integer (skip_pc, 4); - } - else - { - while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */ - { - skip_pc += 4; - inst = read_memory_integer (skip_pc, 4); - } - } - - if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */ - skip_pc += 4; - - return skip_pc; -} -/* *INDENT-OFF* */ -/* Function: thumb_scan_prologue (helper function for arm_scan_prologue) - This function decodes a Thumb function prologue to determine: - 1) the size of the stack frame - 2) which registers are saved on it - 3) the offsets of saved regs - 4) the offset from the stack pointer to the frame pointer - This information is stored in the "extra" fields of the frame_info. - - A typical Thumb function prologue would create this stack frame - (offsets relative to FP) - old SP -> 24 stack parameters - 20 LR - 16 R7 - R7 -> 0 local variables (16 bytes) - SP -> -12 additional stack space (12 bytes) - The frame size would thus be 36 bytes, and the frame offset would be - 12 bytes. The frame register is R7. - - The comments for thumb_skip_prolog() describe the algorithm we use to detect - the end of the prolog */ -/* *INDENT-ON* */ - -static void -thumb_scan_prologue (struct frame_info *fi) -{ - CORE_ADDR prologue_start; - CORE_ADDR prologue_end; - CORE_ADDR current_pc; - int saved_reg[16]; /* which register has been copied to register n? */ - int findmask = 0; /* findmask: - bit 0 - push { rlist } - bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7) - bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp) - */ - int i; - - if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) - { - struct symtab_and_line sal = find_pc_line (prologue_start, 0); - - if (sal.line == 0) /* no line info, use current PC */ - prologue_end = fi->pc; - else if (sal.end < prologue_end) /* next line begins after fn end */ - prologue_end = sal.end; /* (probably means no prologue) */ - } - else - prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */ - /* 16 pushes, an add, and "mv fp,sp" */ - - prologue_end = min (prologue_end, fi->pc); - - /* Initialize the saved register map. When register H is copied to - register L, we will put H in saved_reg[L]. */ - for (i = 0; i < 16; i++) - saved_reg[i] = i; - - /* Search the prologue looking for instructions that set up the - frame pointer, adjust the stack pointer, and save registers. - Do this until all basic prolog instructions are found. */ - - fi->extra_info->framesize = 0; - for (current_pc = prologue_start; - (current_pc < prologue_end) && ((findmask & 7) != 7); - current_pc += 2) - { - unsigned short insn; - int regno; - int offset; - - insn = read_memory_unsigned_integer (current_pc, 2); - - if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ - { - int mask; - findmask |= 1; /* push found */ - /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says - whether to save LR (R14). */ - mask = (insn & 0xff) | ((insn & 0x100) << 6); - - /* Calculate offsets of saved R0-R7 and LR. */ - for (regno = LR_REGNUM; regno >= 0; regno--) - if (mask & (1 << regno)) - { - fi->extra_info->framesize += 4; - fi->saved_regs[saved_reg[regno]] = - -(fi->extra_info->framesize); - saved_reg[regno] = regno; /* reset saved register map */ - } - } - else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */ - { - if ((findmask & 1) == 0) /* before push ? */ - continue; - else - findmask |= 4; /* add/sub sp found */ - - offset = (insn & 0x7f) << 2; /* get scaled offset */ - if (insn & 0x80) /* is it signed? (==subtracting) */ - { - fi->extra_info->frameoffset += offset; - offset = -offset; - } - fi->extra_info->framesize -= offset; - } - else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */ - { - findmask |= 2; /* setting of r7 found */ - fi->extra_info->framereg = THUMB_FP_REGNUM; - /* get scaled offset */ - fi->extra_info->frameoffset = (insn & 0xff) << 2; - } - else if (insn == 0x466f) /* mov r7, sp */ - { - findmask |= 2; /* setting of r7 found */ - fi->extra_info->framereg = THUMB_FP_REGNUM; - fi->extra_info->frameoffset = 0; - saved_reg[THUMB_FP_REGNUM] = SP_REGNUM; - } - else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */ - { - int lo_reg = insn & 7; /* dest. register (r0-r7) */ - int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */ - saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */ - } - else - continue; /* something in the prolog that we don't care about or some - instruction from outside the prolog scheduled here for optimization */ - } -} - -/* Check if prologue for this frame's PC has already been scanned. If - it has, copy the relevant information about that prologue and - return non-zero. Otherwise do not copy anything and return zero. - - The information saved in the cache includes: - * the frame register number; - * the size of the stack frame; - * the offsets of saved regs (relative to the old SP); and - * the offset from the stack pointer to the frame pointer - - The cache contains only one entry, since this is adequate for the - typical sequence of prologue scan requests we get. When performing - a backtrace, GDB will usually ask to scan the same function twice - in a row (once to get the frame chain, and once to fill in the - extra frame information). */ - -static struct frame_info prologue_cache; - -static int -check_prologue_cache (struct frame_info *fi) -{ - int i; - - if (fi->pc == prologue_cache.pc) - { - fi->extra_info->framereg = prologue_cache.extra_info->framereg; - fi->extra_info->framesize = prologue_cache.extra_info->framesize; - fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset; - for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) - fi->saved_regs[i] = prologue_cache.saved_regs[i]; - return 1; - } - else - return 0; -} - - -/* Copy the prologue information from fi to the prologue cache. */ - -static void -save_prologue_cache (struct frame_info *fi) -{ - int i; - - prologue_cache.pc = fi->pc; - prologue_cache.extra_info->framereg = fi->extra_info->framereg; - prologue_cache.extra_info->framesize = fi->extra_info->framesize; - prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset; - - for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) - prologue_cache.saved_regs[i] = fi->saved_regs[i]; -} - - -/* This function decodes an ARM function prologue to determine: - 1) the size of the stack frame - 2) which registers are saved on it - 3) the offsets of saved regs - 4) the offset from the stack pointer to the frame pointer - This information is stored in the "extra" fields of the frame_info. - - There are two basic forms for the ARM prologue. The fixed argument - function call will look like: - - mov ip, sp - stmfd sp!, {fp, ip, lr, pc} - sub fp, ip, #4 - [sub sp, sp, #4] - - Which would create this stack frame (offsets relative to FP): - IP -> 4 (caller's stack) - FP -> 0 PC (points to address of stmfd instruction + 8 in callee) - -4 LR (return address in caller) - -8 IP (copy of caller's SP) - -12 FP (caller's FP) - SP -> -28 Local variables - - The frame size would thus be 32 bytes, and the frame offset would be - 28 bytes. The stmfd call can also save any of the vN registers it - plans to use, which increases the frame size accordingly. - - Note: The stored PC is 8 off of the STMFD instruction that stored it - because the ARM Store instructions always store PC + 8 when you read - the PC register. - - A variable argument function call will look like: - - mov ip, sp - stmfd sp!, {a1, a2, a3, a4} - stmfd sp!, {fp, ip, lr, pc} - sub fp, ip, #20 - - Which would create this stack frame (offsets relative to FP): - IP -> 20 (caller's stack) - 16 A4 - 12 A3 - 8 A2 - 4 A1 - FP -> 0 PC (points to address of stmfd instruction + 8 in callee) - -4 LR (return address in caller) - -8 IP (copy of caller's SP) - -12 FP (caller's FP) - SP -> -28 Local variables - - The frame size would thus be 48 bytes, and the frame offset would be - 28 bytes. - - There is another potential complication, which is that the optimizer - will try to separate the store of fp in the "stmfd" instruction from - the "sub fp, ip, #NN" instruction. Almost anything can be there, so - we just key on the stmfd, and then scan for the "sub fp, ip, #NN"... - - Also, note, the original version of the ARM toolchain claimed that there - should be an - - instruction at the end of the prologue. I have never seen GCC produce - this, and the ARM docs don't mention it. We still test for it below in - case it happens... - - */ - -static void -arm_scan_prologue (struct frame_info *fi) -{ - int regno, sp_offset, fp_offset; - LONGEST return_value; - CORE_ADDR prologue_start, prologue_end, current_pc; - - /* Check if this function is already in the cache of frame information. */ - if (check_prologue_cache (fi)) - return; - - /* Assume there is no frame until proven otherwise. */ - fi->extra_info->framereg = SP_REGNUM; - fi->extra_info->framesize = 0; - fi->extra_info->frameoffset = 0; - - /* Check for Thumb prologue. */ - if (arm_pc_is_thumb (fi->pc)) - { - thumb_scan_prologue (fi); - save_prologue_cache (fi); - return; - } - - /* Find the function prologue. If we can't find the function in - the symbol table, peek in the stack frame to find the PC. */ - if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) - { - /* One way to find the end of the prologue (which works well - for unoptimized code) is to do the following: - - struct symtab_and_line sal = find_pc_line (prologue_start, 0); - - if (sal.line == 0) - prologue_end = fi->pc; - else if (sal.end < prologue_end) - prologue_end = sal.end; - - This mechanism is very accurate so long as the optimizer - doesn't move any instructions from the function body into the - prologue. If this happens, sal.end will be the last - instruction in the first hunk of prologue code just before - the first instruction that the scheduler has moved from - the body to the prologue. - - In order to make sure that we scan all of the prologue - instructions, we use a slightly less accurate mechanism which - may scan more than necessary. To help compensate for this - lack of accuracy, the prologue scanning loop below contains - several clauses which'll cause the loop to terminate early if - an implausible prologue instruction is encountered. - - The expression - - prologue_start + 64 - - is a suitable endpoint since it accounts for the largest - possible prologue plus up to five instructions inserted by - the scheduler. */ - - if (prologue_end > prologue_start + 64) - { - prologue_end = prologue_start + 64; /* See above. */ - } - } - else - { - /* Get address of the stmfd in the prologue of the callee; the saved - PC is the address of the stmfd + 8. */ - if (!safe_read_memory_integer (fi->frame, 4, &return_value)) - return; - else - { - prologue_start = ADDR_BITS_REMOVE (return_value) - 8; - prologue_end = prologue_start + 64; /* See above. */ - } - } - - /* Now search the prologue looking for instructions that set up the - frame pointer, adjust the stack pointer, and save registers. - - Be careful, however, and if it doesn't look like a prologue, - don't try to scan it. If, for instance, a frameless function - begins with stmfd sp!, then we will tell ourselves there is - a frame, which will confuse stack traceback, as well ad"finish" - and other operations that rely on a knowledge of the stack - traceback. - - In the APCS, the prologue should start with "mov ip, sp" so - if we don't see this as the first insn, we will stop. [Note: - This doesn't seem to be true any longer, so it's now an optional - part of the prologue. - Kevin Buettner, 2001-11-20] */ - - sp_offset = fp_offset = 0; - - if (read_memory_unsigned_integer (prologue_start, 4) - == 0xe1a0c00d) /* mov ip, sp */ - current_pc = prologue_start + 4; - else - current_pc = prologue_start; - - for (; current_pc < prologue_end; current_pc += 4) - { - unsigned int insn = read_memory_unsigned_integer (current_pc, 4); - - if ((insn & 0xffff0000) == 0xe92d0000) - /* stmfd sp!, {..., fp, ip, lr, pc} - or - stmfd sp!, {a1, a2, a3, a4} */ - { - int mask = insn & 0xffff; - - /* Calculate offsets of saved registers. */ - for (regno = PC_REGNUM; regno >= 0; regno--) - if (mask & (1 << regno)) - { - sp_offset -= 4; - fi->saved_regs[regno] = sp_offset; - } - } - else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ - { - unsigned imm = insn & 0xff; /* immediate value */ - unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ - imm = (imm >> rot) | (imm << (32 - rot)); - fp_offset = -imm; - fi->extra_info->framereg = FP_REGNUM; - } - else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ - { - unsigned imm = insn & 0xff; /* immediate value */ - unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */ - imm = (imm >> rot) | (imm << (32 - rot)); - sp_offset -= imm; - } - else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */ - { - sp_offset -= 12; - regno = F0_REGNUM + ((insn >> 12) & 0x07); - fi->saved_regs[regno] = sp_offset; - } - else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */ - { - int n_saved_fp_regs; - unsigned int fp_start_reg, fp_bound_reg; - - if ((insn & 0x800) == 0x800) /* N0 is set */ - { - if ((insn & 0x40000) == 0x40000) /* N1 is set */ - n_saved_fp_regs = 3; - else - n_saved_fp_regs = 1; - } - else - { - if ((insn & 0x40000) == 0x40000) /* N1 is set */ - n_saved_fp_regs = 2; - else - n_saved_fp_regs = 4; - } - - fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7); - fp_bound_reg = fp_start_reg + n_saved_fp_regs; - for (; fp_start_reg < fp_bound_reg; fp_start_reg++) - { - sp_offset -= 12; - fi->saved_regs[fp_start_reg++] = sp_offset; - } - } - else if ((insn & 0xf0000000) != 0xe0000000) - break; /* Condition not true, exit early */ - else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */ - break; /* Don't scan past a block load */ - else - /* The optimizer might shove anything into the prologue, - so we just skip what we don't recognize. */ - continue; - } - - /* The frame size is just the negative of the offset (from the original SP) - of the last thing thing we pushed on the stack. The frame offset is - [new FP] - [new SP]. */ - fi->extra_info->framesize = -sp_offset; - if (fi->extra_info->framereg == FP_REGNUM) - fi->extra_info->frameoffset = fp_offset - sp_offset; - else - fi->extra_info->frameoffset = 0; - - save_prologue_cache (fi); -} - -/* Find REGNUM on the stack. Otherwise, it's in an active register. - One thing we might want to do here is to check REGNUM against the - clobber mask, and somehow flag it as invalid if it isn't saved on - the stack somewhere. This would provide a graceful failure mode - when trying to get the value of caller-saves registers for an inner - frame. */ - -static CORE_ADDR -arm_find_callers_reg (struct frame_info *fi, int regnum) -{ - for (; fi; fi = fi->next) - -#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ - if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) - return generic_read_register_dummy (fi->pc, fi->frame, regnum); - else -#endif - if (fi->saved_regs[regnum] != 0) - return read_memory_integer (fi->saved_regs[regnum], - REGISTER_RAW_SIZE (regnum)); - return read_register (regnum); -} -/* *INDENT-OFF* */ -/* Function: frame_chain - Given a GDB frame, determine the address of the calling function's frame. - This will be used to create a new GDB frame struct, and then - INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. - For ARM, we save the frame size when we initialize the frame_info. - - The original definition of this function was a macro in tm-arm.h: - { In the case of the ARM, the frame's nominal address is the FP value, - and 12 bytes before comes the saved previous FP value as a 4-byte word. } - - #define FRAME_CHAIN(thisframe) \ - ((thisframe)->pc >= LOWEST_PC ? \ - read_memory_integer ((thisframe)->frame - 12, 4) :\ - 0) -*/ -/* *INDENT-ON* */ - -CORE_ADDR -arm_frame_chain (struct frame_info *fi) -{ -#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ - CORE_ADDR fn_start, callers_pc, fp; - - /* is this a dummy frame? */ - if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) - return fi->frame; /* dummy frame same as caller's frame */ - - /* is caller-of-this a dummy frame? */ - callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ - fp = arm_find_callers_reg (fi, FP_REGNUM); - if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) - return fp; /* dummy frame's frame may bear no relation to ours */ - - if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) - if (fn_start == entry_point_address ()) - return 0; /* in _start fn, don't chain further */ -#endif - CORE_ADDR caller_pc, fn_start; - int framereg = fi->extra_info->framereg; - - if (fi->pc < LOWEST_PC) - return 0; - - /* If the caller is the startup code, we're at the end of the chain. */ - caller_pc = FRAME_SAVED_PC (fi); - if (find_pc_partial_function (caller_pc, 0, &fn_start, 0)) - if (fn_start == entry_point_address ()) - return 0; - - /* If the caller is Thumb and the caller is ARM, or vice versa, - the frame register of the caller is different from ours. - So we must scan the prologue of the caller to determine its - frame register number. */ - /* XXX Fixme, we should try to do this without creating a temporary - caller_fi. */ - if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc)) - { - struct frame_info caller_fi; - struct cleanup *old_chain; - - /* Create a temporary frame suitable for scanning the caller's - prologue. (Ugh.) */ - memset (&caller_fi, 0, sizeof (caller_fi)); - caller_fi.extra_info = (struct frame_extra_info *) - xcalloc (1, sizeof (struct frame_extra_info)); - old_chain = make_cleanup (xfree, caller_fi.extra_info); - caller_fi.saved_regs = (CORE_ADDR *) - xcalloc (1, SIZEOF_FRAME_SAVED_REGS); - make_cleanup (xfree, caller_fi.saved_regs); - - /* Now, scan the prologue and obtain the frame register. */ - caller_fi.pc = caller_pc; - arm_scan_prologue (&caller_fi); - framereg = caller_fi.extra_info->framereg; - - /* Deallocate the storage associated with the temporary frame - created above. */ - do_cleanups (old_chain); - } - - /* If the caller used a frame register, return its value. - Otherwise, return the caller's stack pointer. */ - if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM) - return arm_find_callers_reg (fi, framereg); - else - return fi->frame + fi->extra_info->framesize; -} - -/* This function actually figures out the frame address for a given pc - and sp. This is tricky because we sometimes don't use an explicit - frame pointer, and the previous stack pointer isn't necessarily - recorded on the stack. The only reliable way to get this info is - to examine the prologue. FROMLEAF is a little confusing, it means - this is the next frame up the chain AFTER a frameless function. If - this is true, then the frame value for this frame is still in the - fp register. */ - -void -arm_init_extra_frame_info (int fromleaf, struct frame_info *fi) -{ - int reg; - CORE_ADDR sp; - - if (fi->saved_regs == NULL) - frame_saved_regs_zalloc (fi); - - fi->extra_info = (struct frame_extra_info *) - frame_obstack_alloc (sizeof (struct frame_extra_info)); - - fi->extra_info->framesize = 0; - fi->extra_info->frameoffset = 0; - fi->extra_info->framereg = 0; - - if (fi->next) - fi->pc = FRAME_SAVED_PC (fi->next); - - memset (fi->saved_regs, '\000', sizeof fi->saved_regs); - -#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ - if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) - { - /* We need to setup fi->frame here because run_stack_dummy gets it wrong - by assuming it's always FP. */ - fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); - fi->extra_info->framesize = 0; - fi->extra_info->frameoffset = 0; - return; - } - else -#endif - - /* Compute stack pointer for this frame. We use this value for both the - sigtramp and call dummy cases. */ - if (!fi->next) - sp = read_sp(); - else - sp = (fi->next->frame - fi->next->extra_info->frameoffset - + fi->next->extra_info->framesize); - - /* Determine whether or not we're in a sigtramp frame. - Unfortunately, it isn't sufficient to test - fi->signal_handler_caller because this value is sometimes set - after invoking INIT_EXTRA_FRAME_INFO. So we test *both* - fi->signal_handler_caller and IN_SIGTRAMP to determine if we need - to use the sigcontext addresses for the saved registers. - - Note: If an ARM IN_SIGTRAMP method ever needs to compare against - the name of the function, the code below will have to be changed - to first fetch the name of the function and then pass this name - to IN_SIGTRAMP. */ - - if (SIGCONTEXT_REGISTER_ADDRESS_P () - && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0))) - { - for (reg = 0; reg < NUM_REGS; reg++) - fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg); - - /* FIXME: What about thumb mode? */ - fi->extra_info->framereg = SP_REGNUM; - fi->frame = - read_memory_integer (fi->saved_regs[fi->extra_info->framereg], - REGISTER_RAW_SIZE (fi->extra_info->framereg)); - fi->extra_info->framesize = 0; - fi->extra_info->frameoffset = 0; - - } - else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame)) - { - CORE_ADDR rp; - CORE_ADDR callers_sp; - - /* Set rp point at the high end of the saved registers. */ - rp = fi->frame - REGISTER_SIZE; - - /* Fill in addresses of saved registers. */ - fi->saved_regs[PS_REGNUM] = rp; - rp -= REGISTER_RAW_SIZE (PS_REGNUM); - for (reg = PC_REGNUM; reg >= 0; reg--) - { - fi->saved_regs[reg] = rp; - rp -= REGISTER_RAW_SIZE (reg); - } - - callers_sp = read_memory_integer (fi->saved_regs[SP_REGNUM], - REGISTER_RAW_SIZE (SP_REGNUM)); - fi->extra_info->framereg = FP_REGNUM; - fi->extra_info->framesize = callers_sp - sp; - fi->extra_info->frameoffset = fi->frame - sp; - } - else - { - arm_scan_prologue (fi); - - if (!fi->next) - /* this is the innermost frame? */ - fi->frame = read_register (fi->extra_info->framereg); - else if (fi->extra_info->framereg == FP_REGNUM - || fi->extra_info->framereg == THUMB_FP_REGNUM) - { - /* not the innermost frame */ - /* If we have an FP, the callee saved it. */ - if (fi->next->saved_regs[fi->extra_info->framereg] != 0) - fi->frame = - read_memory_integer (fi->next - ->saved_regs[fi->extra_info->framereg], 4); - else if (fromleaf) - /* If we were called by a frameless fn. then our frame is - still in the frame pointer register on the board... */ - fi->frame = read_fp (); - } - - /* Calculate actual addresses of saved registers using offsets - determined by arm_scan_prologue. */ - for (reg = 0; reg < NUM_REGS; reg++) - if (fi->saved_regs[reg] != 0) - fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize - - fi->extra_info->frameoffset); - } -} - - -/* Find the caller of this frame. We do this by seeing if LR_REGNUM - is saved in the stack anywhere, otherwise we get it from the - registers. - - The old definition of this function was a macro: - #define FRAME_SAVED_PC(FRAME) \ - ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */ - -CORE_ADDR -arm_frame_saved_pc (struct frame_info *fi) -{ -#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */ - if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) - return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); - else -#endif - if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset, - fi->frame)) - { - return read_memory_integer (fi->saved_regs[PC_REGNUM], - REGISTER_RAW_SIZE (PC_REGNUM)); - } - else - { - CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM); - return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc; - } -} - -/* Return the frame address. On ARM, it is R11; on Thumb it is R7. - Examine the Program Status Register to decide which state we're in. */ - -CORE_ADDR -arm_target_read_fp (void) -{ - if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */ - return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */ - else - return read_register (FP_REGNUM); /* R11 if ARM */ -} - -/* Calculate the frame offsets of the saved registers (ARM version). */ - -void -arm_frame_init_saved_regs (struct frame_info *fip) -{ - - if (fip->saved_regs) - return; - - arm_init_extra_frame_info (0, fip); -} - -void -arm_push_dummy_frame (void) -{ - CORE_ADDR old_sp = read_register (SP_REGNUM); - CORE_ADDR sp = old_sp; - CORE_ADDR fp, prologue_start; - int regnum; - - /* Push the two dummy prologue instructions in reverse order, - so that they'll be in the correct low-to-high order in memory. */ - /* sub fp, ip, #4 */ - sp = push_word (sp, 0xe24cb004); - /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */ - prologue_start = sp = push_word (sp, 0xe92ddfff); - - /* Push a pointer to the dummy prologue + 12, because when stm - instruction stores the PC, it stores the address of the stm - instruction itself plus 12. */ - fp = sp = push_word (sp, prologue_start + 12); - - /* Push the processor status. */ - sp = push_word (sp, read_register (PS_REGNUM)); - - /* Push all 16 registers starting with r15. */ - for (regnum = PC_REGNUM; regnum >= 0; regnum--) - sp = push_word (sp, read_register (regnum)); - - /* Update fp (for both Thumb and ARM) and sp. */ - write_register (FP_REGNUM, fp); - write_register (THUMB_FP_REGNUM, fp); - write_register (SP_REGNUM, sp); -} - -/* CALL_DUMMY_WORDS: - This sequence of words is the instructions - - mov lr,pc - mov pc,r4 - illegal - - Note this is 12 bytes. */ - -LONGEST arm_call_dummy_words[] = -{ - 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe -}; - -/* Fix up the call dummy, based on whether the processor is currently - in Thumb or ARM mode, and whether the target function is Thumb or - ARM. There are three different situations requiring three - different dummies: - - * ARM calling ARM: uses the call dummy in tm-arm.h, which has already - been copied into the dummy parameter to this function. - * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the - "mov pc,r4" instruction patched to be a "bx r4" instead. - * Thumb calling anything: uses the Thumb dummy defined below, which - works for calling both ARM and Thumb functions. - - All three call dummies expect to receive the target function - address in R4, with the low bit set if it's a Thumb function. */ - -void -arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, - struct value **args, struct type *type, int gcc_p) -{ - static short thumb_dummy[4] = - { - 0xf000, 0xf801, /* bl label */ - 0xdf18, /* swi 24 */ - 0x4720, /* label: bx r4 */ - }; - static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */ - - /* Set flag indicating whether the current PC is in a Thumb function. */ - caller_is_thumb = arm_pc_is_thumb (read_pc ()); - - /* If the target function is Thumb, set the low bit of the function - address. And if the CPU is currently in ARM mode, patch the - second instruction of call dummy to use a BX instruction to - switch to Thumb mode. */ - target_is_thumb = arm_pc_is_thumb (fun); - if (target_is_thumb) - { - fun |= 1; - if (!caller_is_thumb) - store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4); - } - - /* If the CPU is currently in Thumb mode, use the Thumb call dummy - instead of the ARM one that's already been copied. This will - work for both Thumb and ARM target functions. */ - if (caller_is_thumb) - { - int i; - char *p = dummy; - int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]); - - for (i = 0; i < len; i++) - { - store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]); - p += sizeof (thumb_dummy[0]); - } - } - - /* Put the target address in r4; the call dummy will copy this to - the PC. */ - write_register (4, fun); -} - -/* Return the offset in the call dummy of the instruction that needs - to have a breakpoint placed on it. This is the offset of the 'swi - 24' instruction, which is no longer actually used, but simply acts - as a place-holder now. - - This implements the CALL_DUMMY_BREAK_OFFSET macro. */ - -int -arm_call_dummy_breakpoint_offset (void) -{ - if (caller_is_thumb) - return 4; - else - return 8; -} - -/* Note: ScottB - - This function does not support passing parameters using the FPA - variant of the APCS. It passes any floating point arguments in the - general registers and/or on the stack. */ - -static CORE_ADDR -arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp, - int struct_return, CORE_ADDR struct_addr) -{ - char *fp; - int argnum, argreg, nstack_size; - - /* Walk through the list of args and determine how large a temporary - stack is required. Need to take care here as structs may be - passed on the stack, and we have to to push them. */ - nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */ - if (struct_return) /* The struct address goes in A1. */ - nstack_size += REGISTER_SIZE; - - /* Walk through the arguments and add their size to nstack_size. */ - for (argnum = 0; argnum < nargs; argnum++) - { - int len; - struct type *arg_type; - - arg_type = check_typedef (VALUE_TYPE (args[argnum])); - len = TYPE_LENGTH (arg_type); - - /* ANSI C code passes float arguments as integers, K&R code - passes float arguments as doubles. Correct for this here. */ - if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len) - nstack_size += FP_REGISTER_VIRTUAL_SIZE; - else - nstack_size += len; - } - - /* Allocate room on the stack, and initialize our stack frame - pointer. */ - fp = NULL; - if (nstack_size > 0) - { - sp -= nstack_size; - fp = (char *) sp; - } - - /* Initialize the integer argument register pointer. */ - argreg = A1_REGNUM; - - /* The struct_return pointer occupies the first parameter passing - register. */ - if (struct_return) - write_register (argreg++, struct_addr); - - /* Process arguments from left to right. Store as many as allowed - in the parameter passing registers (A1-A4), and save the rest on - the temporary stack. */ - for (argnum = 0; argnum < nargs; argnum++) - { - int len; - char *val; - CORE_ADDR regval; - enum type_code typecode; - struct type *arg_type, *target_type; - - arg_type = check_typedef (VALUE_TYPE (args[argnum])); - target_type = TYPE_TARGET_TYPE (arg_type); - len = TYPE_LENGTH (arg_type); - typecode = TYPE_CODE (arg_type); - val = (char *) VALUE_CONTENTS (args[argnum]); - - /* ANSI C code passes float arguments as integers, K&R code - passes float arguments as doubles. The .stabs record for - for ANSI prototype floating point arguments records the - type as FP_INTEGER, while a K&R style (no prototype) - .stabs records the type as FP_FLOAT. In this latter case - the compiler converts the float arguments to double before - calling the function. */ - if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len) - { - DOUBLEST dblval; - dblval = extract_floating (val, len); - len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT; - val = alloca (len); - store_floating (val, len, dblval); - } -#if 1 - /* I don't know why this code was disable. The only logical use - for a function pointer is to call that function, so setting - the mode bit is perfectly fine. FN */ - /* If the argument is a pointer to a function, and it is a Thumb - function, set the low bit of the pointer. */ - if (TYPE_CODE_PTR == typecode - && NULL != target_type - && TYPE_CODE_FUNC == TYPE_CODE (target_type)) - { - CORE_ADDR regval = extract_address (val, len); - if (arm_pc_is_thumb (regval)) - store_address (val, len, MAKE_THUMB_ADDR (regval)); - } -#endif - /* Copy the argument to general registers or the stack in - register-sized pieces. Large arguments are split between - registers and stack. */ - while (len > 0) - { - int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; - - if (argreg <= ARM_LAST_ARG_REGNUM) - { - /* It's an argument being passed in a general register. */ - regval = extract_address (val, partial_len); - write_register (argreg++, regval); - } - else - { - /* Push the arguments onto the stack. */ - write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE); - fp += REGISTER_SIZE; - } - - len -= partial_len; - val += partial_len; - } - } - - /* Return adjusted stack pointer. */ - return sp; -} - -/* Pop the current frame. So long as the frame info has been initialized - properly (see arm_init_extra_frame_info), this code works for dummy frames - as well as regular frames. I.e, there's no need to have a special case - for dummy frames. */ -void -arm_pop_frame (void) -{ - int regnum; - struct frame_info *frame = get_current_frame (); - CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset - + frame->extra_info->framesize); - - for (regnum = 0; regnum < NUM_REGS; regnum++) - if (frame->saved_regs[regnum] != 0) - write_register (regnum, - read_memory_integer (frame->saved_regs[regnum], - REGISTER_RAW_SIZE (regnum))); - - write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); - write_register (SP_REGNUM, old_SP); - - flush_cached_frames (); -} - -static void -print_fpu_flags (int flags) -{ - if (flags & (1 << 0)) - fputs ("IVO ", stdout); - if (flags & (1 << 1)) - fputs ("DVZ ", stdout); - if (flags & (1 << 2)) - fputs ("OFL ", stdout); - if (flags & (1 << 3)) - fputs ("UFL ", stdout); - if (flags & (1 << 4)) - fputs ("INX ", stdout); - putchar ('\n'); -} - -/* Print interesting information about the floating point processor - (if present) or emulator. */ -void -arm_print_float_info (void) -{ - register unsigned long status = read_register (FPS_REGNUM); - int type; - - type = (status >> 24) & 127; - printf ("%s FPU type %d\n", - (status & (1 << 31)) ? "Hardware" : "Software", - type); - fputs ("mask: ", stdout); - print_fpu_flags (status >> 16); - fputs ("flags: ", stdout); - print_fpu_flags (status); -} - -struct type * -arm_register_type (int regnum) -{ - if (regnum >= F0_REGNUM && regnum < F0_REGNUM + NUM_FREGS) - { - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - return builtin_type_arm_ext_big; - else - return builtin_type_arm_ext_littlebyte_bigword; - } - else - return builtin_type_int32; -} - -/* NOTE: cagney/2001-08-20: Both convert_from_extended() and - convert_to_extended() use floatformat_arm_ext_littlebyte_bigword. - It is thought that this is is the floating-point register format on - little-endian systems. */ - -static void -convert_from_extended (void *ptr, void *dbl) -{ - DOUBLEST d; - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d); - else - floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword, - ptr, &d); - floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl); -} - -void -convert_to_extended (void *dbl, void *ptr) -{ - DOUBLEST d; - floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d); - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl); - else - floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword, - &d, dbl); -} - -static int -condition_true (unsigned long cond, unsigned long status_reg) -{ - if (cond == INST_AL || cond == INST_NV) - return 1; - - switch (cond) - { - case INST_EQ: - return ((status_reg & FLAG_Z) != 0); - case INST_NE: - return ((status_reg & FLAG_Z) == 0); - case INST_CS: - return ((status_reg & FLAG_C) != 0); - case INST_CC: - return ((status_reg & FLAG_C) == 0); - case INST_MI: - return ((status_reg & FLAG_N) != 0); - case INST_PL: - return ((status_reg & FLAG_N) == 0); - case INST_VS: - return ((status_reg & FLAG_V) != 0); - case INST_VC: - return ((status_reg & FLAG_V) == 0); - case INST_HI: - return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C); - case INST_LS: - return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C); - case INST_GE: - return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)); - case INST_LT: - return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)); - case INST_GT: - return (((status_reg & FLAG_Z) == 0) && - (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0))); - case INST_LE: - return (((status_reg & FLAG_Z) != 0) || - (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0))); - } - return 1; -} - -/* Support routines for single stepping. Calculate the next PC value. */ -#define submask(x) ((1L << ((x) + 1)) - 1) -#define bit(obj,st) (((obj) >> (st)) & 1) -#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st))) -#define sbits(obj,st,fn) \ - ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st)))) -#define BranchDest(addr,instr) \ - ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2))) -#define ARM_PC_32 1 - -static unsigned long -shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val, - unsigned long status_reg) -{ - unsigned long res, shift; - int rm = bits (inst, 0, 3); - unsigned long shifttype = bits (inst, 5, 6); - - if (bit (inst, 4)) - { - int rs = bits (inst, 8, 11); - shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF; - } - else - shift = bits (inst, 7, 11); - - res = (rm == 15 - ? ((pc_val | (ARM_PC_32 ? 0 : status_reg)) - + (bit (inst, 4) ? 12 : 8)) - : read_register (rm)); - - switch (shifttype) - { - case 0: /* LSL */ - res = shift >= 32 ? 0 : res << shift; - break; - - case 1: /* LSR */ - res = shift >= 32 ? 0 : res >> shift; - break; - - case 2: /* ASR */ - if (shift >= 32) - shift = 31; - res = ((res & 0x80000000L) - ? ~((~res) >> shift) : res >> shift); - break; - - case 3: /* ROR/RRX */ - shift &= 31; - if (shift == 0) - res = (res >> 1) | (carry ? 0x80000000L : 0); - else - res = (res >> shift) | (res << (32 - shift)); - break; - } - - return res & 0xffffffff; -} - -/* Return number of 1-bits in VAL. */ - -static int -bitcount (unsigned long val) -{ - int nbits; - for (nbits = 0; val != 0; nbits++) - val &= val - 1; /* delete rightmost 1-bit in val */ - return nbits; -} - -static CORE_ADDR -thumb_get_next_pc (CORE_ADDR pc) -{ - unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */ - unsigned short inst1 = read_memory_integer (pc, 2); - CORE_ADDR nextpc = pc + 2; /* default is next instruction */ - unsigned long offset; - - if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */ - { - CORE_ADDR sp; - - /* Fetch the saved PC from the stack. It's stored above - all of the other registers. */ - offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE; - sp = read_register (SP_REGNUM); - nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4); - nextpc = ADDR_BITS_REMOVE (nextpc); - if (nextpc == pc) - error ("Infinite loop detected"); - } - else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */ - { - unsigned long status = read_register (PS_REGNUM); - unsigned long cond = bits (inst1, 8, 11); - if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */ - nextpc = pc_val + (sbits (inst1, 0, 7) << 1); - } - else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */ - { - nextpc = pc_val + (sbits (inst1, 0, 10) << 1); - } - else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */ - { - unsigned short inst2 = read_memory_integer (pc + 2, 2); - offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1); - nextpc = pc_val + offset; - } - - return nextpc; -} - -CORE_ADDR -arm_get_next_pc (CORE_ADDR pc) -{ - unsigned long pc_val; - unsigned long this_instr; - unsigned long status; - CORE_ADDR nextpc; - - if (arm_pc_is_thumb (pc)) - return thumb_get_next_pc (pc); - - pc_val = (unsigned long) pc; - this_instr = read_memory_integer (pc, 4); - status = read_register (PS_REGNUM); - nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */ - - if (condition_true (bits (this_instr, 28, 31), status)) - { - switch (bits (this_instr, 24, 27)) - { - case 0x0: - case 0x1: /* data processing */ - case 0x2: - case 0x3: - { - unsigned long operand1, operand2, result = 0; - unsigned long rn; - int c; - - if (bits (this_instr, 12, 15) != 15) - break; - - if (bits (this_instr, 22, 25) == 0 - && bits (this_instr, 4, 7) == 9) /* multiply */ - error ("Illegal update to pc in instruction"); - - /* Multiply into PC */ - c = (status & FLAG_C) ? 1 : 0; - rn = bits (this_instr, 16, 19); - operand1 = (rn == 15) ? pc_val + 8 : read_register (rn); - - if (bit (this_instr, 25)) - { - unsigned long immval = bits (this_instr, 0, 7); - unsigned long rotate = 2 * bits (this_instr, 8, 11); - operand2 = ((immval >> rotate) | (immval << (32 - rotate))) - & 0xffffffff; - } - else /* operand 2 is a shifted register */ - operand2 = shifted_reg_val (this_instr, c, pc_val, status); - - switch (bits (this_instr, 21, 24)) - { - case 0x0: /*and */ - result = operand1 & operand2; - break; - - case 0x1: /*eor */ - result = operand1 ^ operand2; - break; - - case 0x2: /*sub */ - result = operand1 - operand2; - break; - - case 0x3: /*rsb */ - result = operand2 - operand1; - break; - - case 0x4: /*add */ - result = operand1 + operand2; - break; - - case 0x5: /*adc */ - result = operand1 + operand2 + c; - break; - - case 0x6: /*sbc */ - result = operand1 - operand2 + c; - break; - - case 0x7: /*rsc */ - result = operand2 - operand1 + c; - break; - - case 0x8: - case 0x9: - case 0xa: - case 0xb: /* tst, teq, cmp, cmn */ - result = (unsigned long) nextpc; - break; - - case 0xc: /*orr */ - result = operand1 | operand2; - break; - - case 0xd: /*mov */ - /* Always step into a function. */ - result = operand2; - break; - - case 0xe: /*bic */ - result = operand1 & ~operand2; - break; - - case 0xf: /*mvn */ - result = ~operand2; - break; - } - nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result); - - if (nextpc == pc) - error ("Infinite loop detected"); - break; - } - - case 0x4: - case 0x5: /* data transfer */ - case 0x6: - case 0x7: - if (bit (this_instr, 20)) - { - /* load */ - if (bits (this_instr, 12, 15) == 15) - { - /* rd == pc */ - unsigned long rn; - unsigned long base; - - if (bit (this_instr, 22)) - error ("Illegal update to pc in instruction"); - - /* byte write to PC */ - rn = bits (this_instr, 16, 19); - base = (rn == 15) ? pc_val + 8 : read_register (rn); - if (bit (this_instr, 24)) - { - /* pre-indexed */ - int c = (status & FLAG_C) ? 1 : 0; - unsigned long offset = - (bit (this_instr, 25) - ? shifted_reg_val (this_instr, c, pc_val, status) - : bits (this_instr, 0, 11)); - - if (bit (this_instr, 23)) - base += offset; - else - base -= offset; - } - nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base, - 4); - - nextpc = ADDR_BITS_REMOVE (nextpc); - - if (nextpc == pc) - error ("Infinite loop detected"); - } - } - break; - - case 0x8: - case 0x9: /* block transfer */ - if (bit (this_instr, 20)) - { - /* LDM */ - if (bit (this_instr, 15)) - { - /* loading pc */ - int offset = 0; - - if (bit (this_instr, 23)) - { - /* up */ - unsigned long reglist = bits (this_instr, 0, 14); - offset = bitcount (reglist) * 4; - if (bit (this_instr, 24)) /* pre */ - offset += 4; - } - else if (bit (this_instr, 24)) - offset = -4; - - { - unsigned long rn_val = - read_register (bits (this_instr, 16, 19)); - nextpc = - (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val - + offset), - 4); - } - nextpc = ADDR_BITS_REMOVE (nextpc); - if (nextpc == pc) - error ("Infinite loop detected"); - } - } - break; - - case 0xb: /* branch & link */ - case 0xa: /* branch */ - { - nextpc = BranchDest (pc, this_instr); - - nextpc = ADDR_BITS_REMOVE (nextpc); - if (nextpc == pc) - error ("Infinite loop detected"); - break; - } - - case 0xc: - case 0xd: - case 0xe: /* coproc ops */ - case 0xf: /* SWI */ - break; - - default: - fprintf (stderr, "Bad bit-field extraction\n"); - return (pc); - } - } - - return nextpc; -} - -/* single_step() is called just before we want to resume the inferior, - if we want to single-step it but there is no hardware or kernel - single-step support. We find the target of the coming instruction - and breakpoint it. - - single_step is also called just after the inferior stops. If we had - set up a simulated single-step, we undo our damage. */ - -void -arm_software_single_step (int ignore, int insert_bpt) -{ - static int next_pc; /* State between setting and unsetting. */ - static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */ - - if (insert_bpt) - { - next_pc = arm_get_next_pc (read_register (PC_REGNUM)); - target_insert_breakpoint (next_pc, break_mem); - } - else - target_remove_breakpoint (next_pc, break_mem); -} - -#include "bfd-in2.h" -#include "libcoff.h" - -static int -gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) -{ - if (arm_pc_is_thumb (memaddr)) - { - static asymbol *asym; - static combined_entry_type ce; - static struct coff_symbol_struct csym; - static struct _bfd fake_bfd; - static bfd_target fake_target; - - if (csym.native == NULL) - { - /* Create a fake symbol vector containing a Thumb symbol. This is - solely so that the code in print_insn_little_arm() and - print_insn_big_arm() in opcodes/arm-dis.c will detect the presence - of a Thumb symbol and switch to decoding Thumb instructions. */ - - fake_target.flavour = bfd_target_coff_flavour; - fake_bfd.xvec = &fake_target; - ce.u.syment.n_sclass = C_THUMBEXTFUNC; - csym.native = &ce; - csym.symbol.the_bfd = &fake_bfd; - csym.symbol.name = "fake"; - asym = (asymbol *) & csym; - } - - memaddr = UNMAKE_THUMB_ADDR (memaddr); - info->symbols = &asym; - } - else - info->symbols = NULL; - - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - return print_insn_big_arm (memaddr, info); - else - return print_insn_little_arm (memaddr, info); -} - -/* This function implements the BREAKPOINT_FROM_PC macro. It uses the - program counter value to determine whether a 16-bit or 32-bit - breakpoint should be used. It returns a pointer to a string of - bytes that encode a breakpoint instruction, stores the length of - the string to *lenptr, and adjusts the program counter (if - necessary) to point to the actual memory location where the - breakpoint should be inserted. */ - -unsigned char * -arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) -{ - if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr)) - { - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - { - static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT; - *pcptr = UNMAKE_THUMB_ADDR (*pcptr); - *lenptr = sizeof (thumb_breakpoint); - return thumb_breakpoint; - } - else - { - static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT; - *pcptr = UNMAKE_THUMB_ADDR (*pcptr); - *lenptr = sizeof (thumb_breakpoint); - return thumb_breakpoint; - } - } - else - { - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - { - static char arm_breakpoint[] = ARM_BE_BREAKPOINT; - *lenptr = sizeof (arm_breakpoint); - return arm_breakpoint; - } - else - { - static char arm_breakpoint[] = ARM_LE_BREAKPOINT; - *lenptr = sizeof (arm_breakpoint); - return arm_breakpoint; - } - } -} - -/* Extract from an array REGBUF containing the (raw) register state a - function return value of type TYPE, and copy that, in virtual - format, into VALBUF. */ - -void -arm_extract_return_value (struct type *type, - char regbuf[REGISTER_BYTES], - char *valbuf) -{ - if (TYPE_CODE_FLT == TYPE_CODE (type)) - convert_from_extended (®buf[REGISTER_BYTE (F0_REGNUM)], valbuf); - else - memcpy (valbuf, ®buf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type)); -} - -/* Return non-zero if the PC is inside a thumb call thunk. */ - -int -arm_in_call_stub (CORE_ADDR pc, char *name) -{ - CORE_ADDR start_addr; - - /* Find the starting address of the function containing the PC. If - the caller didn't give us a name, look it up at the same time. */ - if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) - return 0; - - return strncmp (name, "_call_via_r", 11) == 0; -} - -/* If PC is in a Thumb call or return stub, return the address of the - target PC, which is in a register. The thunk functions are called - _called_via_xx, where x is the register name. The possible names - are r0-r9, sl, fp, ip, sp, and lr. */ - -CORE_ADDR -arm_skip_stub (CORE_ADDR pc) -{ - char *name; - CORE_ADDR start_addr; - - /* Find the starting address and name of the function containing the PC. */ - if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) - return 0; - - /* Call thunks always start with "_call_via_". */ - if (strncmp (name, "_call_via_", 10) == 0) - { - /* Use the name suffix to determine which register contains the - target PC. */ - static char *table[15] = - {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", - "r8", "r9", "sl", "fp", "ip", "sp", "lr" - }; - int regno; - - for (regno = 0; regno <= 14; regno++) - if (strcmp (&name[10], table[regno]) == 0) - return read_register (regno); - } - - return 0; /* not a stub */ -} - -/* If the user changes the register disassembly flavor used for info register - and other commands, we have to also switch the flavor used in opcodes - for disassembly output. - This function is run in the set disassembly_flavor command, and does that. */ - -static void -set_disassembly_flavor_sfunc (char *args, int from_tty, - struct cmd_list_element *c) -{ - set_disassembly_flavor (); -} - -/* Return the ARM register name corresponding to register I. */ -char * -arm_register_name(int i) -{ - return arm_register_names[i]; -} - -static void -set_disassembly_flavor (void) -{ - const char *setname, *setdesc, **regnames; - int numregs, j; - - /* Find the flavor that the user wants in the opcodes table. */ - int current = 0; - numregs = get_arm_regnames (current, &setname, &setdesc, ®names); - while ((disassembly_flavor != setname) - && (current < num_flavor_options)) - get_arm_regnames (++current, &setname, &setdesc, ®names); - current_option = current; - - /* Fill our copy. */ - for (j = 0; j < numregs; j++) - arm_register_names[j] = (char *) regnames[j]; - - /* Adjust case. */ - if (isupper (*regnames[PC_REGNUM])) - { - arm_register_names[FPS_REGNUM] = "FPS"; - arm_register_names[PS_REGNUM] = "CPSR"; - } - else - { - arm_register_names[FPS_REGNUM] = "fps"; - arm_register_names[PS_REGNUM] = "cpsr"; - } - - /* Synchronize the disassembler. */ - set_arm_regname_option (current); -} - -/* arm_othernames implements the "othernames" command. This is kind - of hacky, and I prefer the set-show disassembly-flavor which is - also used for the x86 gdb. I will keep this around, however, in - case anyone is actually using it. */ - -static void -arm_othernames (char *names, int n) -{ - /* Circle through the various flavors. */ - current_option = (current_option + 1) % num_flavor_options; - - disassembly_flavor = valid_flavors[current_option]; - set_disassembly_flavor (); -} - -/* Fetch, and possibly build, an appropriate link_map_offsets structure - for ARM linux targets using the struct offsets defined in <link.h>. - Note, however, that link.h is not actually referred to in this file. - Instead, the relevant structs offsets were obtained from examining - link.h. (We can't refer to link.h from this file because the host - system won't necessarily have it, or if it does, the structs which - it defines will refer to the host system, not the target.) */ - -struct link_map_offsets * -arm_linux_svr4_fetch_link_map_offsets (void) -{ - static struct link_map_offsets lmo; - static struct link_map_offsets *lmp = 0; - - if (lmp == 0) - { - lmp = &lmo; - - lmo.r_debug_size = 8; /* Actual size is 20, but this is all we - need. */ - - lmo.r_map_offset = 4; - lmo.r_map_size = 4; - - lmo.link_map_size = 20; /* Actual size is 552, but this is all we - need. */ - - lmo.l_addr_offset = 0; - lmo.l_addr_size = 4; - - lmo.l_name_offset = 4; - lmo.l_name_size = 4; - - lmo.l_next_offset = 12; - lmo.l_next_size = 4; - - lmo.l_prev_offset = 16; - lmo.l_prev_size = 4; - } - - return lmp; -} - -/* Test whether the coff symbol specific value corresponds to a Thumb - function. */ - -static int -coff_sym_is_thumb (int val) -{ - return (val == C_THUMBEXT || - val == C_THUMBSTAT || - val == C_THUMBEXTFUNC || - val == C_THUMBSTATFUNC || - val == C_THUMBLABEL); -} - -/* arm_coff_make_msymbol_special() - arm_elf_make_msymbol_special() - - These functions test whether the COFF or ELF symbol corresponds to - an address in thumb code, and set a "special" bit in a minimal - symbol to indicate that it does. */ - -void -arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) -{ - /* Thumb symbols are of type STT_LOPROC, (synonymous with - STT_ARM_TFUNC). */ - if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info) - == STT_LOPROC) - MSYMBOL_SET_SPECIAL (msym); -} - -void -arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) -{ - if (coff_sym_is_thumb (val)) - MSYMBOL_SET_SPECIAL (msym); -} - -static struct gdbarch * -arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) -{ - struct gdbarch *gdbarch; - - if (arches != NULL) - return arches->gdbarch; - - /* XXX We'll probably need to set the tdep field soon. */ - gdbarch = gdbarch_alloc (&info, NULL); - - set_gdbarch_use_generic_dummy_frames (gdbarch, 0); - - /* Call dummy code. */ - set_gdbarch_call_dummy_location (gdbarch, ON_STACK); - set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); - set_gdbarch_call_dummy_p (gdbarch, 1); - set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); - - set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack); - - set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); - set_gdbarch_push_arguments (gdbarch, arm_push_arguments); - - set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid); - - return gdbarch; -} - -void -_initialize_arm_tdep (void) -{ - struct ui_file *stb; - long length; - struct cmd_list_element *new_cmd; - const char *setname; - const char *setdesc; - const char **regnames; - int numregs, i, j; - static char *helptext; - - if (GDB_MULTI_ARCH) - register_gdbarch_init (bfd_arch_arm, arm_gdbarch_init); - - tm_print_insn = gdb_print_insn_arm; - - /* Get the number of possible sets of register names defined in opcodes. */ - num_flavor_options = get_arm_regname_num_options (); - - /* Sync the opcode insn printer with our register viewer: */ - parse_arm_disassembler_option ("reg-names-std"); - - /* Begin creating the help text. */ - stb = mem_fileopen (); - fprintf_unfiltered (stb, "Set the disassembly flavor.\n\ -The valid values are:\n"); - - /* Initialize the array that will be passed to add_set_enum_cmd(). */ - valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *)); - for (i = 0; i < num_flavor_options; i++) - { - numregs = get_arm_regnames (i, &setname, &setdesc, ®names); - valid_flavors[i] = setname; - fprintf_unfiltered (stb, "%s - %s\n", setname, - setdesc); - /* Copy the default names (if found) and synchronize disassembler. */ - if (!strcmp (setname, "std")) - { - disassembly_flavor = setname; - current_option = i; - for (j = 0; j < numregs; j++) - arm_register_names[j] = (char *) regnames[j]; - set_arm_regname_option (i); - } - } - /* Mark the end of valid options. */ - valid_flavors[num_flavor_options] = NULL; - - /* Finish the creation of the help text. */ - fprintf_unfiltered (stb, "The default is \"std\"."); - helptext = ui_file_xstrdup (stb, &length); - ui_file_delete (stb); - - /* Add the disassembly-flavor command */ - new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, - valid_flavors, - &disassembly_flavor, - helptext, - &setlist); - set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc); - add_show_from_set (new_cmd, &showlist); - - /* ??? Maybe this should be a boolean. */ - add_show_from_set (add_set_cmd ("apcs32", no_class, - var_zinteger, (char *) &arm_apcs_32, - "Set usage of ARM 32-bit mode.\n", &setlist), - &showlist); - - /* Add the deprecated "othernames" command */ - - add_com ("othernames", class_obscure, arm_othernames, - "Switch to the next set of register names."); - - /* Fill in the prologue_cache fields. */ - prologue_cache.extra_info = (struct frame_extra_info *) - xcalloc (1, sizeof (struct frame_extra_info)); - prologue_cache.saved_regs = (CORE_ADDR *) - xcalloc (1, SIZEOF_FRAME_SAVED_REGS); -} |