summaryrefslogtreecommitdiff
path: root/gdb/h8300-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/h8300-tdep.c')
-rw-r--r--gdb/h8300-tdep.c877
1 files changed, 0 insertions, 877 deletions
diff --git a/gdb/h8300-tdep.c b/gdb/h8300-tdep.c
deleted file mode 100644
index e335fdb4d5d..00000000000
--- a/gdb/h8300-tdep.c
+++ /dev/null
@@ -1,877 +0,0 @@
-/* Target-machine dependent code for Hitachi H8/300, for GDB.
- Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
- 2000, 2001 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-/*
- Contributed by Steve Chamberlain
- sac@cygnus.com
- */
-
-#include "defs.h"
-#include "frame.h"
-#include "obstack.h"
-#include "symtab.h"
-#include "dis-asm.h"
-#include "gdbcmd.h"
-#include "gdbtypes.h"
-#include "gdbcore.h"
-#include "gdb_string.h"
-#include "value.h"
-#include "regcache.h"
-
-extern int h8300hmode, h8300smode;
-
-#undef NUM_REGS
-#define NUM_REGS 11
-
-#define UNSIGNED_SHORT(X) ((X) & 0xffff)
-
-#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
-#define IS_PUSH_FP(x) (x == 0x6df6)
-#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
-#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
-#define IS_SUB2_SP(x) (x==0x1b87)
-#define IS_SUB4_SP(x) (x==0x1b97)
-#define IS_SUBL_SP(x) (x==0x7a37)
-#define IS_MOVK_R5(x) (x==0x7905)
-#define IS_SUB_R5SP(x) (x==0x1957)
-
-
-/* The register names change depending on whether the h8300h processor
- type is selected. */
-
-static char *original_register_names[] = REGISTER_NAMES;
-
-static char *h8300h_register_names[] =
-{"er0", "er1", "er2", "er3", "er4", "er5", "er6",
- "sp", "ccr", "pc", "cycles", "tick", "inst"};
-
-char **h8300_register_names = original_register_names;
-
-
-/* Local function declarations. */
-
-static CORE_ADDR examine_prologue ();
-static void set_machine_hook (char *filename);
-
-CORE_ADDR
-h8300_skip_prologue (CORE_ADDR start_pc)
-{
- short int w;
- int adjust = 0;
-
- /* Skip past all push and stm insns. */
- while (1)
- {
- w = read_memory_unsigned_integer (start_pc, 2);
- /* First look for push insns. */
- if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
- {
- w = read_memory_unsigned_integer (start_pc + 2, 2);
- adjust = 2;
- }
-
- if (IS_PUSH (w))
- {
- start_pc += 2 + adjust;
- w = read_memory_unsigned_integer (start_pc, 2);
- continue;
- }
- adjust = 0;
- break;
- }
-
- /* Skip past a move to FP, either word or long sized */
- w = read_memory_unsigned_integer (start_pc, 2);
- if (w == 0x0100)
- {
- w = read_memory_unsigned_integer (start_pc + 2, 2);
- adjust += 2;
- }
-
- if (IS_MOVE_FP (w))
- {
- start_pc += 2 + adjust;
- w = read_memory_unsigned_integer (start_pc, 2);
- }
-
- /* Check for loading either a word constant into r5;
- long versions are handled by the SUBL_SP below. */
- if (IS_MOVK_R5 (w))
- {
- start_pc += 2;
- w = read_memory_unsigned_integer (start_pc, 2);
- }
-
- /* Now check for subtracting r5 from sp, word sized only. */
- if (IS_SUB_R5SP (w))
- {
- start_pc += 2 + adjust;
- w = read_memory_unsigned_integer (start_pc, 2);
- }
-
- /* Check for subs #2 and subs #4. */
- while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
- {
- start_pc += 2 + adjust;
- w = read_memory_unsigned_integer (start_pc, 2);
- }
-
- /* Check for a 32bit subtract. */
- if (IS_SUBL_SP (w))
- start_pc += 6 + adjust;
-
- return start_pc;
-}
-
-int
-gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info *info)
-{
- if (h8300smode)
- return print_insn_h8300s (memaddr, info);
- else if (h8300hmode)
- return print_insn_h8300h (memaddr, info);
- else
- return print_insn_h8300 (memaddr, info);
-}
-
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
- For us, the frame address is its stack pointer value, so we look up
- the function prologue to determine the caller's sp value, and return it. */
-
-CORE_ADDR
-h8300_frame_chain (struct frame_info *thisframe)
-{
- if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
- { /* initialize the from_pc now */
- thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
- thisframe->frame,
- PC_REGNUM);
- return thisframe->frame;
- }
- h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
- return thisframe->fsr->regs[SP_REGNUM];
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- We cache the result of doing this in the frame_obstack, since it is
- fairly expensive. */
-
-void
-h8300_frame_find_saved_regs (struct frame_info *fi,
- struct frame_saved_regs *fsr)
-{
- register struct frame_saved_regs *cache_fsr;
- CORE_ADDR ip;
- struct symtab_and_line sal;
- CORE_ADDR limit;
-
- if (!fi->fsr)
- {
- cache_fsr = (struct frame_saved_regs *)
- frame_obstack_alloc (sizeof (struct frame_saved_regs));
- memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
-
- fi->fsr = cache_fsr;
-
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- { /* no more to do. */
- if (fsr)
- *fsr = *fi->fsr;
- return;
- }
- /* Find the start and end of the function prologue. If the PC
- is in the function prologue, we only consider the part that
- has executed already. */
-
- ip = get_pc_function_start (fi->pc);
- sal = find_pc_line (ip, 0);
- limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
-
- /* This will fill in fields in *fi as well as in cache_fsr. */
- examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
- }
-
- if (fsr)
- *fsr = *fi->fsr;
-}
-
-/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
- is not the address of a valid instruction, the address of the next
- instruction beyond ADDR otherwise. *PWORD1 receives the first word
- of the instruction. */
-
-CORE_ADDR
-NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD *pword1)
-{
- char buf[2];
- if (addr < lim + 8)
- {
- read_memory (addr, buf, 2);
- *pword1 = extract_signed_integer (buf, 2);
-
- return addr + 2;
- }
- return 0;
-}
-
-/* Examine the prologue of a function. `ip' points to the first instruction.
- `limit' is the limit of the prologue (e.g. the addr of the first
- linenumber, or perhaps the program counter if we're stepping through).
- `frame_sp' is the stack pointer value in use in this frame.
- `fsr' is a pointer to a frame_saved_regs structure into which we put
- info about the registers saved by this frame.
- `fi' is a struct frame_info pointer; we fill in various fields in it
- to reflect the offsets of the arg pointer and the locals pointer. */
-
-static CORE_ADDR
-examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
- CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr,
- struct frame_info *fi)
-{
- register CORE_ADDR next_ip;
- int r;
- int have_fp = 0;
- INSN_WORD insn_word;
- /* Number of things pushed onto stack, starts at 2/4, 'cause the
- PC is already there */
- unsigned int reg_save_depth = h8300hmode ? 4 : 2;
-
- unsigned int auto_depth = 0; /* Number of bytes of autos */
-
- char in_frame[11]; /* One for each reg */
-
- int adjust = 0;
-
- memset (in_frame, 1, 11);
- for (r = 0; r < 8; r++)
- {
- fsr->regs[r] = 0;
- }
- if (after_prolog_fp == 0)
- {
- after_prolog_fp = read_register (SP_REGNUM);
- }
-
- /* If the PC isn't valid, quit now. */
- if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
- return 0;
-
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
-
- if (insn_word == 0x0100)
- {
- insn_word = read_memory_unsigned_integer (ip + 2, 2);
- adjust = 2;
- }
-
- /* Skip over any fp push instructions */
- fsr->regs[6] = after_prolog_fp;
- while (next_ip && IS_PUSH_FP (insn_word))
- {
- ip = next_ip + adjust;
-
- in_frame[insn_word & 0x7] = reg_save_depth;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- reg_save_depth += 2 + adjust;
- }
-
- /* Is this a move into the fp */
- if (next_ip && IS_MOV_SP_FP (insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- have_fp = 1;
- }
-
- /* Skip over any stack adjustment, happens either with a number of
- sub#2,sp or a mov #x,r5 sub r5,sp */
-
- if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
- {
- while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
- {
- auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- }
- }
- else
- {
- if (next_ip && IS_MOVK_R5 (insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- auto_depth += insn_word;
-
- next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
- auto_depth += insn_word;
- }
- if (next_ip && IS_SUBL_SP (insn_word))
- {
- ip = next_ip;
- auto_depth += read_memory_unsigned_integer (ip, 4);
- ip += 4;
-
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- }
- }
-
- /* Now examine the push insns to determine where everything lives
- on the stack. */
- while (1)
- {
- adjust = 0;
- if (!next_ip)
- break;
-
- if (insn_word == 0x0100)
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- adjust = 2;
- }
-
- if (IS_PUSH (insn_word))
- {
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- fsr->regs[r] = after_prolog_fp + auto_depth;
- auto_depth += 2 + adjust;
- continue;
- }
-
- /* Now check for push multiple insns. */
- if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
- {
- int count = ((insn_word >> 4) & 0xf) + 1;
- int start, i;
-
- ip = next_ip;
- next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
- start = insn_word & 0x7;
-
- for (i = start; i <= start + count; i++)
- {
- fsr->regs[i] = after_prolog_fp + auto_depth;
- auto_depth += 4;
- }
- }
- break;
- }
-
- /* The args are always reffed based from the stack pointer */
- fi->args_pointer = after_prolog_fp;
- /* Locals are always reffed based from the fp */
- fi->locals_pointer = after_prolog_fp;
- /* The PC is at a known place */
- fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
-
- /* Rememeber any others too */
- in_frame[PC_REGNUM] = 0;
-
- if (have_fp)
- /* We keep the old FP in the SP spot */
- fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
- else
- fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
-
- return (ip);
-}
-
-void
-h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
- fi->fsr = 0; /* Not yet allocated */
- fi->args_pointer = 0; /* Unknown */
- fi->locals_pointer = 0; /* Unknown */
- fi->from_pc = 0;
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- { /* anything special to do? */
- return;
- }
-}
-
-/* Return the saved PC from this frame.
-
- If the frame has a memory copy of SRP_REGNUM, use that. If not,
- just use the register SRP_REGNUM itself. */
-
-CORE_ADDR
-h8300_frame_saved_pc (struct frame_info *frame)
-{
- if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
- return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
- else
- return frame->from_pc;
-}
-
-CORE_ADDR
-h8300_frame_locals_address (struct frame_info *fi)
-{
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return (CORE_ADDR) 0; /* Not sure what else to do... */
- if (!fi->locals_pointer)
- {
- struct frame_saved_regs ignore;
-
- get_frame_saved_regs (fi, &ignore);
-
- }
- return fi->locals_pointer;
-}
-
-/* Return the address of the argument block for the frame
- described by FI. Returns 0 if the address is unknown. */
-
-CORE_ADDR
-h8300_frame_args_address (struct frame_info *fi)
-{
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return (CORE_ADDR) 0; /* Not sure what else to do... */
- if (!fi->args_pointer)
- {
- struct frame_saved_regs ignore;
-
- get_frame_saved_regs (fi, &ignore);
-
- }
-
- return fi->args_pointer;
-}
-
-/* Function: push_arguments
- Setup the function arguments for calling a function in the inferior.
-
- On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
- which are dedicated for passing function arguments. Up to the first
- three arguments (depending on size) may go into these registers.
- The rest go on the stack.
-
- Arguments that are smaller than WORDSIZE bytes will still take up a
- whole register or a whole WORDSIZE word on the stack, and will be
- right-justified in the register or the stack word. This includes
- chars and small aggregate types. Note that WORDSIZE depends on the
- cpu type.
-
- Arguments that are larger than WORDSIZE bytes will be split between
- two or more registers as available, but will NOT be split between a
- register and the stack.
-
- An exceptional case exists for struct arguments (and possibly other
- aggregates such as arrays) -- if the size is larger than WORDSIZE
- bytes but not a multiple of WORDSIZE bytes. In this case the
- argument is never split between the registers and the stack, but
- instead is copied in its entirety onto the stack, AND also copied
- into as many registers as there is room for. In other words, space
- in registers permitting, two copies of the same argument are passed
- in. As far as I can tell, only the one on the stack is used,
- although that may be a function of the level of compiler
- optimization. I suspect this is a compiler bug. Arguments of
- these odd sizes are left-justified within the word (as opposed to
- arguments smaller than WORDSIZE bytes, which are right-justified).
-
- If the function is to return an aggregate type such as a struct,
- the caller must allocate space into which the callee will copy the
- return value. In this case, a pointer to the return value location
- is passed into the callee in register R0, which displaces one of
- the other arguments passed in via registers R0 to R2. */
-
-CORE_ADDR
-h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- unsigned char struct_return, CORE_ADDR struct_addr)
-{
- int stack_align, stack_alloc, stack_offset;
- int wordsize;
- int argreg;
- int argnum;
- struct type *type;
- CORE_ADDR regval;
- char *val;
- char valbuf[4];
- int len;
-
- if (h8300hmode || h8300smode)
- {
- stack_align = 3;
- wordsize = 4;
- }
- else
- {
- stack_align = 1;
- wordsize = 2;
- }
-
- /* first force sp to a n-byte alignment */
- sp = sp & ~stack_align;
-
- /* Now make sure there's space on the stack */
- for (argnum = 0, stack_alloc = 0;
- argnum < nargs; argnum++)
- stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
- & ~stack_align);
- sp -= stack_alloc; /* make room on stack for args */
- /* we may over-allocate a little here, but that won't hurt anything */
-
- argreg = ARG0_REGNUM;
- if (struct_return) /* "struct return" pointer takes up one argreg */
- {
- write_register (argreg++, struct_addr);
- }
-
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. There are 3N bytes
- in three registers available. Loop thru args from first to last. */
-
- for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
- {
- type = VALUE_TYPE (args[argnum]);
- len = TYPE_LENGTH (type);
- memset (valbuf, 0, sizeof (valbuf));
- if (len < wordsize)
- {
- /* the purpose of this is to right-justify the value within the word */
- memcpy (valbuf + (wordsize - len),
- (char *) VALUE_CONTENTS (args[argnum]), len);
- val = valbuf;
- }
- else
- val = (char *) VALUE_CONTENTS (args[argnum]);
-
- if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) ||
- (len > wordsize && (len & stack_align) != 0))
- { /* passed on the stack */
- write_memory (sp + stack_offset, val,
- len < wordsize ? wordsize : len);
- stack_offset += (len + stack_align) & ~stack_align;
- }
- /* NOTE WELL!!!!! This is not an "else if" clause!!!
- That's because some *&^%$ things get passed on the stack
- AND in the registers! */
- if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
- while (len > 0)
- { /* there's room in registers */
- regval = extract_address (val, wordsize);
- write_register (argreg, regval);
- len -= wordsize;
- val += wordsize;
- argreg++;
- }
- }
- return sp;
-}
-
-/* Function: push_return_address
- Setup the return address for a dummy frame, as called by
- call_function_by_hand. Only necessary when you are using an
- empty CALL_DUMMY, ie. the target will not actually be executing
- a JSR/BSR instruction. */
-
-CORE_ADDR
-h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-{
- unsigned char buf[4];
- int wordsize;
-
- if (h8300hmode || h8300smode)
- wordsize = 4;
- else
- wordsize = 2;
-
- sp -= wordsize;
- store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
- write_memory (sp, buf, wordsize);
- return sp;
-}
-
-/* Function: h8300_pop_frame
- Restore the machine to the state it had before the current frame
- was created. Usually used either by the "RETURN" command, or by
- call_function_by_hand after the dummy_frame is finished. */
-
-void
-h8300_pop_frame (void)
-{
- unsigned regnum;
- struct frame_saved_regs fsr;
- struct frame_info *frame = get_current_frame ();
-
- if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
- {
- generic_pop_dummy_frame ();
- }
- else
- {
- get_frame_saved_regs (frame, &fsr);
-
- for (regnum = 0; regnum < 8; regnum++)
- {
- /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
- actual value we want, not the address of the value we want. */
- if (fsr.regs[regnum] && regnum != SP_REGNUM)
- write_register (regnum,
- read_memory_integer (fsr.regs[regnum], BINWORD));
- else if (fsr.regs[regnum] && regnum == SP_REGNUM)
- write_register (regnum, frame->frame + 2 * BINWORD);
- }
-
- /* Don't forget the update the PC too! */
- write_pc (frame->from_pc);
- }
- flush_cached_frames ();
-}
-
-/* Function: extract_return_value
- Figure out where in REGBUF the called function has left its return value.
- Copy that into VALBUF. Be sure to account for CPU type. */
-
-void
-h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
-{
- int wordsize, len;
-
- if (h8300smode || h8300hmode)
- wordsize = 4;
- else
- wordsize = 2;
-
- len = TYPE_LENGTH (type);
-
- switch (len)
- {
- case 1: /* (char) */
- case 2: /* (short), (int) */
- memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
- break;
- case 4: /* (long), (float) */
- if (h8300smode || h8300hmode)
- {
- memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
- }
- else
- {
- memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
- memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
- }
- break;
- case 8: /* (double) (doesn't seem to happen, which is good,
- because this almost certainly isn't right. */
- error ("I don't know how a double is returned.");
- break;
- }
-}
-
-/* Function: store_return_value
- Place the appropriate value in the appropriate registers.
- Primarily used by the RETURN command. */
-
-void
-h8300_store_return_value (struct type *type, char *valbuf)
-{
- int wordsize, len, regval;
-
- if (h8300hmode || h8300smode)
- wordsize = 4;
- else
- wordsize = 2;
-
- len = TYPE_LENGTH (type);
- switch (len)
- {
- case 1: /* char */
- case 2: /* short, int */
- regval = extract_address (valbuf, len);
- write_register (0, regval);
- break;
- case 4: /* long, float */
- regval = extract_address (valbuf, len);
- if (h8300smode || h8300hmode)
- {
- write_register (0, regval);
- }
- else
- {
- write_register (0, regval >> 16);
- write_register (1, regval & 0xffff);
- }
- break;
- case 8: /* presumeably double, but doesn't seem to happen */
- error ("I don't know how to return a double.");
- break;
- }
-}
-
-struct cmd_list_element *setmemorylist;
-
-static void
-set_register_names (void)
-{
- if (h8300hmode != 0)
- h8300_register_names = h8300h_register_names;
- else
- h8300_register_names = original_register_names;
-}
-
-static void
-h8300_command (char *args, int from_tty)
-{
- extern int h8300hmode;
- h8300hmode = 0;
- h8300smode = 0;
- set_register_names ();
-}
-
-static void
-h8300h_command (char *args, int from_tty)
-{
- extern int h8300hmode;
- h8300hmode = 1;
- h8300smode = 0;
- set_register_names ();
-}
-
-static void
-h8300s_command (char *args, int from_tty)
-{
- extern int h8300smode;
- extern int h8300hmode;
- h8300smode = 1;
- h8300hmode = 1;
- set_register_names ();
-}
-
-
-static void
-set_machine (char *args, int from_tty)
-{
- printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
- printf_unfiltered ("or h8300s");
- help_list (setmemorylist, "set memory ", -1, gdb_stdout);
-}
-
-/* set_machine_hook is called as the exec file is being opened, but
- before the symbol file is opened. This allows us to set the
- h8300hmode flag based on the machine type specified in the exec
- file. This in turn will cause subsequently defined pointer types
- to be 16 or 32 bits as appropriate for the machine. */
-
-static void
-set_machine_hook (char *filename)
-{
- if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
- {
- h8300smode = 1;
- h8300hmode = 1;
- }
- else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
- {
- h8300smode = 0;
- h8300hmode = 1;
- }
- else
- {
- h8300smode = 0;
- h8300hmode = 0;
- }
- set_register_names ();
-}
-
-void
-_initialize_h8300m (void)
-{
- add_prefix_cmd ("machine", no_class, set_machine,
- "set the machine type",
- &setmemorylist, "set machine ", 0,
- &setlist);
-
- add_cmd ("h8300", class_support, h8300_command,
- "Set machine to be H8/300.", &setmemorylist);
-
- add_cmd ("h8300h", class_support, h8300h_command,
- "Set machine to be H8/300H.", &setmemorylist);
-
- add_cmd ("h8300s", class_support, h8300s_command,
- "Set machine to be H8/300S.", &setmemorylist);
-
- /* Add a hook to set the machine type when we're loading a file. */
-
- specify_exec_file_hook (set_machine_hook);
-}
-
-
-
-void
-h8300_print_register_hook (int regno)
-{
- if (regno == 8)
- {
- /* CCR register */
- int C, Z, N, V;
- unsigned char b[4];
- unsigned char l;
- read_relative_register_raw_bytes (regno, b);
- l = b[REGISTER_VIRTUAL_SIZE (8) - 1];
- printf_unfiltered ("\t");
- printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
- printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
- N = (l & 0x8) != 0;
- Z = (l & 0x4) != 0;
- V = (l & 0x2) != 0;
- C = (l & 0x1) != 0;
- printf_unfiltered ("N-%d ", N);
- printf_unfiltered ("Z-%d ", Z);
- printf_unfiltered ("V-%d ", V);
- printf_unfiltered ("C-%d ", C);
- if ((C | Z) == 0)
- printf_unfiltered ("u> ");
- if ((C | Z) == 1)
- printf_unfiltered ("u<= ");
- if ((C == 0))
- printf_unfiltered ("u>= ");
- if (C == 1)
- printf_unfiltered ("u< ");
- if (Z == 0)
- printf_unfiltered ("!= ");
- if (Z == 1)
- printf_unfiltered ("== ");
- if ((N ^ V) == 0)
- printf_unfiltered (">= ");
- if ((N ^ V) == 1)
- printf_unfiltered ("< ");
- if ((Z | (N ^ V)) == 0)
- printf_unfiltered ("> ");
- if ((Z | (N ^ V)) == 1)
- printf_unfiltered ("<= ");
- }
-}
-
-void
-_initialize_h8300_tdep (void)
-{
- tm_print_insn = gdb_print_insn_h8300;
-}