summaryrefslogtreecommitdiff
path: root/gdb/arm-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/arm-tdep.c')
-rw-r--r--gdb/arm-tdep.c2452
1 files changed, 0 insertions, 2452 deletions
diff --git a/gdb/arm-tdep.c b/gdb/arm-tdep.c
deleted file mode 100644
index 501f3d64516..00000000000
--- a/gdb/arm-tdep.c
+++ /dev/null
@@ -1,2452 +0,0 @@
-/* Common target dependent code for GDB on ARM systems.
- Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
- 2001, 2002 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "inferior.h"
-#include "gdbcmd.h"
-#include "gdbcore.h"
-#include "symfile.h"
-#include "gdb_string.h"
-#include "coff/internal.h" /* Internal format of COFF symbols in BFD */
-#include "dis-asm.h" /* For register flavors. */
-#include <ctype.h> /* for isupper () */
-#include "regcache.h"
-#include "doublest.h"
-#include "value.h"
-#include "solib-svr4.h"
-#include "elf-bfd.h"
-#include "coff/internal.h"
-
-/* Each OS has a different mechanism for accessing the various
- registers stored in the sigcontext structure.
-
- SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
- function pointer) which may be used to determine the addresses
- of the various saved registers in the sigcontext structure.
-
- For the ARM target, there are three parameters to this function.
- The first is the pc value of the frame under consideration, the
- second the stack pointer of this frame, and the last is the
- register number to fetch.
-
- If the tm.h file does not define this macro, then it's assumed that
- no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
- be 0.
-
- When it comes time to multi-arching this code, see the identically
- named machinery in ia64-tdep.c for an example of how it could be
- done. It should not be necessary to modify the code below where
- this macro is used. */
-
-#ifdef SIGCONTEXT_REGISTER_ADDRESS
-#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
-#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
-#endif
-#else
-#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
-#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
-#endif
-
-/* Macros for setting and testing a bit in a minimal symbol that marks
- it as Thumb function. The MSB of the minimal symbol's "info" field
- is used for this purpose. This field is already being used to store
- the symbol size, so the assumption is that the symbol size cannot
- exceed 2^31.
-
- MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
- MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
- MSYMBOL_SIZE Returns the size of the minimal symbol,
- i.e. the "info" field with the "special" bit
- masked out. */
-
-#define MSYMBOL_SET_SPECIAL(msym) \
- MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
- | 0x80000000)
-
-#define MSYMBOL_IS_SPECIAL(msym) \
- (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
-
-#define MSYMBOL_SIZE(msym) \
- ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
-
-/* Number of different reg name sets (options). */
-static int num_flavor_options;
-
-/* We have more registers than the disassembler as gdb can print the value
- of special registers as well.
- The general register names are overwritten by whatever is being used by
- the disassembler at the moment. We also adjust the case of cpsr and fps. */
-
-/* Initial value: Register names used in ARM's ISA documentation. */
-static char * arm_register_name_strings[] =
-{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
- "r4", "r5", "r6", "r7", /* 4 5 6 7 */
- "r8", "r9", "r10", "r11", /* 8 9 10 11 */
- "r12", "sp", "lr", "pc", /* 12 13 14 15 */
- "f0", "f1", "f2", "f3", /* 16 17 18 19 */
- "f4", "f5", "f6", "f7", /* 20 21 22 23 */
- "fps", "cpsr" }; /* 24 25 */
-static char **arm_register_names = arm_register_name_strings;
-
-/* Valid register name flavors. */
-static const char **valid_flavors;
-
-/* Disassembly flavor to use. Default to "std" register names. */
-static const char *disassembly_flavor;
-static int current_option; /* Index to that option in the opcodes table. */
-
-/* This is used to keep the bfd arch_info in sync with the disassembly
- flavor. */
-static void set_disassembly_flavor_sfunc(char *, int,
- struct cmd_list_element *);
-static void set_disassembly_flavor (void);
-
-static void convert_from_extended (void *ptr, void *dbl);
-
-/* Define other aspects of the stack frame. We keep the offsets of
- all saved registers, 'cause we need 'em a lot! We also keep the
- current size of the stack frame, and the offset of the frame
- pointer from the stack pointer (for frameless functions, and when
- we're still in the prologue of a function with a frame) */
-
-struct frame_extra_info
-{
- int framesize;
- int frameoffset;
- int framereg;
-};
-
-/* Addresses for calling Thumb functions have the bit 0 set.
- Here are some macros to test, set, or clear bit 0 of addresses. */
-#define IS_THUMB_ADDR(addr) ((addr) & 1)
-#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
-#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
-
-/* Will a function return an aggregate type in memory or in a
- register? Return 0 if an aggregate type can be returned in a
- register, 1 if it must be returned in memory. */
-
-int
-arm_use_struct_convention (int gcc_p, struct type *type)
-{
- int nRc;
- register enum type_code code;
-
- /* In the ARM ABI, "integer" like aggregate types are returned in
- registers. For an aggregate type to be integer like, its size
- must be less than or equal to REGISTER_SIZE and the offset of
- each addressable subfield must be zero. Note that bit fields are
- not addressable, and all addressable subfields of unions always
- start at offset zero.
-
- This function is based on the behaviour of GCC 2.95.1.
- See: gcc/arm.c: arm_return_in_memory() for details.
-
- Note: All versions of GCC before GCC 2.95.2 do not set up the
- parameters correctly for a function returning the following
- structure: struct { float f;}; This should be returned in memory,
- not a register. Richard Earnshaw sent me a patch, but I do not
- know of any way to detect if a function like the above has been
- compiled with the correct calling convention. */
-
- /* All aggregate types that won't fit in a register must be returned
- in memory. */
- if (TYPE_LENGTH (type) > REGISTER_SIZE)
- {
- return 1;
- }
-
- /* The only aggregate types that can be returned in a register are
- structs and unions. Arrays must be returned in memory. */
- code = TYPE_CODE (type);
- if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
- {
- return 1;
- }
-
- /* Assume all other aggregate types can be returned in a register.
- Run a check for structures, unions and arrays. */
- nRc = 0;
-
- if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
- {
- int i;
- /* Need to check if this struct/union is "integer" like. For
- this to be true, its size must be less than or equal to
- REGISTER_SIZE and the offset of each addressable subfield
- must be zero. Note that bit fields are not addressable, and
- unions always start at offset zero. If any of the subfields
- is a floating point type, the struct/union cannot be an
- integer type. */
-
- /* For each field in the object, check:
- 1) Is it FP? --> yes, nRc = 1;
- 2) Is it addressable (bitpos != 0) and
- not packed (bitsize == 0)?
- --> yes, nRc = 1
- */
-
- for (i = 0; i < TYPE_NFIELDS (type); i++)
- {
- enum type_code field_type_code;
- field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
-
- /* Is it a floating point type field? */
- if (field_type_code == TYPE_CODE_FLT)
- {
- nRc = 1;
- break;
- }
-
- /* If bitpos != 0, then we have to care about it. */
- if (TYPE_FIELD_BITPOS (type, i) != 0)
- {
- /* Bitfields are not addressable. If the field bitsize is
- zero, then the field is not packed. Hence it cannot be
- a bitfield or any other packed type. */
- if (TYPE_FIELD_BITSIZE (type, i) == 0)
- {
- nRc = 1;
- break;
- }
- }
- }
- }
-
- return nRc;
-}
-
-static int
-arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
-{
- return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
-}
-
-/* Set to true if the 32-bit mode is in use. */
-
-int arm_apcs_32 = 1;
-
-/* Flag set by arm_fix_call_dummy that tells whether the target
- function is a Thumb function. This flag is checked by
- arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
- its use in valops.c) to pass the function address as an additional
- parameter. */
-
-static int target_is_thumb;
-
-/* Flag set by arm_fix_call_dummy that tells whether the calling
- function is a Thumb function. This flag is checked by
- arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
-
-static int caller_is_thumb;
-
-/* Determine if the program counter specified in MEMADDR is in a Thumb
- function. */
-
-int
-arm_pc_is_thumb (CORE_ADDR memaddr)
-{
- struct minimal_symbol *sym;
-
- /* If bit 0 of the address is set, assume this is a Thumb address. */
- if (IS_THUMB_ADDR (memaddr))
- return 1;
-
- /* Thumb functions have a "special" bit set in minimal symbols. */
- sym = lookup_minimal_symbol_by_pc (memaddr);
- if (sym)
- {
- return (MSYMBOL_IS_SPECIAL (sym));
- }
- else
- {
- return 0;
- }
-}
-
-/* Determine if the program counter specified in MEMADDR is in a call
- dummy being called from a Thumb function. */
-
-int
-arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
-{
- CORE_ADDR sp = read_sp ();
-
- /* FIXME: Until we switch for the new call dummy macros, this heuristic
- is the best we can do. We are trying to determine if the pc is on
- the stack, which (hopefully) will only happen in a call dummy.
- We hope the current stack pointer is not so far alway from the dummy
- frame location (true if we have not pushed large data structures or
- gone too many levels deep) and that our 1024 is not enough to consider
- code regions as part of the stack (true for most practical purposes) */
- if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
- return caller_is_thumb;
- else
- return 0;
-}
-
-/* Remove useless bits from addresses in a running program. */
-CORE_ADDR
-arm_addr_bits_remove (CORE_ADDR val)
-{
- if (arm_pc_is_thumb (val))
- return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
- else
- return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
-}
-
-/* When reading symbols, we need to zap the low bit of the address,
- which may be set to 1 for Thumb functions. */
-CORE_ADDR
-arm_smash_text_address (CORE_ADDR val)
-{
- return val & ~1;
-}
-
-CORE_ADDR
-arm_saved_pc_after_call (struct frame_info *frame)
-{
- return ADDR_BITS_REMOVE (read_register (LR_REGNUM));
-}
-
-/* Determine whether the function invocation represented by FI has a
- frame on the stack associated with it. If it does return zero,
- otherwise return 1. */
-
-int
-arm_frameless_function_invocation (struct frame_info *fi)
-{
- CORE_ADDR func_start, after_prologue;
- int frameless;
-
- /* Sometimes we have functions that do a little setup (like saving the
- vN registers with the stmdb instruction, but DO NOT set up a frame.
- The symbol table will report this as a prologue. However, it is
- important not to try to parse these partial frames as frames, or we
- will get really confused.
-
- So I will demand 3 instructions between the start & end of the
- prologue before I call it a real prologue, i.e. at least
- mov ip, sp,
- stmdb sp!, {}
- sub sp, ip, #4. */
-
- func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
- after_prologue = SKIP_PROLOGUE (func_start);
-
- /* There are some frameless functions whose first two instructions
- follow the standard APCS form, in which case after_prologue will
- be func_start + 8. */
-
- frameless = (after_prologue < func_start + 12);
- return frameless;
-}
-
-/* The address of the arguments in the frame. */
-CORE_ADDR
-arm_frame_args_address (struct frame_info *fi)
-{
- return fi->frame;
-}
-
-/* The address of the local variables in the frame. */
-CORE_ADDR
-arm_frame_locals_address (struct frame_info *fi)
-{
- return fi->frame;
-}
-
-/* The number of arguments being passed in the frame. */
-int
-arm_frame_num_args (struct frame_info *fi)
-{
- /* We have no way of knowing. */
- return -1;
-}
-
-/* A typical Thumb prologue looks like this:
- push {r7, lr}
- add sp, sp, #-28
- add r7, sp, #12
- Sometimes the latter instruction may be replaced by:
- mov r7, sp
-
- or like this:
- push {r7, lr}
- mov r7, sp
- sub sp, #12
-
- or, on tpcs, like this:
- sub sp,#16
- push {r7, lr}
- (many instructions)
- mov r7, sp
- sub sp, #12
-
- There is always one instruction of three classes:
- 1 - push
- 2 - setting of r7
- 3 - adjusting of sp
-
- When we have found at least one of each class we are done with the prolog.
- Note that the "sub sp, #NN" before the push does not count.
- */
-
-static CORE_ADDR
-thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
-{
- CORE_ADDR current_pc;
- int findmask = 0; /* findmask:
- bit 0 - push { rlist }
- bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
- bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
- */
-
- for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
- {
- unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
-
- if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
- {
- findmask |= 1; /* push found */
- }
- else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
- {
- if ((findmask & 1) == 0) /* before push ? */
- continue;
- else
- findmask |= 4; /* add/sub sp found */
- }
- else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
- {
- findmask |= 2; /* setting of r7 found */
- }
- else if (insn == 0x466f) /* mov r7, sp */
- {
- findmask |= 2; /* setting of r7 found */
- }
- else if (findmask == (4+2+1))
- {
- break; /* We have found one of each type of prologue instruction */
- }
- else
- continue; /* something in the prolog that we don't care about or some
- instruction from outside the prolog scheduled here for optimization */
- }
-
- return current_pc;
-}
-
-/* The APCS (ARM Procedure Call Standard) defines the following
- prologue:
-
- mov ip, sp
- [stmfd sp!, {a1,a2,a3,a4}]
- stmfd sp!, {...,fp,ip,lr,pc}
- [stfe f7, [sp, #-12]!]
- [stfe f6, [sp, #-12]!]
- [stfe f5, [sp, #-12]!]
- [stfe f4, [sp, #-12]!]
- sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
-
-CORE_ADDR
-arm_skip_prologue (CORE_ADDR pc)
-{
- unsigned long inst;
- CORE_ADDR skip_pc;
- CORE_ADDR func_addr, func_end;
- char *func_name;
- struct symtab_and_line sal;
-
- /* See what the symbol table says. */
-
- if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
- {
- struct symbol *sym;
-
- /* Found a function. */
- sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
- if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
- {
- /* Don't use this trick for assembly source files. */
- sal = find_pc_line (func_addr, 0);
- if ((sal.line != 0) && (sal.end < func_end))
- return sal.end;
- }
- }
-
- /* Check if this is Thumb code. */
- if (arm_pc_is_thumb (pc))
- return thumb_skip_prologue (pc, func_end);
-
- /* Can't find the prologue end in the symbol table, try it the hard way
- by disassembling the instructions. */
- skip_pc = pc;
- inst = read_memory_integer (skip_pc, 4);
- if (inst != 0xe1a0c00d) /* mov ip, sp */
- return pc;
-
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
- if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
- {
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
- }
-
- if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
- return pc;
-
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
-
- /* Any insns after this point may float into the code, if it makes
- for better instruction scheduling, so we skip them only if we
- find them, but still consdier the function to be frame-ful. */
-
- /* We may have either one sfmfd instruction here, or several stfe
- insns, depending on the version of floating point code we
- support. */
- if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
- {
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
- }
- else
- {
- while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
- {
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
- }
- }
-
- if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
- skip_pc += 4;
-
- return skip_pc;
-}
-/* *INDENT-OFF* */
-/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
- This function decodes a Thumb function prologue to determine:
- 1) the size of the stack frame
- 2) which registers are saved on it
- 3) the offsets of saved regs
- 4) the offset from the stack pointer to the frame pointer
- This information is stored in the "extra" fields of the frame_info.
-
- A typical Thumb function prologue would create this stack frame
- (offsets relative to FP)
- old SP -> 24 stack parameters
- 20 LR
- 16 R7
- R7 -> 0 local variables (16 bytes)
- SP -> -12 additional stack space (12 bytes)
- The frame size would thus be 36 bytes, and the frame offset would be
- 12 bytes. The frame register is R7.
-
- The comments for thumb_skip_prolog() describe the algorithm we use to detect
- the end of the prolog */
-/* *INDENT-ON* */
-
-static void
-thumb_scan_prologue (struct frame_info *fi)
-{
- CORE_ADDR prologue_start;
- CORE_ADDR prologue_end;
- CORE_ADDR current_pc;
- int saved_reg[16]; /* which register has been copied to register n? */
- int findmask = 0; /* findmask:
- bit 0 - push { rlist }
- bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
- bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
- */
- int i;
-
- if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
- {
- struct symtab_and_line sal = find_pc_line (prologue_start, 0);
-
- if (sal.line == 0) /* no line info, use current PC */
- prologue_end = fi->pc;
- else if (sal.end < prologue_end) /* next line begins after fn end */
- prologue_end = sal.end; /* (probably means no prologue) */
- }
- else
- prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
- /* 16 pushes, an add, and "mv fp,sp" */
-
- prologue_end = min (prologue_end, fi->pc);
-
- /* Initialize the saved register map. When register H is copied to
- register L, we will put H in saved_reg[L]. */
- for (i = 0; i < 16; i++)
- saved_reg[i] = i;
-
- /* Search the prologue looking for instructions that set up the
- frame pointer, adjust the stack pointer, and save registers.
- Do this until all basic prolog instructions are found. */
-
- fi->extra_info->framesize = 0;
- for (current_pc = prologue_start;
- (current_pc < prologue_end) && ((findmask & 7) != 7);
- current_pc += 2)
- {
- unsigned short insn;
- int regno;
- int offset;
-
- insn = read_memory_unsigned_integer (current_pc, 2);
-
- if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
- {
- int mask;
- findmask |= 1; /* push found */
- /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
- whether to save LR (R14). */
- mask = (insn & 0xff) | ((insn & 0x100) << 6);
-
- /* Calculate offsets of saved R0-R7 and LR. */
- for (regno = LR_REGNUM; regno >= 0; regno--)
- if (mask & (1 << regno))
- {
- fi->extra_info->framesize += 4;
- fi->saved_regs[saved_reg[regno]] =
- -(fi->extra_info->framesize);
- saved_reg[regno] = regno; /* reset saved register map */
- }
- }
- else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
- {
- if ((findmask & 1) == 0) /* before push ? */
- continue;
- else
- findmask |= 4; /* add/sub sp found */
-
- offset = (insn & 0x7f) << 2; /* get scaled offset */
- if (insn & 0x80) /* is it signed? (==subtracting) */
- {
- fi->extra_info->frameoffset += offset;
- offset = -offset;
- }
- fi->extra_info->framesize -= offset;
- }
- else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
- {
- findmask |= 2; /* setting of r7 found */
- fi->extra_info->framereg = THUMB_FP_REGNUM;
- /* get scaled offset */
- fi->extra_info->frameoffset = (insn & 0xff) << 2;
- }
- else if (insn == 0x466f) /* mov r7, sp */
- {
- findmask |= 2; /* setting of r7 found */
- fi->extra_info->framereg = THUMB_FP_REGNUM;
- fi->extra_info->frameoffset = 0;
- saved_reg[THUMB_FP_REGNUM] = SP_REGNUM;
- }
- else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
- {
- int lo_reg = insn & 7; /* dest. register (r0-r7) */
- int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
- saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
- }
- else
- continue; /* something in the prolog that we don't care about or some
- instruction from outside the prolog scheduled here for optimization */
- }
-}
-
-/* Check if prologue for this frame's PC has already been scanned. If
- it has, copy the relevant information about that prologue and
- return non-zero. Otherwise do not copy anything and return zero.
-
- The information saved in the cache includes:
- * the frame register number;
- * the size of the stack frame;
- * the offsets of saved regs (relative to the old SP); and
- * the offset from the stack pointer to the frame pointer
-
- The cache contains only one entry, since this is adequate for the
- typical sequence of prologue scan requests we get. When performing
- a backtrace, GDB will usually ask to scan the same function twice
- in a row (once to get the frame chain, and once to fill in the
- extra frame information). */
-
-static struct frame_info prologue_cache;
-
-static int
-check_prologue_cache (struct frame_info *fi)
-{
- int i;
-
- if (fi->pc == prologue_cache.pc)
- {
- fi->extra_info->framereg = prologue_cache.extra_info->framereg;
- fi->extra_info->framesize = prologue_cache.extra_info->framesize;
- fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
- for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
- fi->saved_regs[i] = prologue_cache.saved_regs[i];
- return 1;
- }
- else
- return 0;
-}
-
-
-/* Copy the prologue information from fi to the prologue cache. */
-
-static void
-save_prologue_cache (struct frame_info *fi)
-{
- int i;
-
- prologue_cache.pc = fi->pc;
- prologue_cache.extra_info->framereg = fi->extra_info->framereg;
- prologue_cache.extra_info->framesize = fi->extra_info->framesize;
- prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
-
- for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
- prologue_cache.saved_regs[i] = fi->saved_regs[i];
-}
-
-
-/* This function decodes an ARM function prologue to determine:
- 1) the size of the stack frame
- 2) which registers are saved on it
- 3) the offsets of saved regs
- 4) the offset from the stack pointer to the frame pointer
- This information is stored in the "extra" fields of the frame_info.
-
- There are two basic forms for the ARM prologue. The fixed argument
- function call will look like:
-
- mov ip, sp
- stmfd sp!, {fp, ip, lr, pc}
- sub fp, ip, #4
- [sub sp, sp, #4]
-
- Which would create this stack frame (offsets relative to FP):
- IP -> 4 (caller's stack)
- FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
- -4 LR (return address in caller)
- -8 IP (copy of caller's SP)
- -12 FP (caller's FP)
- SP -> -28 Local variables
-
- The frame size would thus be 32 bytes, and the frame offset would be
- 28 bytes. The stmfd call can also save any of the vN registers it
- plans to use, which increases the frame size accordingly.
-
- Note: The stored PC is 8 off of the STMFD instruction that stored it
- because the ARM Store instructions always store PC + 8 when you read
- the PC register.
-
- A variable argument function call will look like:
-
- mov ip, sp
- stmfd sp!, {a1, a2, a3, a4}
- stmfd sp!, {fp, ip, lr, pc}
- sub fp, ip, #20
-
- Which would create this stack frame (offsets relative to FP):
- IP -> 20 (caller's stack)
- 16 A4
- 12 A3
- 8 A2
- 4 A1
- FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
- -4 LR (return address in caller)
- -8 IP (copy of caller's SP)
- -12 FP (caller's FP)
- SP -> -28 Local variables
-
- The frame size would thus be 48 bytes, and the frame offset would be
- 28 bytes.
-
- There is another potential complication, which is that the optimizer
- will try to separate the store of fp in the "stmfd" instruction from
- the "sub fp, ip, #NN" instruction. Almost anything can be there, so
- we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
-
- Also, note, the original version of the ARM toolchain claimed that there
- should be an
-
- instruction at the end of the prologue. I have never seen GCC produce
- this, and the ARM docs don't mention it. We still test for it below in
- case it happens...
-
- */
-
-static void
-arm_scan_prologue (struct frame_info *fi)
-{
- int regno, sp_offset, fp_offset;
- LONGEST return_value;
- CORE_ADDR prologue_start, prologue_end, current_pc;
-
- /* Check if this function is already in the cache of frame information. */
- if (check_prologue_cache (fi))
- return;
-
- /* Assume there is no frame until proven otherwise. */
- fi->extra_info->framereg = SP_REGNUM;
- fi->extra_info->framesize = 0;
- fi->extra_info->frameoffset = 0;
-
- /* Check for Thumb prologue. */
- if (arm_pc_is_thumb (fi->pc))
- {
- thumb_scan_prologue (fi);
- save_prologue_cache (fi);
- return;
- }
-
- /* Find the function prologue. If we can't find the function in
- the symbol table, peek in the stack frame to find the PC. */
- if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
- {
- /* One way to find the end of the prologue (which works well
- for unoptimized code) is to do the following:
-
- struct symtab_and_line sal = find_pc_line (prologue_start, 0);
-
- if (sal.line == 0)
- prologue_end = fi->pc;
- else if (sal.end < prologue_end)
- prologue_end = sal.end;
-
- This mechanism is very accurate so long as the optimizer
- doesn't move any instructions from the function body into the
- prologue. If this happens, sal.end will be the last
- instruction in the first hunk of prologue code just before
- the first instruction that the scheduler has moved from
- the body to the prologue.
-
- In order to make sure that we scan all of the prologue
- instructions, we use a slightly less accurate mechanism which
- may scan more than necessary. To help compensate for this
- lack of accuracy, the prologue scanning loop below contains
- several clauses which'll cause the loop to terminate early if
- an implausible prologue instruction is encountered.
-
- The expression
-
- prologue_start + 64
-
- is a suitable endpoint since it accounts for the largest
- possible prologue plus up to five instructions inserted by
- the scheduler. */
-
- if (prologue_end > prologue_start + 64)
- {
- prologue_end = prologue_start + 64; /* See above. */
- }
- }
- else
- {
- /* Get address of the stmfd in the prologue of the callee; the saved
- PC is the address of the stmfd + 8. */
- if (!safe_read_memory_integer (fi->frame, 4, &return_value))
- return;
- else
- {
- prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
- prologue_end = prologue_start + 64; /* See above. */
- }
- }
-
- /* Now search the prologue looking for instructions that set up the
- frame pointer, adjust the stack pointer, and save registers.
-
- Be careful, however, and if it doesn't look like a prologue,
- don't try to scan it. If, for instance, a frameless function
- begins with stmfd sp!, then we will tell ourselves there is
- a frame, which will confuse stack traceback, as well ad"finish"
- and other operations that rely on a knowledge of the stack
- traceback.
-
- In the APCS, the prologue should start with "mov ip, sp" so
- if we don't see this as the first insn, we will stop. [Note:
- This doesn't seem to be true any longer, so it's now an optional
- part of the prologue. - Kevin Buettner, 2001-11-20] */
-
- sp_offset = fp_offset = 0;
-
- if (read_memory_unsigned_integer (prologue_start, 4)
- == 0xe1a0c00d) /* mov ip, sp */
- current_pc = prologue_start + 4;
- else
- current_pc = prologue_start;
-
- for (; current_pc < prologue_end; current_pc += 4)
- {
- unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
-
- if ((insn & 0xffff0000) == 0xe92d0000)
- /* stmfd sp!, {..., fp, ip, lr, pc}
- or
- stmfd sp!, {a1, a2, a3, a4} */
- {
- int mask = insn & 0xffff;
-
- /* Calculate offsets of saved registers. */
- for (regno = PC_REGNUM; regno >= 0; regno--)
- if (mask & (1 << regno))
- {
- sp_offset -= 4;
- fi->saved_regs[regno] = sp_offset;
- }
- }
- else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
- {
- unsigned imm = insn & 0xff; /* immediate value */
- unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
- imm = (imm >> rot) | (imm << (32 - rot));
- fp_offset = -imm;
- fi->extra_info->framereg = FP_REGNUM;
- }
- else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
- {
- unsigned imm = insn & 0xff; /* immediate value */
- unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
- imm = (imm >> rot) | (imm << (32 - rot));
- sp_offset -= imm;
- }
- else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
- {
- sp_offset -= 12;
- regno = F0_REGNUM + ((insn >> 12) & 0x07);
- fi->saved_regs[regno] = sp_offset;
- }
- else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
- {
- int n_saved_fp_regs;
- unsigned int fp_start_reg, fp_bound_reg;
-
- if ((insn & 0x800) == 0x800) /* N0 is set */
- {
- if ((insn & 0x40000) == 0x40000) /* N1 is set */
- n_saved_fp_regs = 3;
- else
- n_saved_fp_regs = 1;
- }
- else
- {
- if ((insn & 0x40000) == 0x40000) /* N1 is set */
- n_saved_fp_regs = 2;
- else
- n_saved_fp_regs = 4;
- }
-
- fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7);
- fp_bound_reg = fp_start_reg + n_saved_fp_regs;
- for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
- {
- sp_offset -= 12;
- fi->saved_regs[fp_start_reg++] = sp_offset;
- }
- }
- else if ((insn & 0xf0000000) != 0xe0000000)
- break; /* Condition not true, exit early */
- else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
- break; /* Don't scan past a block load */
- else
- /* The optimizer might shove anything into the prologue,
- so we just skip what we don't recognize. */
- continue;
- }
-
- /* The frame size is just the negative of the offset (from the original SP)
- of the last thing thing we pushed on the stack. The frame offset is
- [new FP] - [new SP]. */
- fi->extra_info->framesize = -sp_offset;
- if (fi->extra_info->framereg == FP_REGNUM)
- fi->extra_info->frameoffset = fp_offset - sp_offset;
- else
- fi->extra_info->frameoffset = 0;
-
- save_prologue_cache (fi);
-}
-
-/* Find REGNUM on the stack. Otherwise, it's in an active register.
- One thing we might want to do here is to check REGNUM against the
- clobber mask, and somehow flag it as invalid if it isn't saved on
- the stack somewhere. This would provide a graceful failure mode
- when trying to get the value of caller-saves registers for an inner
- frame. */
-
-static CORE_ADDR
-arm_find_callers_reg (struct frame_info *fi, int regnum)
-{
- for (; fi; fi = fi->next)
-
-#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return generic_read_register_dummy (fi->pc, fi->frame, regnum);
- else
-#endif
- if (fi->saved_regs[regnum] != 0)
- return read_memory_integer (fi->saved_regs[regnum],
- REGISTER_RAW_SIZE (regnum));
- return read_register (regnum);
-}
-/* *INDENT-OFF* */
-/* Function: frame_chain
- Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
- For ARM, we save the frame size when we initialize the frame_info.
-
- The original definition of this function was a macro in tm-arm.h:
- { In the case of the ARM, the frame's nominal address is the FP value,
- and 12 bytes before comes the saved previous FP value as a 4-byte word. }
-
- #define FRAME_CHAIN(thisframe) \
- ((thisframe)->pc >= LOWEST_PC ? \
- read_memory_integer ((thisframe)->frame - 12, 4) :\
- 0)
-*/
-/* *INDENT-ON* */
-
-CORE_ADDR
-arm_frame_chain (struct frame_info *fi)
-{
-#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
- CORE_ADDR fn_start, callers_pc, fp;
-
- /* is this a dummy frame? */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return fi->frame; /* dummy frame same as caller's frame */
-
- /* is caller-of-this a dummy frame? */
- callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
- fp = arm_find_callers_reg (fi, FP_REGNUM);
- if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
- return fp; /* dummy frame's frame may bear no relation to ours */
-
- if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
- if (fn_start == entry_point_address ())
- return 0; /* in _start fn, don't chain further */
-#endif
- CORE_ADDR caller_pc, fn_start;
- int framereg = fi->extra_info->framereg;
-
- if (fi->pc < LOWEST_PC)
- return 0;
-
- /* If the caller is the startup code, we're at the end of the chain. */
- caller_pc = FRAME_SAVED_PC (fi);
- if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
- if (fn_start == entry_point_address ())
- return 0;
-
- /* If the caller is Thumb and the caller is ARM, or vice versa,
- the frame register of the caller is different from ours.
- So we must scan the prologue of the caller to determine its
- frame register number. */
- /* XXX Fixme, we should try to do this without creating a temporary
- caller_fi. */
- if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
- {
- struct frame_info caller_fi;
- struct cleanup *old_chain;
-
- /* Create a temporary frame suitable for scanning the caller's
- prologue. (Ugh.) */
- memset (&caller_fi, 0, sizeof (caller_fi));
- caller_fi.extra_info = (struct frame_extra_info *)
- xcalloc (1, sizeof (struct frame_extra_info));
- old_chain = make_cleanup (xfree, caller_fi.extra_info);
- caller_fi.saved_regs = (CORE_ADDR *)
- xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
- make_cleanup (xfree, caller_fi.saved_regs);
-
- /* Now, scan the prologue and obtain the frame register. */
- caller_fi.pc = caller_pc;
- arm_scan_prologue (&caller_fi);
- framereg = caller_fi.extra_info->framereg;
-
- /* Deallocate the storage associated with the temporary frame
- created above. */
- do_cleanups (old_chain);
- }
-
- /* If the caller used a frame register, return its value.
- Otherwise, return the caller's stack pointer. */
- if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM)
- return arm_find_callers_reg (fi, framereg);
- else
- return fi->frame + fi->extra_info->framesize;
-}
-
-/* This function actually figures out the frame address for a given pc
- and sp. This is tricky because we sometimes don't use an explicit
- frame pointer, and the previous stack pointer isn't necessarily
- recorded on the stack. The only reliable way to get this info is
- to examine the prologue. FROMLEAF is a little confusing, it means
- this is the next frame up the chain AFTER a frameless function. If
- this is true, then the frame value for this frame is still in the
- fp register. */
-
-void
-arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
- int reg;
- CORE_ADDR sp;
-
- if (fi->saved_regs == NULL)
- frame_saved_regs_zalloc (fi);
-
- fi->extra_info = (struct frame_extra_info *)
- frame_obstack_alloc (sizeof (struct frame_extra_info));
-
- fi->extra_info->framesize = 0;
- fi->extra_info->frameoffset = 0;
- fi->extra_info->framereg = 0;
-
- if (fi->next)
- fi->pc = FRAME_SAVED_PC (fi->next);
-
- memset (fi->saved_regs, '\000', sizeof fi->saved_regs);
-
-#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- {
- /* We need to setup fi->frame here because run_stack_dummy gets it wrong
- by assuming it's always FP. */
- fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
- fi->extra_info->framesize = 0;
- fi->extra_info->frameoffset = 0;
- return;
- }
- else
-#endif
-
- /* Compute stack pointer for this frame. We use this value for both the
- sigtramp and call dummy cases. */
- if (!fi->next)
- sp = read_sp();
- else
- sp = (fi->next->frame - fi->next->extra_info->frameoffset
- + fi->next->extra_info->framesize);
-
- /* Determine whether or not we're in a sigtramp frame.
- Unfortunately, it isn't sufficient to test
- fi->signal_handler_caller because this value is sometimes set
- after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
- fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
- to use the sigcontext addresses for the saved registers.
-
- Note: If an ARM IN_SIGTRAMP method ever needs to compare against
- the name of the function, the code below will have to be changed
- to first fetch the name of the function and then pass this name
- to IN_SIGTRAMP. */
-
- if (SIGCONTEXT_REGISTER_ADDRESS_P ()
- && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0)))
- {
- for (reg = 0; reg < NUM_REGS; reg++)
- fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
-
- /* FIXME: What about thumb mode? */
- fi->extra_info->framereg = SP_REGNUM;
- fi->frame =
- read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
- REGISTER_RAW_SIZE (fi->extra_info->framereg));
- fi->extra_info->framesize = 0;
- fi->extra_info->frameoffset = 0;
-
- }
- else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
- {
- CORE_ADDR rp;
- CORE_ADDR callers_sp;
-
- /* Set rp point at the high end of the saved registers. */
- rp = fi->frame - REGISTER_SIZE;
-
- /* Fill in addresses of saved registers. */
- fi->saved_regs[PS_REGNUM] = rp;
- rp -= REGISTER_RAW_SIZE (PS_REGNUM);
- for (reg = PC_REGNUM; reg >= 0; reg--)
- {
- fi->saved_regs[reg] = rp;
- rp -= REGISTER_RAW_SIZE (reg);
- }
-
- callers_sp = read_memory_integer (fi->saved_regs[SP_REGNUM],
- REGISTER_RAW_SIZE (SP_REGNUM));
- fi->extra_info->framereg = FP_REGNUM;
- fi->extra_info->framesize = callers_sp - sp;
- fi->extra_info->frameoffset = fi->frame - sp;
- }
- else
- {
- arm_scan_prologue (fi);
-
- if (!fi->next)
- /* this is the innermost frame? */
- fi->frame = read_register (fi->extra_info->framereg);
- else if (fi->extra_info->framereg == FP_REGNUM
- || fi->extra_info->framereg == THUMB_FP_REGNUM)
- {
- /* not the innermost frame */
- /* If we have an FP, the callee saved it. */
- if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
- fi->frame =
- read_memory_integer (fi->next
- ->saved_regs[fi->extra_info->framereg], 4);
- else if (fromleaf)
- /* If we were called by a frameless fn. then our frame is
- still in the frame pointer register on the board... */
- fi->frame = read_fp ();
- }
-
- /* Calculate actual addresses of saved registers using offsets
- determined by arm_scan_prologue. */
- for (reg = 0; reg < NUM_REGS; reg++)
- if (fi->saved_regs[reg] != 0)
- fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
- - fi->extra_info->frameoffset);
- }
-}
-
-
-/* Find the caller of this frame. We do this by seeing if LR_REGNUM
- is saved in the stack anywhere, otherwise we get it from the
- registers.
-
- The old definition of this function was a macro:
- #define FRAME_SAVED_PC(FRAME) \
- ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
-
-CORE_ADDR
-arm_frame_saved_pc (struct frame_info *fi)
-{
-#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
- else
-#endif
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
- fi->frame))
- {
- return read_memory_integer (fi->saved_regs[PC_REGNUM],
- REGISTER_RAW_SIZE (PC_REGNUM));
- }
- else
- {
- CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM);
- return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
- }
-}
-
-/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
- Examine the Program Status Register to decide which state we're in. */
-
-CORE_ADDR
-arm_target_read_fp (void)
-{
- if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
- return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
- else
- return read_register (FP_REGNUM); /* R11 if ARM */
-}
-
-/* Calculate the frame offsets of the saved registers (ARM version). */
-
-void
-arm_frame_init_saved_regs (struct frame_info *fip)
-{
-
- if (fip->saved_regs)
- return;
-
- arm_init_extra_frame_info (0, fip);
-}
-
-void
-arm_push_dummy_frame (void)
-{
- CORE_ADDR old_sp = read_register (SP_REGNUM);
- CORE_ADDR sp = old_sp;
- CORE_ADDR fp, prologue_start;
- int regnum;
-
- /* Push the two dummy prologue instructions in reverse order,
- so that they'll be in the correct low-to-high order in memory. */
- /* sub fp, ip, #4 */
- sp = push_word (sp, 0xe24cb004);
- /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
- prologue_start = sp = push_word (sp, 0xe92ddfff);
-
- /* Push a pointer to the dummy prologue + 12, because when stm
- instruction stores the PC, it stores the address of the stm
- instruction itself plus 12. */
- fp = sp = push_word (sp, prologue_start + 12);
-
- /* Push the processor status. */
- sp = push_word (sp, read_register (PS_REGNUM));
-
- /* Push all 16 registers starting with r15. */
- for (regnum = PC_REGNUM; regnum >= 0; regnum--)
- sp = push_word (sp, read_register (regnum));
-
- /* Update fp (for both Thumb and ARM) and sp. */
- write_register (FP_REGNUM, fp);
- write_register (THUMB_FP_REGNUM, fp);
- write_register (SP_REGNUM, sp);
-}
-
-/* CALL_DUMMY_WORDS:
- This sequence of words is the instructions
-
- mov lr,pc
- mov pc,r4
- illegal
-
- Note this is 12 bytes. */
-
-LONGEST arm_call_dummy_words[] =
-{
- 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
-};
-
-/* Fix up the call dummy, based on whether the processor is currently
- in Thumb or ARM mode, and whether the target function is Thumb or
- ARM. There are three different situations requiring three
- different dummies:
-
- * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
- been copied into the dummy parameter to this function.
- * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
- "mov pc,r4" instruction patched to be a "bx r4" instead.
- * Thumb calling anything: uses the Thumb dummy defined below, which
- works for calling both ARM and Thumb functions.
-
- All three call dummies expect to receive the target function
- address in R4, with the low bit set if it's a Thumb function. */
-
-void
-arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
- struct value **args, struct type *type, int gcc_p)
-{
- static short thumb_dummy[4] =
- {
- 0xf000, 0xf801, /* bl label */
- 0xdf18, /* swi 24 */
- 0x4720, /* label: bx r4 */
- };
- static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
-
- /* Set flag indicating whether the current PC is in a Thumb function. */
- caller_is_thumb = arm_pc_is_thumb (read_pc ());
-
- /* If the target function is Thumb, set the low bit of the function
- address. And if the CPU is currently in ARM mode, patch the
- second instruction of call dummy to use a BX instruction to
- switch to Thumb mode. */
- target_is_thumb = arm_pc_is_thumb (fun);
- if (target_is_thumb)
- {
- fun |= 1;
- if (!caller_is_thumb)
- store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
- }
-
- /* If the CPU is currently in Thumb mode, use the Thumb call dummy
- instead of the ARM one that's already been copied. This will
- work for both Thumb and ARM target functions. */
- if (caller_is_thumb)
- {
- int i;
- char *p = dummy;
- int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
-
- for (i = 0; i < len; i++)
- {
- store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
- p += sizeof (thumb_dummy[0]);
- }
- }
-
- /* Put the target address in r4; the call dummy will copy this to
- the PC. */
- write_register (4, fun);
-}
-
-/* Return the offset in the call dummy of the instruction that needs
- to have a breakpoint placed on it. This is the offset of the 'swi
- 24' instruction, which is no longer actually used, but simply acts
- as a place-holder now.
-
- This implements the CALL_DUMMY_BREAK_OFFSET macro. */
-
-int
-arm_call_dummy_breakpoint_offset (void)
-{
- if (caller_is_thumb)
- return 4;
- else
- return 8;
-}
-
-/* Note: ScottB
-
- This function does not support passing parameters using the FPA
- variant of the APCS. It passes any floating point arguments in the
- general registers and/or on the stack. */
-
-static CORE_ADDR
-arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- char *fp;
- int argnum, argreg, nstack_size;
-
- /* Walk through the list of args and determine how large a temporary
- stack is required. Need to take care here as structs may be
- passed on the stack, and we have to to push them. */
- nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
- if (struct_return) /* The struct address goes in A1. */
- nstack_size += REGISTER_SIZE;
-
- /* Walk through the arguments and add their size to nstack_size. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- int len;
- struct type *arg_type;
-
- arg_type = check_typedef (VALUE_TYPE (args[argnum]));
- len = TYPE_LENGTH (arg_type);
-
- /* ANSI C code passes float arguments as integers, K&R code
- passes float arguments as doubles. Correct for this here. */
- if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len)
- nstack_size += FP_REGISTER_VIRTUAL_SIZE;
- else
- nstack_size += len;
- }
-
- /* Allocate room on the stack, and initialize our stack frame
- pointer. */
- fp = NULL;
- if (nstack_size > 0)
- {
- sp -= nstack_size;
- fp = (char *) sp;
- }
-
- /* Initialize the integer argument register pointer. */
- argreg = A1_REGNUM;
-
- /* The struct_return pointer occupies the first parameter passing
- register. */
- if (struct_return)
- write_register (argreg++, struct_addr);
-
- /* Process arguments from left to right. Store as many as allowed
- in the parameter passing registers (A1-A4), and save the rest on
- the temporary stack. */
- for (argnum = 0; argnum < nargs; argnum++)
- {
- int len;
- char *val;
- CORE_ADDR regval;
- enum type_code typecode;
- struct type *arg_type, *target_type;
-
- arg_type = check_typedef (VALUE_TYPE (args[argnum]));
- target_type = TYPE_TARGET_TYPE (arg_type);
- len = TYPE_LENGTH (arg_type);
- typecode = TYPE_CODE (arg_type);
- val = (char *) VALUE_CONTENTS (args[argnum]);
-
- /* ANSI C code passes float arguments as integers, K&R code
- passes float arguments as doubles. The .stabs record for
- for ANSI prototype floating point arguments records the
- type as FP_INTEGER, while a K&R style (no prototype)
- .stabs records the type as FP_FLOAT. In this latter case
- the compiler converts the float arguments to double before
- calling the function. */
- if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len)
- {
- DOUBLEST dblval;
- dblval = extract_floating (val, len);
- len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT;
- val = alloca (len);
- store_floating (val, len, dblval);
- }
-#if 1
- /* I don't know why this code was disable. The only logical use
- for a function pointer is to call that function, so setting
- the mode bit is perfectly fine. FN */
- /* If the argument is a pointer to a function, and it is a Thumb
- function, set the low bit of the pointer. */
- if (TYPE_CODE_PTR == typecode
- && NULL != target_type
- && TYPE_CODE_FUNC == TYPE_CODE (target_type))
- {
- CORE_ADDR regval = extract_address (val, len);
- if (arm_pc_is_thumb (regval))
- store_address (val, len, MAKE_THUMB_ADDR (regval));
- }
-#endif
- /* Copy the argument to general registers or the stack in
- register-sized pieces. Large arguments are split between
- registers and stack. */
- while (len > 0)
- {
- int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
-
- if (argreg <= ARM_LAST_ARG_REGNUM)
- {
- /* It's an argument being passed in a general register. */
- regval = extract_address (val, partial_len);
- write_register (argreg++, regval);
- }
- else
- {
- /* Push the arguments onto the stack. */
- write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
- fp += REGISTER_SIZE;
- }
-
- len -= partial_len;
- val += partial_len;
- }
- }
-
- /* Return adjusted stack pointer. */
- return sp;
-}
-
-/* Pop the current frame. So long as the frame info has been initialized
- properly (see arm_init_extra_frame_info), this code works for dummy frames
- as well as regular frames. I.e, there's no need to have a special case
- for dummy frames. */
-void
-arm_pop_frame (void)
-{
- int regnum;
- struct frame_info *frame = get_current_frame ();
- CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
- + frame->extra_info->framesize);
-
- for (regnum = 0; regnum < NUM_REGS; regnum++)
- if (frame->saved_regs[regnum] != 0)
- write_register (regnum,
- read_memory_integer (frame->saved_regs[regnum],
- REGISTER_RAW_SIZE (regnum)));
-
- write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
- write_register (SP_REGNUM, old_SP);
-
- flush_cached_frames ();
-}
-
-static void
-print_fpu_flags (int flags)
-{
- if (flags & (1 << 0))
- fputs ("IVO ", stdout);
- if (flags & (1 << 1))
- fputs ("DVZ ", stdout);
- if (flags & (1 << 2))
- fputs ("OFL ", stdout);
- if (flags & (1 << 3))
- fputs ("UFL ", stdout);
- if (flags & (1 << 4))
- fputs ("INX ", stdout);
- putchar ('\n');
-}
-
-/* Print interesting information about the floating point processor
- (if present) or emulator. */
-void
-arm_print_float_info (void)
-{
- register unsigned long status = read_register (FPS_REGNUM);
- int type;
-
- type = (status >> 24) & 127;
- printf ("%s FPU type %d\n",
- (status & (1 << 31)) ? "Hardware" : "Software",
- type);
- fputs ("mask: ", stdout);
- print_fpu_flags (status >> 16);
- fputs ("flags: ", stdout);
- print_fpu_flags (status);
-}
-
-struct type *
-arm_register_type (int regnum)
-{
- if (regnum >= F0_REGNUM && regnum < F0_REGNUM + NUM_FREGS)
- {
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- return builtin_type_arm_ext_big;
- else
- return builtin_type_arm_ext_littlebyte_bigword;
- }
- else
- return builtin_type_int32;
-}
-
-/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
- convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
- It is thought that this is is the floating-point register format on
- little-endian systems. */
-
-static void
-convert_from_extended (void *ptr, void *dbl)
-{
- DOUBLEST d;
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
- else
- floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
- ptr, &d);
- floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
-}
-
-void
-convert_to_extended (void *dbl, void *ptr)
-{
- DOUBLEST d;
- floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
- else
- floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
- &d, dbl);
-}
-
-static int
-condition_true (unsigned long cond, unsigned long status_reg)
-{
- if (cond == INST_AL || cond == INST_NV)
- return 1;
-
- switch (cond)
- {
- case INST_EQ:
- return ((status_reg & FLAG_Z) != 0);
- case INST_NE:
- return ((status_reg & FLAG_Z) == 0);
- case INST_CS:
- return ((status_reg & FLAG_C) != 0);
- case INST_CC:
- return ((status_reg & FLAG_C) == 0);
- case INST_MI:
- return ((status_reg & FLAG_N) != 0);
- case INST_PL:
- return ((status_reg & FLAG_N) == 0);
- case INST_VS:
- return ((status_reg & FLAG_V) != 0);
- case INST_VC:
- return ((status_reg & FLAG_V) == 0);
- case INST_HI:
- return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
- case INST_LS:
- return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
- case INST_GE:
- return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
- case INST_LT:
- return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
- case INST_GT:
- return (((status_reg & FLAG_Z) == 0) &&
- (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
- case INST_LE:
- return (((status_reg & FLAG_Z) != 0) ||
- (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
- }
- return 1;
-}
-
-/* Support routines for single stepping. Calculate the next PC value. */
-#define submask(x) ((1L << ((x) + 1)) - 1)
-#define bit(obj,st) (((obj) >> (st)) & 1)
-#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
-#define sbits(obj,st,fn) \
- ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
-#define BranchDest(addr,instr) \
- ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
-#define ARM_PC_32 1
-
-static unsigned long
-shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
- unsigned long status_reg)
-{
- unsigned long res, shift;
- int rm = bits (inst, 0, 3);
- unsigned long shifttype = bits (inst, 5, 6);
-
- if (bit (inst, 4))
- {
- int rs = bits (inst, 8, 11);
- shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
- }
- else
- shift = bits (inst, 7, 11);
-
- res = (rm == 15
- ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
- + (bit (inst, 4) ? 12 : 8))
- : read_register (rm));
-
- switch (shifttype)
- {
- case 0: /* LSL */
- res = shift >= 32 ? 0 : res << shift;
- break;
-
- case 1: /* LSR */
- res = shift >= 32 ? 0 : res >> shift;
- break;
-
- case 2: /* ASR */
- if (shift >= 32)
- shift = 31;
- res = ((res & 0x80000000L)
- ? ~((~res) >> shift) : res >> shift);
- break;
-
- case 3: /* ROR/RRX */
- shift &= 31;
- if (shift == 0)
- res = (res >> 1) | (carry ? 0x80000000L : 0);
- else
- res = (res >> shift) | (res << (32 - shift));
- break;
- }
-
- return res & 0xffffffff;
-}
-
-/* Return number of 1-bits in VAL. */
-
-static int
-bitcount (unsigned long val)
-{
- int nbits;
- for (nbits = 0; val != 0; nbits++)
- val &= val - 1; /* delete rightmost 1-bit in val */
- return nbits;
-}
-
-static CORE_ADDR
-thumb_get_next_pc (CORE_ADDR pc)
-{
- unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
- unsigned short inst1 = read_memory_integer (pc, 2);
- CORE_ADDR nextpc = pc + 2; /* default is next instruction */
- unsigned long offset;
-
- if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
- {
- CORE_ADDR sp;
-
- /* Fetch the saved PC from the stack. It's stored above
- all of the other registers. */
- offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
- sp = read_register (SP_REGNUM);
- nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
- nextpc = ADDR_BITS_REMOVE (nextpc);
- if (nextpc == pc)
- error ("Infinite loop detected");
- }
- else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
- {
- unsigned long status = read_register (PS_REGNUM);
- unsigned long cond = bits (inst1, 8, 11);
- if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
- nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
- }
- else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
- {
- nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
- }
- else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
- {
- unsigned short inst2 = read_memory_integer (pc + 2, 2);
- offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
- nextpc = pc_val + offset;
- }
-
- return nextpc;
-}
-
-CORE_ADDR
-arm_get_next_pc (CORE_ADDR pc)
-{
- unsigned long pc_val;
- unsigned long this_instr;
- unsigned long status;
- CORE_ADDR nextpc;
-
- if (arm_pc_is_thumb (pc))
- return thumb_get_next_pc (pc);
-
- pc_val = (unsigned long) pc;
- this_instr = read_memory_integer (pc, 4);
- status = read_register (PS_REGNUM);
- nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
-
- if (condition_true (bits (this_instr, 28, 31), status))
- {
- switch (bits (this_instr, 24, 27))
- {
- case 0x0:
- case 0x1: /* data processing */
- case 0x2:
- case 0x3:
- {
- unsigned long operand1, operand2, result = 0;
- unsigned long rn;
- int c;
-
- if (bits (this_instr, 12, 15) != 15)
- break;
-
- if (bits (this_instr, 22, 25) == 0
- && bits (this_instr, 4, 7) == 9) /* multiply */
- error ("Illegal update to pc in instruction");
-
- /* Multiply into PC */
- c = (status & FLAG_C) ? 1 : 0;
- rn = bits (this_instr, 16, 19);
- operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
-
- if (bit (this_instr, 25))
- {
- unsigned long immval = bits (this_instr, 0, 7);
- unsigned long rotate = 2 * bits (this_instr, 8, 11);
- operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
- & 0xffffffff;
- }
- else /* operand 2 is a shifted register */
- operand2 = shifted_reg_val (this_instr, c, pc_val, status);
-
- switch (bits (this_instr, 21, 24))
- {
- case 0x0: /*and */
- result = operand1 & operand2;
- break;
-
- case 0x1: /*eor */
- result = operand1 ^ operand2;
- break;
-
- case 0x2: /*sub */
- result = operand1 - operand2;
- break;
-
- case 0x3: /*rsb */
- result = operand2 - operand1;
- break;
-
- case 0x4: /*add */
- result = operand1 + operand2;
- break;
-
- case 0x5: /*adc */
- result = operand1 + operand2 + c;
- break;
-
- case 0x6: /*sbc */
- result = operand1 - operand2 + c;
- break;
-
- case 0x7: /*rsc */
- result = operand2 - operand1 + c;
- break;
-
- case 0x8:
- case 0x9:
- case 0xa:
- case 0xb: /* tst, teq, cmp, cmn */
- result = (unsigned long) nextpc;
- break;
-
- case 0xc: /*orr */
- result = operand1 | operand2;
- break;
-
- case 0xd: /*mov */
- /* Always step into a function. */
- result = operand2;
- break;
-
- case 0xe: /*bic */
- result = operand1 & ~operand2;
- break;
-
- case 0xf: /*mvn */
- result = ~operand2;
- break;
- }
- nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
-
- if (nextpc == pc)
- error ("Infinite loop detected");
- break;
- }
-
- case 0x4:
- case 0x5: /* data transfer */
- case 0x6:
- case 0x7:
- if (bit (this_instr, 20))
- {
- /* load */
- if (bits (this_instr, 12, 15) == 15)
- {
- /* rd == pc */
- unsigned long rn;
- unsigned long base;
-
- if (bit (this_instr, 22))
- error ("Illegal update to pc in instruction");
-
- /* byte write to PC */
- rn = bits (this_instr, 16, 19);
- base = (rn == 15) ? pc_val + 8 : read_register (rn);
- if (bit (this_instr, 24))
- {
- /* pre-indexed */
- int c = (status & FLAG_C) ? 1 : 0;
- unsigned long offset =
- (bit (this_instr, 25)
- ? shifted_reg_val (this_instr, c, pc_val, status)
- : bits (this_instr, 0, 11));
-
- if (bit (this_instr, 23))
- base += offset;
- else
- base -= offset;
- }
- nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
- 4);
-
- nextpc = ADDR_BITS_REMOVE (nextpc);
-
- if (nextpc == pc)
- error ("Infinite loop detected");
- }
- }
- break;
-
- case 0x8:
- case 0x9: /* block transfer */
- if (bit (this_instr, 20))
- {
- /* LDM */
- if (bit (this_instr, 15))
- {
- /* loading pc */
- int offset = 0;
-
- if (bit (this_instr, 23))
- {
- /* up */
- unsigned long reglist = bits (this_instr, 0, 14);
- offset = bitcount (reglist) * 4;
- if (bit (this_instr, 24)) /* pre */
- offset += 4;
- }
- else if (bit (this_instr, 24))
- offset = -4;
-
- {
- unsigned long rn_val =
- read_register (bits (this_instr, 16, 19));
- nextpc =
- (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
- + offset),
- 4);
- }
- nextpc = ADDR_BITS_REMOVE (nextpc);
- if (nextpc == pc)
- error ("Infinite loop detected");
- }
- }
- break;
-
- case 0xb: /* branch & link */
- case 0xa: /* branch */
- {
- nextpc = BranchDest (pc, this_instr);
-
- nextpc = ADDR_BITS_REMOVE (nextpc);
- if (nextpc == pc)
- error ("Infinite loop detected");
- break;
- }
-
- case 0xc:
- case 0xd:
- case 0xe: /* coproc ops */
- case 0xf: /* SWI */
- break;
-
- default:
- fprintf (stderr, "Bad bit-field extraction\n");
- return (pc);
- }
- }
-
- return nextpc;
-}
-
-/* single_step() is called just before we want to resume the inferior,
- if we want to single-step it but there is no hardware or kernel
- single-step support. We find the target of the coming instruction
- and breakpoint it.
-
- single_step is also called just after the inferior stops. If we had
- set up a simulated single-step, we undo our damage. */
-
-void
-arm_software_single_step (int ignore, int insert_bpt)
-{
- static int next_pc; /* State between setting and unsetting. */
- static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
-
- if (insert_bpt)
- {
- next_pc = arm_get_next_pc (read_register (PC_REGNUM));
- target_insert_breakpoint (next_pc, break_mem);
- }
- else
- target_remove_breakpoint (next_pc, break_mem);
-}
-
-#include "bfd-in2.h"
-#include "libcoff.h"
-
-static int
-gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
-{
- if (arm_pc_is_thumb (memaddr))
- {
- static asymbol *asym;
- static combined_entry_type ce;
- static struct coff_symbol_struct csym;
- static struct _bfd fake_bfd;
- static bfd_target fake_target;
-
- if (csym.native == NULL)
- {
- /* Create a fake symbol vector containing a Thumb symbol. This is
- solely so that the code in print_insn_little_arm() and
- print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
- of a Thumb symbol and switch to decoding Thumb instructions. */
-
- fake_target.flavour = bfd_target_coff_flavour;
- fake_bfd.xvec = &fake_target;
- ce.u.syment.n_sclass = C_THUMBEXTFUNC;
- csym.native = &ce;
- csym.symbol.the_bfd = &fake_bfd;
- csym.symbol.name = "fake";
- asym = (asymbol *) & csym;
- }
-
- memaddr = UNMAKE_THUMB_ADDR (memaddr);
- info->symbols = &asym;
- }
- else
- info->symbols = NULL;
-
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- return print_insn_big_arm (memaddr, info);
- else
- return print_insn_little_arm (memaddr, info);
-}
-
-/* This function implements the BREAKPOINT_FROM_PC macro. It uses the
- program counter value to determine whether a 16-bit or 32-bit
- breakpoint should be used. It returns a pointer to a string of
- bytes that encode a breakpoint instruction, stores the length of
- the string to *lenptr, and adjusts the program counter (if
- necessary) to point to the actual memory location where the
- breakpoint should be inserted. */
-
-unsigned char *
-arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
-{
- if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
- {
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- {
- static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT;
- *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
- *lenptr = sizeof (thumb_breakpoint);
- return thumb_breakpoint;
- }
- else
- {
- static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT;
- *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
- *lenptr = sizeof (thumb_breakpoint);
- return thumb_breakpoint;
- }
- }
- else
- {
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- {
- static char arm_breakpoint[] = ARM_BE_BREAKPOINT;
- *lenptr = sizeof (arm_breakpoint);
- return arm_breakpoint;
- }
- else
- {
- static char arm_breakpoint[] = ARM_LE_BREAKPOINT;
- *lenptr = sizeof (arm_breakpoint);
- return arm_breakpoint;
- }
- }
-}
-
-/* Extract from an array REGBUF containing the (raw) register state a
- function return value of type TYPE, and copy that, in virtual
- format, into VALBUF. */
-
-void
-arm_extract_return_value (struct type *type,
- char regbuf[REGISTER_BYTES],
- char *valbuf)
-{
- if (TYPE_CODE_FLT == TYPE_CODE (type))
- convert_from_extended (&regbuf[REGISTER_BYTE (F0_REGNUM)], valbuf);
- else
- memcpy (valbuf, &regbuf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type));
-}
-
-/* Return non-zero if the PC is inside a thumb call thunk. */
-
-int
-arm_in_call_stub (CORE_ADDR pc, char *name)
-{
- CORE_ADDR start_addr;
-
- /* Find the starting address of the function containing the PC. If
- the caller didn't give us a name, look it up at the same time. */
- if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
- return 0;
-
- return strncmp (name, "_call_via_r", 11) == 0;
-}
-
-/* If PC is in a Thumb call or return stub, return the address of the
- target PC, which is in a register. The thunk functions are called
- _called_via_xx, where x is the register name. The possible names
- are r0-r9, sl, fp, ip, sp, and lr. */
-
-CORE_ADDR
-arm_skip_stub (CORE_ADDR pc)
-{
- char *name;
- CORE_ADDR start_addr;
-
- /* Find the starting address and name of the function containing the PC. */
- if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
- return 0;
-
- /* Call thunks always start with "_call_via_". */
- if (strncmp (name, "_call_via_", 10) == 0)
- {
- /* Use the name suffix to determine which register contains the
- target PC. */
- static char *table[15] =
- {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "sl", "fp", "ip", "sp", "lr"
- };
- int regno;
-
- for (regno = 0; regno <= 14; regno++)
- if (strcmp (&name[10], table[regno]) == 0)
- return read_register (regno);
- }
-
- return 0; /* not a stub */
-}
-
-/* If the user changes the register disassembly flavor used for info register
- and other commands, we have to also switch the flavor used in opcodes
- for disassembly output.
- This function is run in the set disassembly_flavor command, and does that. */
-
-static void
-set_disassembly_flavor_sfunc (char *args, int from_tty,
- struct cmd_list_element *c)
-{
- set_disassembly_flavor ();
-}
-
-/* Return the ARM register name corresponding to register I. */
-char *
-arm_register_name(int i)
-{
- return arm_register_names[i];
-}
-
-static void
-set_disassembly_flavor (void)
-{
- const char *setname, *setdesc, **regnames;
- int numregs, j;
-
- /* Find the flavor that the user wants in the opcodes table. */
- int current = 0;
- numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
- while ((disassembly_flavor != setname)
- && (current < num_flavor_options))
- get_arm_regnames (++current, &setname, &setdesc, &regnames);
- current_option = current;
-
- /* Fill our copy. */
- for (j = 0; j < numregs; j++)
- arm_register_names[j] = (char *) regnames[j];
-
- /* Adjust case. */
- if (isupper (*regnames[PC_REGNUM]))
- {
- arm_register_names[FPS_REGNUM] = "FPS";
- arm_register_names[PS_REGNUM] = "CPSR";
- }
- else
- {
- arm_register_names[FPS_REGNUM] = "fps";
- arm_register_names[PS_REGNUM] = "cpsr";
- }
-
- /* Synchronize the disassembler. */
- set_arm_regname_option (current);
-}
-
-/* arm_othernames implements the "othernames" command. This is kind
- of hacky, and I prefer the set-show disassembly-flavor which is
- also used for the x86 gdb. I will keep this around, however, in
- case anyone is actually using it. */
-
-static void
-arm_othernames (char *names, int n)
-{
- /* Circle through the various flavors. */
- current_option = (current_option + 1) % num_flavor_options;
-
- disassembly_flavor = valid_flavors[current_option];
- set_disassembly_flavor ();
-}
-
-/* Fetch, and possibly build, an appropriate link_map_offsets structure
- for ARM linux targets using the struct offsets defined in <link.h>.
- Note, however, that link.h is not actually referred to in this file.
- Instead, the relevant structs offsets were obtained from examining
- link.h. (We can't refer to link.h from this file because the host
- system won't necessarily have it, or if it does, the structs which
- it defines will refer to the host system, not the target.) */
-
-struct link_map_offsets *
-arm_linux_svr4_fetch_link_map_offsets (void)
-{
- static struct link_map_offsets lmo;
- static struct link_map_offsets *lmp = 0;
-
- if (lmp == 0)
- {
- lmp = &lmo;
-
- lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
- need. */
-
- lmo.r_map_offset = 4;
- lmo.r_map_size = 4;
-
- lmo.link_map_size = 20; /* Actual size is 552, but this is all we
- need. */
-
- lmo.l_addr_offset = 0;
- lmo.l_addr_size = 4;
-
- lmo.l_name_offset = 4;
- lmo.l_name_size = 4;
-
- lmo.l_next_offset = 12;
- lmo.l_next_size = 4;
-
- lmo.l_prev_offset = 16;
- lmo.l_prev_size = 4;
- }
-
- return lmp;
-}
-
-/* Test whether the coff symbol specific value corresponds to a Thumb
- function. */
-
-static int
-coff_sym_is_thumb (int val)
-{
- return (val == C_THUMBEXT ||
- val == C_THUMBSTAT ||
- val == C_THUMBEXTFUNC ||
- val == C_THUMBSTATFUNC ||
- val == C_THUMBLABEL);
-}
-
-/* arm_coff_make_msymbol_special()
- arm_elf_make_msymbol_special()
-
- These functions test whether the COFF or ELF symbol corresponds to
- an address in thumb code, and set a "special" bit in a minimal
- symbol to indicate that it does. */
-
-void
-arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
-{
- /* Thumb symbols are of type STT_LOPROC, (synonymous with
- STT_ARM_TFUNC). */
- if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
- == STT_LOPROC)
- MSYMBOL_SET_SPECIAL (msym);
-}
-
-void
-arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
-{
- if (coff_sym_is_thumb (val))
- MSYMBOL_SET_SPECIAL (msym);
-}
-
-static struct gdbarch *
-arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
- struct gdbarch *gdbarch;
-
- if (arches != NULL)
- return arches->gdbarch;
-
- /* XXX We'll probably need to set the tdep field soon. */
- gdbarch = gdbarch_alloc (&info, NULL);
-
- set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
-
- /* Call dummy code. */
- set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
- set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
- set_gdbarch_call_dummy_p (gdbarch, 1);
- set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
-
- set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
-
- set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
- set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
-
- set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
-
- return gdbarch;
-}
-
-void
-_initialize_arm_tdep (void)
-{
- struct ui_file *stb;
- long length;
- struct cmd_list_element *new_cmd;
- const char *setname;
- const char *setdesc;
- const char **regnames;
- int numregs, i, j;
- static char *helptext;
-
- if (GDB_MULTI_ARCH)
- register_gdbarch_init (bfd_arch_arm, arm_gdbarch_init);
-
- tm_print_insn = gdb_print_insn_arm;
-
- /* Get the number of possible sets of register names defined in opcodes. */
- num_flavor_options = get_arm_regname_num_options ();
-
- /* Sync the opcode insn printer with our register viewer: */
- parse_arm_disassembler_option ("reg-names-std");
-
- /* Begin creating the help text. */
- stb = mem_fileopen ();
- fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
-The valid values are:\n");
-
- /* Initialize the array that will be passed to add_set_enum_cmd(). */
- valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
- for (i = 0; i < num_flavor_options; i++)
- {
- numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
- valid_flavors[i] = setname;
- fprintf_unfiltered (stb, "%s - %s\n", setname,
- setdesc);
- /* Copy the default names (if found) and synchronize disassembler. */
- if (!strcmp (setname, "std"))
- {
- disassembly_flavor = setname;
- current_option = i;
- for (j = 0; j < numregs; j++)
- arm_register_names[j] = (char *) regnames[j];
- set_arm_regname_option (i);
- }
- }
- /* Mark the end of valid options. */
- valid_flavors[num_flavor_options] = NULL;
-
- /* Finish the creation of the help text. */
- fprintf_unfiltered (stb, "The default is \"std\".");
- helptext = ui_file_xstrdup (stb, &length);
- ui_file_delete (stb);
-
- /* Add the disassembly-flavor command */
- new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
- valid_flavors,
- &disassembly_flavor,
- helptext,
- &setlist);
- set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
- add_show_from_set (new_cmd, &showlist);
-
- /* ??? Maybe this should be a boolean. */
- add_show_from_set (add_set_cmd ("apcs32", no_class,
- var_zinteger, (char *) &arm_apcs_32,
- "Set usage of ARM 32-bit mode.\n", &setlist),
- &showlist);
-
- /* Add the deprecated "othernames" command */
-
- add_com ("othernames", class_obscure, arm_othernames,
- "Switch to the next set of register names.");
-
- /* Fill in the prologue_cache fields. */
- prologue_cache.extra_info = (struct frame_extra_info *)
- xcalloc (1, sizeof (struct frame_extra_info));
- prologue_cache.saved_regs = (CORE_ADDR *)
- xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
-}