summaryrefslogtreecommitdiff
path: root/gdb/hppa-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/hppa-tdep.c')
-rw-r--r--gdb/hppa-tdep.c4769
1 files changed, 0 insertions, 4769 deletions
diff --git a/gdb/hppa-tdep.c b/gdb/hppa-tdep.c
deleted file mode 100644
index 157fb8a97e0..00000000000
--- a/gdb/hppa-tdep.c
+++ /dev/null
@@ -1,4769 +0,0 @@
-/* Target-dependent code for the HP PA architecture, for GDB.
- Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
- 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
-
- Contributed by the Center for Software Science at the
- University of Utah (pa-gdb-bugs@cs.utah.edu).
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "bfd.h"
-#include "inferior.h"
-#include "value.h"
-#include "regcache.h"
-#include "completer.h"
-
-/* For argument passing to the inferior */
-#include "symtab.h"
-
-#ifdef USG
-#include <sys/types.h>
-#endif
-
-#include <dl.h>
-#include <sys/param.h>
-#include <signal.h>
-
-#include <sys/ptrace.h>
-#include <machine/save_state.h>
-
-#ifdef COFF_ENCAPSULATE
-#include "a.out.encap.h"
-#else
-#endif
-
-/*#include <sys/user.h> After a.out.h */
-#include <sys/file.h>
-#include "gdb_stat.h"
-#include "gdb_wait.h"
-
-#include "gdbcore.h"
-#include "gdbcmd.h"
-#include "target.h"
-#include "symfile.h"
-#include "objfiles.h"
-
-/* To support detection of the pseudo-initial frame
- that threads have. */
-#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
-#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
-
-static int extract_5_load (unsigned int);
-
-static unsigned extract_5R_store (unsigned int);
-
-static unsigned extract_5r_store (unsigned int);
-
-static void find_dummy_frame_regs (struct frame_info *,
- struct frame_saved_regs *);
-
-static int find_proc_framesize (CORE_ADDR);
-
-static int find_return_regnum (CORE_ADDR);
-
-struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
-
-static int extract_17 (unsigned int);
-
-static unsigned deposit_21 (unsigned int, unsigned int);
-
-static int extract_21 (unsigned);
-
-static unsigned deposit_14 (int, unsigned int);
-
-static int extract_14 (unsigned);
-
-static void unwind_command (char *, int);
-
-static int low_sign_extend (unsigned int, unsigned int);
-
-static int sign_extend (unsigned int, unsigned int);
-
-static int restore_pc_queue (struct frame_saved_regs *);
-
-static int hppa_alignof (struct type *);
-
-/* To support multi-threading and stepping. */
-int hppa_prepare_to_proceed ();
-
-static int prologue_inst_adjust_sp (unsigned long);
-
-static int is_branch (unsigned long);
-
-static int inst_saves_gr (unsigned long);
-
-static int inst_saves_fr (unsigned long);
-
-static int pc_in_interrupt_handler (CORE_ADDR);
-
-static int pc_in_linker_stub (CORE_ADDR);
-
-static int compare_unwind_entries (const void *, const void *);
-
-static void read_unwind_info (struct objfile *);
-
-static void internalize_unwinds (struct objfile *,
- struct unwind_table_entry *,
- asection *, unsigned int,
- unsigned int, CORE_ADDR);
-static void pa_print_registers (char *, int, int);
-static void pa_strcat_registers (char *, int, int, struct ui_file *);
-static void pa_register_look_aside (char *, int, long *);
-static void pa_print_fp_reg (int);
-static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
-static void record_text_segment_lowaddr (bfd *, asection *, void *);
-
-typedef struct
- {
- struct minimal_symbol *msym;
- CORE_ADDR solib_handle;
- CORE_ADDR return_val;
- }
-args_for_find_stub;
-
-static int cover_find_stub_with_shl_get (PTR);
-
-static int is_pa_2 = 0; /* False */
-
-/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
-extern int hp_som_som_object_present;
-
-/* In breakpoint.c */
-extern int exception_catchpoints_are_fragile;
-
-/* This is defined in valops.c. */
-extern struct value *find_function_in_inferior (char *);
-
-/* Should call_function allocate stack space for a struct return? */
-int
-hppa_use_struct_convention (int gcc_p, struct type *type)
-{
- return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
-}
-
-
-/* Routines to extract various sized constants out of hppa
- instructions. */
-
-/* This assumes that no garbage lies outside of the lower bits of
- value. */
-
-static int
-sign_extend (unsigned val, unsigned bits)
-{
- return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
-}
-
-/* For many immediate values the sign bit is the low bit! */
-
-static int
-low_sign_extend (unsigned val, unsigned bits)
-{
- return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
-}
-
-/* extract the immediate field from a ld{bhw}s instruction */
-
-static int
-extract_5_load (unsigned word)
-{
- return low_sign_extend (word >> 16 & MASK_5, 5);
-}
-
-/* extract the immediate field from a break instruction */
-
-static unsigned
-extract_5r_store (unsigned word)
-{
- return (word & MASK_5);
-}
-
-/* extract the immediate field from a {sr}sm instruction */
-
-static unsigned
-extract_5R_store (unsigned word)
-{
- return (word >> 16 & MASK_5);
-}
-
-/* extract a 14 bit immediate field */
-
-static int
-extract_14 (unsigned word)
-{
- return low_sign_extend (word & MASK_14, 14);
-}
-
-/* deposit a 14 bit constant in a word */
-
-static unsigned
-deposit_14 (int opnd, unsigned word)
-{
- unsigned sign = (opnd < 0 ? 1 : 0);
-
- return word | ((unsigned) opnd << 1 & MASK_14) | sign;
-}
-
-/* extract a 21 bit constant */
-
-static int
-extract_21 (unsigned word)
-{
- int val;
-
- word &= MASK_21;
- word <<= 11;
- val = GET_FIELD (word, 20, 20);
- val <<= 11;
- val |= GET_FIELD (word, 9, 19);
- val <<= 2;
- val |= GET_FIELD (word, 5, 6);
- val <<= 5;
- val |= GET_FIELD (word, 0, 4);
- val <<= 2;
- val |= GET_FIELD (word, 7, 8);
- return sign_extend (val, 21) << 11;
-}
-
-/* deposit a 21 bit constant in a word. Although 21 bit constants are
- usually the top 21 bits of a 32 bit constant, we assume that only
- the low 21 bits of opnd are relevant */
-
-static unsigned
-deposit_21 (unsigned opnd, unsigned word)
-{
- unsigned val = 0;
-
- val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
- val <<= 2;
- val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
- val <<= 2;
- val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
- val <<= 11;
- val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
- val <<= 1;
- val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
- return word | val;
-}
-
-/* extract a 17 bit constant from branch instructions, returning the
- 19 bit signed value. */
-
-static int
-extract_17 (unsigned word)
-{
- return sign_extend (GET_FIELD (word, 19, 28) |
- GET_FIELD (word, 29, 29) << 10 |
- GET_FIELD (word, 11, 15) << 11 |
- (word & 0x1) << 16, 17) << 2;
-}
-
-
-/* Compare the start address for two unwind entries returning 1 if
- the first address is larger than the second, -1 if the second is
- larger than the first, and zero if they are equal. */
-
-static int
-compare_unwind_entries (const void *arg1, const void *arg2)
-{
- const struct unwind_table_entry *a = arg1;
- const struct unwind_table_entry *b = arg2;
-
- if (a->region_start > b->region_start)
- return 1;
- else if (a->region_start < b->region_start)
- return -1;
- else
- return 0;
-}
-
-static CORE_ADDR low_text_segment_address;
-
-static void
-record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
-{
- if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
- == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
- && section->vma < low_text_segment_address)
- low_text_segment_address = section->vma;
-}
-
-static void
-internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
- asection *section, unsigned int entries, unsigned int size,
- CORE_ADDR text_offset)
-{
- /* We will read the unwind entries into temporary memory, then
- fill in the actual unwind table. */
- if (size > 0)
- {
- unsigned long tmp;
- unsigned i;
- char *buf = alloca (size);
-
- low_text_segment_address = -1;
-
- /* If addresses are 64 bits wide, then unwinds are supposed to
- be segment relative offsets instead of absolute addresses.
-
- Note that when loading a shared library (text_offset != 0) the
- unwinds are already relative to the text_offset that will be
- passed in. */
- if (TARGET_PTR_BIT == 64 && text_offset == 0)
- {
- bfd_map_over_sections (objfile->obfd,
- record_text_segment_lowaddr, (PTR) NULL);
-
- /* ?!? Mask off some low bits. Should this instead subtract
- out the lowest section's filepos or something like that?
- This looks very hokey to me. */
- low_text_segment_address &= ~0xfff;
- text_offset += low_text_segment_address;
- }
-
- bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
-
- /* Now internalize the information being careful to handle host/target
- endian issues. */
- for (i = 0; i < entries; i++)
- {
- table[i].region_start = bfd_get_32 (objfile->obfd,
- (bfd_byte *) buf);
- table[i].region_start += text_offset;
- buf += 4;
- table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
- table[i].region_end += text_offset;
- buf += 4;
- tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
- buf += 4;
- table[i].Cannot_unwind = (tmp >> 31) & 0x1;
- table[i].Millicode = (tmp >> 30) & 0x1;
- table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
- table[i].Region_description = (tmp >> 27) & 0x3;
- table[i].reserved1 = (tmp >> 26) & 0x1;
- table[i].Entry_SR = (tmp >> 25) & 0x1;
- table[i].Entry_FR = (tmp >> 21) & 0xf;
- table[i].Entry_GR = (tmp >> 16) & 0x1f;
- table[i].Args_stored = (tmp >> 15) & 0x1;
- table[i].Variable_Frame = (tmp >> 14) & 0x1;
- table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
- table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
- table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
- table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
- table[i].Ada_Region = (tmp >> 9) & 0x1;
- table[i].cxx_info = (tmp >> 8) & 0x1;
- table[i].cxx_try_catch = (tmp >> 7) & 0x1;
- table[i].sched_entry_seq = (tmp >> 6) & 0x1;
- table[i].reserved2 = (tmp >> 5) & 0x1;
- table[i].Save_SP = (tmp >> 4) & 0x1;
- table[i].Save_RP = (tmp >> 3) & 0x1;
- table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
- table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
- table[i].Cleanup_defined = tmp & 0x1;
- tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
- buf += 4;
- table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
- table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
- table[i].Large_frame = (tmp >> 29) & 0x1;
- table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
- table[i].reserved4 = (tmp >> 27) & 0x1;
- table[i].Total_frame_size = tmp & 0x7ffffff;
-
- /* Stub unwinds are handled elsewhere. */
- table[i].stub_unwind.stub_type = 0;
- table[i].stub_unwind.padding = 0;
- }
- }
-}
-
-/* Read in the backtrace information stored in the `$UNWIND_START$' section of
- the object file. This info is used mainly by find_unwind_entry() to find
- out the stack frame size and frame pointer used by procedures. We put
- everything on the psymbol obstack in the objfile so that it automatically
- gets freed when the objfile is destroyed. */
-
-static void
-read_unwind_info (struct objfile *objfile)
-{
- asection *unwind_sec, *stub_unwind_sec;
- unsigned unwind_size, stub_unwind_size, total_size;
- unsigned index, unwind_entries;
- unsigned stub_entries, total_entries;
- CORE_ADDR text_offset;
- struct obj_unwind_info *ui;
- obj_private_data_t *obj_private;
-
- text_offset = ANOFFSET (objfile->section_offsets, 0);
- ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
- sizeof (struct obj_unwind_info));
-
- ui->table = NULL;
- ui->cache = NULL;
- ui->last = -1;
-
- /* For reasons unknown the HP PA64 tools generate multiple unwinder
- sections in a single executable. So we just iterate over every
- section in the BFD looking for unwinder sections intead of trying
- to do a lookup with bfd_get_section_by_name.
-
- First determine the total size of the unwind tables so that we
- can allocate memory in a nice big hunk. */
- total_entries = 0;
- for (unwind_sec = objfile->obfd->sections;
- unwind_sec;
- unwind_sec = unwind_sec->next)
- {
- if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
- || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
- {
- unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
- unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
-
- total_entries += unwind_entries;
- }
- }
-
- /* Now compute the size of the stub unwinds. Note the ELF tools do not
- use stub unwinds at the curren time. */
- stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
-
- if (stub_unwind_sec)
- {
- stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
- stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
- }
- else
- {
- stub_unwind_size = 0;
- stub_entries = 0;
- }
-
- /* Compute total number of unwind entries and their total size. */
- total_entries += stub_entries;
- total_size = total_entries * sizeof (struct unwind_table_entry);
-
- /* Allocate memory for the unwind table. */
- ui->table = (struct unwind_table_entry *)
- obstack_alloc (&objfile->psymbol_obstack, total_size);
- ui->last = total_entries - 1;
-
- /* Now read in each unwind section and internalize the standard unwind
- entries. */
- index = 0;
- for (unwind_sec = objfile->obfd->sections;
- unwind_sec;
- unwind_sec = unwind_sec->next)
- {
- if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
- || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
- {
- unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
- unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
-
- internalize_unwinds (objfile, &ui->table[index], unwind_sec,
- unwind_entries, unwind_size, text_offset);
- index += unwind_entries;
- }
- }
-
- /* Now read in and internalize the stub unwind entries. */
- if (stub_unwind_size > 0)
- {
- unsigned int i;
- char *buf = alloca (stub_unwind_size);
-
- /* Read in the stub unwind entries. */
- bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
- 0, stub_unwind_size);
-
- /* Now convert them into regular unwind entries. */
- for (i = 0; i < stub_entries; i++, index++)
- {
- /* Clear out the next unwind entry. */
- memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
-
- /* Convert offset & size into region_start and region_end.
- Stuff away the stub type into "reserved" fields. */
- ui->table[index].region_start = bfd_get_32 (objfile->obfd,
- (bfd_byte *) buf);
- ui->table[index].region_start += text_offset;
- buf += 4;
- ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
- (bfd_byte *) buf);
- buf += 2;
- ui->table[index].region_end
- = ui->table[index].region_start + 4 *
- (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
- buf += 2;
- }
-
- }
-
- /* Unwind table needs to be kept sorted. */
- qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
- compare_unwind_entries);
-
- /* Keep a pointer to the unwind information. */
- if (objfile->obj_private == NULL)
- {
- obj_private = (obj_private_data_t *)
- obstack_alloc (&objfile->psymbol_obstack,
- sizeof (obj_private_data_t));
- obj_private->unwind_info = NULL;
- obj_private->so_info = NULL;
- obj_private->dp = 0;
-
- objfile->obj_private = (PTR) obj_private;
- }
- obj_private = (obj_private_data_t *) objfile->obj_private;
- obj_private->unwind_info = ui;
-}
-
-/* Lookup the unwind (stack backtrace) info for the given PC. We search all
- of the objfiles seeking the unwind table entry for this PC. Each objfile
- contains a sorted list of struct unwind_table_entry. Since we do a binary
- search of the unwind tables, we depend upon them to be sorted. */
-
-struct unwind_table_entry *
-find_unwind_entry (CORE_ADDR pc)
-{
- int first, middle, last;
- struct objfile *objfile;
-
- /* A function at address 0? Not in HP-UX! */
- if (pc == (CORE_ADDR) 0)
- return NULL;
-
- ALL_OBJFILES (objfile)
- {
- struct obj_unwind_info *ui;
- ui = NULL;
- if (objfile->obj_private)
- ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
-
- if (!ui)
- {
- read_unwind_info (objfile);
- if (objfile->obj_private == NULL)
- error ("Internal error reading unwind information.");
- ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
- }
-
- /* First, check the cache */
-
- if (ui->cache
- && pc >= ui->cache->region_start
- && pc <= ui->cache->region_end)
- return ui->cache;
-
- /* Not in the cache, do a binary search */
-
- first = 0;
- last = ui->last;
-
- while (first <= last)
- {
- middle = (first + last) / 2;
- if (pc >= ui->table[middle].region_start
- && pc <= ui->table[middle].region_end)
- {
- ui->cache = &ui->table[middle];
- return &ui->table[middle];
- }
-
- if (pc < ui->table[middle].region_start)
- last = middle - 1;
- else
- first = middle + 1;
- }
- } /* ALL_OBJFILES() */
- return NULL;
-}
-
-/* Return the adjustment necessary to make for addresses on the stack
- as presented by hpread.c.
-
- This is necessary because of the stack direction on the PA and the
- bizarre way in which someone (?) decided they wanted to handle
- frame pointerless code in GDB. */
-int
-hpread_adjust_stack_address (CORE_ADDR func_addr)
-{
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (func_addr);
- if (!u)
- return 0;
- else
- return u->Total_frame_size << 3;
-}
-
-/* Called to determine if PC is in an interrupt handler of some
- kind. */
-
-static int
-pc_in_interrupt_handler (CORE_ADDR pc)
-{
- struct unwind_table_entry *u;
- struct minimal_symbol *msym_us;
-
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
- its frame isn't a pure interrupt frame. Deal with this. */
- msym_us = lookup_minimal_symbol_by_pc (pc);
-
- return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
-}
-
-/* Called when no unwind descriptor was found for PC. Returns 1 if it
- appears that PC is in a linker stub.
-
- ?!? Need to handle stubs which appear in PA64 code. */
-
-static int
-pc_in_linker_stub (CORE_ADDR pc)
-{
- int found_magic_instruction = 0;
- int i;
- char buf[4];
-
- /* If unable to read memory, assume pc is not in a linker stub. */
- if (target_read_memory (pc, buf, 4) != 0)
- return 0;
-
- /* We are looking for something like
-
- ; $$dyncall jams RP into this special spot in the frame (RP')
- ; before calling the "call stub"
- ldw -18(sp),rp
-
- ldsid (rp),r1 ; Get space associated with RP into r1
- mtsp r1,sp ; Move it into space register 0
- be,n 0(sr0),rp) ; back to your regularly scheduled program */
-
- /* Maximum known linker stub size is 4 instructions. Search forward
- from the given PC, then backward. */
- for (i = 0; i < 4; i++)
- {
- /* If we hit something with an unwind, stop searching this direction. */
-
- if (find_unwind_entry (pc + i * 4) != 0)
- break;
-
- /* Check for ldsid (rp),r1 which is the magic instruction for a
- return from a cross-space function call. */
- if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
- {
- found_magic_instruction = 1;
- break;
- }
- /* Add code to handle long call/branch and argument relocation stubs
- here. */
- }
-
- if (found_magic_instruction != 0)
- return 1;
-
- /* Now look backward. */
- for (i = 0; i < 4; i++)
- {
- /* If we hit something with an unwind, stop searching this direction. */
-
- if (find_unwind_entry (pc - i * 4) != 0)
- break;
-
- /* Check for ldsid (rp),r1 which is the magic instruction for a
- return from a cross-space function call. */
- if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
- {
- found_magic_instruction = 1;
- break;
- }
- /* Add code to handle long call/branch and argument relocation stubs
- here. */
- }
- return found_magic_instruction;
-}
-
-static int
-find_return_regnum (CORE_ADDR pc)
-{
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- return RP_REGNUM;
-
- if (u->Millicode)
- return 31;
-
- return RP_REGNUM;
-}
-
-/* Return size of frame, or -1 if we should use a frame pointer. */
-static int
-find_proc_framesize (CORE_ADDR pc)
-{
- struct unwind_table_entry *u;
- struct minimal_symbol *msym_us;
-
- /* This may indicate a bug in our callers... */
- if (pc == (CORE_ADDR) 0)
- return -1;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- {
- if (pc_in_linker_stub (pc))
- /* Linker stubs have a zero size frame. */
- return 0;
- else
- return -1;
- }
-
- msym_us = lookup_minimal_symbol_by_pc (pc);
-
- /* If Save_SP is set, and we're not in an interrupt or signal caller,
- then we have a frame pointer. Use it. */
- if (u->Save_SP && !pc_in_interrupt_handler (pc)
- && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
- return -1;
-
- return u->Total_frame_size << 3;
-}
-
-/* Return offset from sp at which rp is saved, or 0 if not saved. */
-static int rp_saved (CORE_ADDR);
-
-static int
-rp_saved (CORE_ADDR pc)
-{
- struct unwind_table_entry *u;
-
- /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
- if (pc == (CORE_ADDR) 0)
- return 0;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- {
- if (pc_in_linker_stub (pc))
- /* This is the so-called RP'. */
- return -24;
- else
- return 0;
- }
-
- if (u->Save_RP)
- return (TARGET_PTR_BIT == 64 ? -16 : -20);
- else if (u->stub_unwind.stub_type != 0)
- {
- switch (u->stub_unwind.stub_type)
- {
- case EXPORT:
- case IMPORT:
- return -24;
- case PARAMETER_RELOCATION:
- return -8;
- default:
- return 0;
- }
- }
- else
- return 0;
-}
-
-int
-frameless_function_invocation (struct frame_info *frame)
-{
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (frame->pc);
-
- if (u == 0)
- return 0;
-
- return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
-}
-
-CORE_ADDR
-saved_pc_after_call (struct frame_info *frame)
-{
- int ret_regnum;
- CORE_ADDR pc;
- struct unwind_table_entry *u;
-
- ret_regnum = find_return_regnum (get_frame_pc (frame));
- pc = read_register (ret_regnum) & ~0x3;
-
- /* If PC is in a linker stub, then we need to dig the address
- the stub will return to out of the stack. */
- u = find_unwind_entry (pc);
- if (u && u->stub_unwind.stub_type != 0)
- return FRAME_SAVED_PC (frame);
- else
- return pc;
-}
-
-CORE_ADDR
-hppa_frame_saved_pc (struct frame_info *frame)
-{
- CORE_ADDR pc = get_frame_pc (frame);
- struct unwind_table_entry *u;
- CORE_ADDR old_pc;
- int spun_around_loop = 0;
- int rp_offset = 0;
-
- /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
- at the base of the frame in an interrupt handler. Registers within
- are saved in the exact same order as GDB numbers registers. How
- convienent. */
- if (pc_in_interrupt_handler (pc))
- return read_memory_integer (frame->frame + PC_REGNUM * 4,
- TARGET_PTR_BIT / 8) & ~0x3;
-
- if ((frame->pc >= frame->frame
- && frame->pc <= (frame->frame
- /* A call dummy is sized in words, but it is
- actually a series of instructions. Account
- for that scaling factor. */
- + ((REGISTER_SIZE / INSTRUCTION_SIZE)
- * CALL_DUMMY_LENGTH)
- /* Similarly we have to account for 64bit
- wide register saves. */
- + (32 * REGISTER_SIZE)
- /* We always consider FP regs 8 bytes long. */
- + (NUM_REGS - FP0_REGNUM) * 8
- /* Similarly we have to account for 64bit
- wide register saves. */
- + (6 * REGISTER_SIZE))))
- {
- return read_memory_integer ((frame->frame
- + (TARGET_PTR_BIT == 64 ? -16 : -20)),
- TARGET_PTR_BIT / 8) & ~0x3;
- }
-
-#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
- /* Deal with signal handler caller frames too. */
- if (frame->signal_handler_caller)
- {
- CORE_ADDR rp;
- FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
- return rp & ~0x3;
- }
-#endif
-
- if (frameless_function_invocation (frame))
- {
- int ret_regnum;
-
- ret_regnum = find_return_regnum (pc);
-
- /* If the next frame is an interrupt frame or a signal
- handler caller, then we need to look in the saved
- register area to get the return pointer (the values
- in the registers may not correspond to anything useful). */
- if (frame->next
- && (frame->next->signal_handler_caller
- || pc_in_interrupt_handler (frame->next->pc)))
- {
- struct frame_saved_regs saved_regs;
-
- get_frame_saved_regs (frame->next, &saved_regs);
- if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
- TARGET_PTR_BIT / 8) & 0x2)
- {
- pc = read_memory_integer (saved_regs.regs[31],
- TARGET_PTR_BIT / 8) & ~0x3;
-
- /* Syscalls are really two frames. The syscall stub itself
- with a return pointer in %rp and the kernel call with
- a return pointer in %r31. We return the %rp variant
- if %r31 is the same as frame->pc. */
- if (pc == frame->pc)
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
- TARGET_PTR_BIT / 8) & ~0x3;
- }
- else
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
- TARGET_PTR_BIT / 8) & ~0x3;
- }
- else
- pc = read_register (ret_regnum) & ~0x3;
- }
- else
- {
- spun_around_loop = 0;
- old_pc = pc;
-
- restart:
- rp_offset = rp_saved (pc);
-
- /* Similar to code in frameless function case. If the next
- frame is a signal or interrupt handler, then dig the right
- information out of the saved register info. */
- if (rp_offset == 0
- && frame->next
- && (frame->next->signal_handler_caller
- || pc_in_interrupt_handler (frame->next->pc)))
- {
- struct frame_saved_regs saved_regs;
-
- get_frame_saved_regs (frame->next, &saved_regs);
- if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
- TARGET_PTR_BIT / 8) & 0x2)
- {
- pc = read_memory_integer (saved_regs.regs[31],
- TARGET_PTR_BIT / 8) & ~0x3;
-
- /* Syscalls are really two frames. The syscall stub itself
- with a return pointer in %rp and the kernel call with
- a return pointer in %r31. We return the %rp variant
- if %r31 is the same as frame->pc. */
- if (pc == frame->pc)
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
- TARGET_PTR_BIT / 8) & ~0x3;
- }
- else
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
- TARGET_PTR_BIT / 8) & ~0x3;
- }
- else if (rp_offset == 0)
- {
- old_pc = pc;
- pc = read_register (RP_REGNUM) & ~0x3;
- }
- else
- {
- old_pc = pc;
- pc = read_memory_integer (frame->frame + rp_offset,
- TARGET_PTR_BIT / 8) & ~0x3;
- }
- }
-
- /* If PC is inside a linker stub, then dig out the address the stub
- will return to.
-
- Don't do this for long branch stubs. Why? For some unknown reason
- _start is marked as a long branch stub in hpux10. */
- u = find_unwind_entry (pc);
- if (u && u->stub_unwind.stub_type != 0
- && u->stub_unwind.stub_type != LONG_BRANCH)
- {
- unsigned int insn;
-
- /* If this is a dynamic executable, and we're in a signal handler,
- then the call chain will eventually point us into the stub for
- _sigreturn. Unlike most cases, we'll be pointed to the branch
- to the real sigreturn rather than the code after the real branch!.
-
- Else, try to dig the address the stub will return to in the normal
- fashion. */
- insn = read_memory_integer (pc, 4);
- if ((insn & 0xfc00e000) == 0xe8000000)
- return (pc + extract_17 (insn) + 8) & ~0x3;
- else
- {
- if (old_pc == pc)
- spun_around_loop++;
-
- if (spun_around_loop > 1)
- {
- /* We're just about to go around the loop again with
- no more hope of success. Die. */
- error ("Unable to find return pc for this frame");
- }
- else
- goto restart;
- }
- }
-
- return pc;
-}
-
-/* We need to correct the PC and the FP for the outermost frame when we are
- in a system call. */
-
-void
-init_extra_frame_info (int fromleaf, struct frame_info *frame)
-{
- int flags;
- int framesize;
-
- if (frame->next && !fromleaf)
- return;
-
- /* If the next frame represents a frameless function invocation
- then we have to do some adjustments that are normally done by
- FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
- if (fromleaf)
- {
- /* Find the framesize of *this* frame without peeking at the PC
- in the current frame structure (it isn't set yet). */
- framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
-
- /* Now adjust our base frame accordingly. If we have a frame pointer
- use it, else subtract the size of this frame from the current
- frame. (we always want frame->frame to point at the lowest address
- in the frame). */
- if (framesize == -1)
- frame->frame = TARGET_READ_FP ();
- else
- frame->frame -= framesize;
- return;
- }
-
- flags = read_register (FLAGS_REGNUM);
- if (flags & 2) /* In system call? */
- frame->pc = read_register (31) & ~0x3;
-
- /* The outermost frame is always derived from PC-framesize
-
- One might think frameless innermost frames should have
- a frame->frame that is the same as the parent's frame->frame.
- That is wrong; frame->frame in that case should be the *high*
- address of the parent's frame. It's complicated as hell to
- explain, but the parent *always* creates some stack space for
- the child. So the child actually does have a frame of some
- sorts, and its base is the high address in its parent's frame. */
- framesize = find_proc_framesize (frame->pc);
- if (framesize == -1)
- frame->frame = TARGET_READ_FP ();
- else
- frame->frame = read_register (SP_REGNUM) - framesize;
-}
-
-/* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
- This may involve searching through prologues for several functions
- at boundaries where GCC calls HP C code, or where code which has
- a frame pointer calls code without a frame pointer. */
-
-CORE_ADDR
-frame_chain (struct frame_info *frame)
-{
- int my_framesize, caller_framesize;
- struct unwind_table_entry *u;
- CORE_ADDR frame_base;
- struct frame_info *tmp_frame;
-
- /* A frame in the current frame list, or zero. */
- struct frame_info *saved_regs_frame = 0;
- /* Where the registers were saved in saved_regs_frame.
- If saved_regs_frame is zero, this is garbage. */
- struct frame_saved_regs saved_regs;
-
- CORE_ADDR caller_pc;
-
- struct minimal_symbol *min_frame_symbol;
- struct symbol *frame_symbol;
- char *frame_symbol_name;
-
- /* If this is a threaded application, and we see the
- routine "__pthread_exit", treat it as the stack root
- for this thread. */
- min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
- frame_symbol = find_pc_function (frame->pc);
-
- if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
- {
- /* The test above for "no user function name" would defend
- against the slim likelihood that a user might define a
- routine named "__pthread_exit" and then try to debug it.
-
- If it weren't commented out, and you tried to debug the
- pthread library itself, you'd get errors.
-
- So for today, we don't make that check. */
- frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
- if (frame_symbol_name != 0)
- {
- if (0 == strncmp (frame_symbol_name,
- THREAD_INITIAL_FRAME_SYMBOL,
- THREAD_INITIAL_FRAME_SYM_LEN))
- {
- /* Pretend we've reached the bottom of the stack. */
- return (CORE_ADDR) 0;
- }
- }
- } /* End of hacky code for threads. */
-
- /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
- are easy; at *sp we have a full save state strucutre which we can
- pull the old stack pointer from. Also see frame_saved_pc for
- code to dig a saved PC out of the save state structure. */
- if (pc_in_interrupt_handler (frame->pc))
- frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
- TARGET_PTR_BIT / 8);
-#ifdef FRAME_BASE_BEFORE_SIGTRAMP
- else if (frame->signal_handler_caller)
- {
- FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
- }
-#endif
- else
- frame_base = frame->frame;
-
- /* Get frame sizes for the current frame and the frame of the
- caller. */
- my_framesize = find_proc_framesize (frame->pc);
- caller_pc = FRAME_SAVED_PC (frame);
-
- /* If we can't determine the caller's PC, then it's not likely we can
- really determine anything meaningful about its frame. We'll consider
- this to be stack bottom. */
- if (caller_pc == (CORE_ADDR) 0)
- return (CORE_ADDR) 0;
-
- caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
-
- /* If caller does not have a frame pointer, then its frame
- can be found at current_frame - caller_framesize. */
- if (caller_framesize != -1)
- {
- return frame_base - caller_framesize;
- }
- /* Both caller and callee have frame pointers and are GCC compiled
- (SAVE_SP bit in unwind descriptor is on for both functions.
- The previous frame pointer is found at the top of the current frame. */
- if (caller_framesize == -1 && my_framesize == -1)
- {
- return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
- }
- /* Caller has a frame pointer, but callee does not. This is a little
- more difficult as GCC and HP C lay out locals and callee register save
- areas very differently.
-
- The previous frame pointer could be in a register, or in one of
- several areas on the stack.
-
- Walk from the current frame to the innermost frame examining
- unwind descriptors to determine if %r3 ever gets saved into the
- stack. If so return whatever value got saved into the stack.
- If it was never saved in the stack, then the value in %r3 is still
- valid, so use it.
-
- We use information from unwind descriptors to determine if %r3
- is saved into the stack (Entry_GR field has this information). */
-
- for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
- {
- u = find_unwind_entry (tmp_frame->pc);
-
- if (!u)
- {
- /* We could find this information by examining prologues. I don't
- think anyone has actually written any tools (not even "strip")
- which leave them out of an executable, so maybe this is a moot
- point. */
- /* ??rehrauer: Actually, it's quite possible to stepi your way into
- code that doesn't have unwind entries. For example, stepping into
- the dynamic linker will give you a PC that has none. Thus, I've
- disabled this warning. */
-#if 0
- warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
-#endif
- return (CORE_ADDR) 0;
- }
-
- if (u->Save_SP
- || tmp_frame->signal_handler_caller
- || pc_in_interrupt_handler (tmp_frame->pc))
- break;
-
- /* Entry_GR specifies the number of callee-saved general registers
- saved in the stack. It starts at %r3, so %r3 would be 1. */
- if (u->Entry_GR >= 1)
- {
- /* The unwind entry claims that r3 is saved here. However,
- in optimized code, GCC often doesn't actually save r3.
- We'll discover this if we look at the prologue. */
- get_frame_saved_regs (tmp_frame, &saved_regs);
- saved_regs_frame = tmp_frame;
-
- /* If we have an address for r3, that's good. */
- if (saved_regs.regs[FP_REGNUM])
- break;
- }
- }
-
- if (tmp_frame)
- {
- /* We may have walked down the chain into a function with a frame
- pointer. */
- if (u->Save_SP
- && !tmp_frame->signal_handler_caller
- && !pc_in_interrupt_handler (tmp_frame->pc))
- {
- return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
- }
- /* %r3 was saved somewhere in the stack. Dig it out. */
- else
- {
- /* Sick.
-
- For optimization purposes many kernels don't have the
- callee saved registers into the save_state structure upon
- entry into the kernel for a syscall; the optimization
- is usually turned off if the process is being traced so
- that the debugger can get full register state for the
- process.
-
- This scheme works well except for two cases:
-
- * Attaching to a process when the process is in the
- kernel performing a system call (debugger can't get
- full register state for the inferior process since
- the process wasn't being traced when it entered the
- system call).
-
- * Register state is not complete if the system call
- causes the process to core dump.
-
-
- The following heinous code is an attempt to deal with
- the lack of register state in a core dump. It will
- fail miserably if the function which performs the
- system call has a variable sized stack frame. */
-
- if (tmp_frame != saved_regs_frame)
- get_frame_saved_regs (tmp_frame, &saved_regs);
-
- /* Abominable hack. */
- if (current_target.to_has_execution == 0
- && ((saved_regs.regs[FLAGS_REGNUM]
- && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
- TARGET_PTR_BIT / 8)
- & 0x2))
- || (saved_regs.regs[FLAGS_REGNUM] == 0
- && read_register (FLAGS_REGNUM) & 0x2)))
- {
- u = find_unwind_entry (FRAME_SAVED_PC (frame));
- if (!u)
- {
- return read_memory_integer (saved_regs.regs[FP_REGNUM],
- TARGET_PTR_BIT / 8);
- }
- else
- {
- return frame_base - (u->Total_frame_size << 3);
- }
- }
-
- return read_memory_integer (saved_regs.regs[FP_REGNUM],
- TARGET_PTR_BIT / 8);
- }
- }
- else
- {
- /* Get the innermost frame. */
- tmp_frame = frame;
- while (tmp_frame->next != NULL)
- tmp_frame = tmp_frame->next;
-
- if (tmp_frame != saved_regs_frame)
- get_frame_saved_regs (tmp_frame, &saved_regs);
-
- /* Abominable hack. See above. */
- if (current_target.to_has_execution == 0
- && ((saved_regs.regs[FLAGS_REGNUM]
- && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
- TARGET_PTR_BIT / 8)
- & 0x2))
- || (saved_regs.regs[FLAGS_REGNUM] == 0
- && read_register (FLAGS_REGNUM) & 0x2)))
- {
- u = find_unwind_entry (FRAME_SAVED_PC (frame));
- if (!u)
- {
- return read_memory_integer (saved_regs.regs[FP_REGNUM],
- TARGET_PTR_BIT / 8);
- }
- else
- {
- return frame_base - (u->Total_frame_size << 3);
- }
- }
-
- /* The value in %r3 was never saved into the stack (thus %r3 still
- holds the value of the previous frame pointer). */
- return TARGET_READ_FP ();
- }
-}
-
-
-/* To see if a frame chain is valid, see if the caller looks like it
- was compiled with gcc. */
-
-int
-hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
-{
- struct minimal_symbol *msym_us;
- struct minimal_symbol *msym_start;
- struct unwind_table_entry *u, *next_u = NULL;
- struct frame_info *next;
-
- if (!chain)
- return 0;
-
- u = find_unwind_entry (thisframe->pc);
-
- if (u == NULL)
- return 1;
-
- /* We can't just check that the same of msym_us is "_start", because
- someone idiotically decided that they were going to make a Ltext_end
- symbol with the same address. This Ltext_end symbol is totally
- indistinguishable (as nearly as I can tell) from the symbol for a function
- which is (legitimately, since it is in the user's namespace)
- named Ltext_end, so we can't just ignore it. */
- msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
- msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
- if (msym_us
- && msym_start
- && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
- return 0;
-
- /* Grrrr. Some new idiot decided that they don't want _start for the
- PRO configurations; $START$ calls main directly.... Deal with it. */
- msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
- if (msym_us
- && msym_start
- && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
- return 0;
-
- next = get_next_frame (thisframe);
- if (next)
- next_u = find_unwind_entry (next->pc);
-
- /* If this frame does not save SP, has no stack, isn't a stub,
- and doesn't "call" an interrupt routine or signal handler caller,
- then its not valid. */
- if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
- || (thisframe->next && thisframe->next->signal_handler_caller)
- || (next_u && next_u->HP_UX_interrupt_marker))
- return 1;
-
- if (pc_in_linker_stub (thisframe->pc))
- return 1;
-
- return 0;
-}
-
-/*
- These functions deal with saving and restoring register state
- around a function call in the inferior. They keep the stack
- double-word aligned; eventually, on an hp700, the stack will have
- to be aligned to a 64-byte boundary. */
-
-void
-push_dummy_frame (struct inferior_status *inf_status)
-{
- CORE_ADDR sp, pc, pcspace;
- register int regnum;
- CORE_ADDR int_buffer;
- double freg_buffer;
-
- /* Oh, what a hack. If we're trying to perform an inferior call
- while the inferior is asleep, we have to make sure to clear
- the "in system call" bit in the flag register (the call will
- start after the syscall returns, so we're no longer in the system
- call!) This state is kept in "inf_status", change it there.
-
- We also need a number of horrid hacks to deal with lossage in the
- PC queue registers (apparently they're not valid when the in syscall
- bit is set). */
- pc = target_read_pc (inferior_ptid);
- int_buffer = read_register (FLAGS_REGNUM);
- if (int_buffer & 0x2)
- {
- unsigned int sid;
- int_buffer &= ~0x2;
- write_inferior_status_register (inf_status, 0, int_buffer);
- write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
- write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
- sid = (pc >> 30) & 0x3;
- if (sid == 0)
- pcspace = read_register (SR4_REGNUM);
- else
- pcspace = read_register (SR4_REGNUM + 4 + sid);
- write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
- write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
- }
- else
- pcspace = read_register (PCSQ_HEAD_REGNUM);
-
- /* Space for "arguments"; the RP goes in here. */
- sp = read_register (SP_REGNUM) + 48;
- int_buffer = read_register (RP_REGNUM) | 0x3;
-
- /* The 32bit and 64bit ABIs save the return pointer into different
- stack slots. */
- if (REGISTER_SIZE == 8)
- write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
- else
- write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
-
- int_buffer = TARGET_READ_FP ();
- write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
-
- write_register (FP_REGNUM, sp);
-
- sp += 2 * REGISTER_SIZE;
-
- for (regnum = 1; regnum < 32; regnum++)
- if (regnum != RP_REGNUM && regnum != FP_REGNUM)
- sp = push_word (sp, read_register (regnum));
-
- /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
- if (REGISTER_SIZE != 8)
- sp += 4;
-
- for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
- {
- read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
- sp = push_bytes (sp, (char *) &freg_buffer, 8);
- }
- sp = push_word (sp, read_register (IPSW_REGNUM));
- sp = push_word (sp, read_register (SAR_REGNUM));
- sp = push_word (sp, pc);
- sp = push_word (sp, pcspace);
- sp = push_word (sp, pc + 4);
- sp = push_word (sp, pcspace);
- write_register (SP_REGNUM, sp);
-}
-
-static void
-find_dummy_frame_regs (struct frame_info *frame,
- struct frame_saved_regs *frame_saved_regs)
-{
- CORE_ADDR fp = frame->frame;
- int i;
-
- /* The 32bit and 64bit ABIs save RP into different locations. */
- if (REGISTER_SIZE == 8)
- frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
- else
- frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
-
- frame_saved_regs->regs[FP_REGNUM] = fp;
-
- frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
-
- for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
- {
- if (i != FP_REGNUM)
- {
- frame_saved_regs->regs[i] = fp;
- fp += REGISTER_SIZE;
- }
- }
-
- /* This is not necessary or desirable for the 64bit ABI. */
- if (REGISTER_SIZE != 8)
- fp += 4;
-
- for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
- frame_saved_regs->regs[i] = fp;
-
- frame_saved_regs->regs[IPSW_REGNUM] = fp;
- frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
- frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
- frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
- frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
- frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
-}
-
-void
-hppa_pop_frame (void)
-{
- register struct frame_info *frame = get_current_frame ();
- register CORE_ADDR fp, npc, target_pc;
- register int regnum;
- struct frame_saved_regs fsr;
- double freg_buffer;
-
- fp = FRAME_FP (frame);
- get_frame_saved_regs (frame, &fsr);
-
-#ifndef NO_PC_SPACE_QUEUE_RESTORE
- if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
- restore_pc_queue (&fsr);
-#endif
-
- for (regnum = 31; regnum > 0; regnum--)
- if (fsr.regs[regnum])
- write_register (regnum, read_memory_integer (fsr.regs[regnum],
- REGISTER_SIZE));
-
- for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
- if (fsr.regs[regnum])
- {
- read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
- write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
- }
-
- if (fsr.regs[IPSW_REGNUM])
- write_register (IPSW_REGNUM,
- read_memory_integer (fsr.regs[IPSW_REGNUM],
- REGISTER_SIZE));
-
- if (fsr.regs[SAR_REGNUM])
- write_register (SAR_REGNUM,
- read_memory_integer (fsr.regs[SAR_REGNUM],
- REGISTER_SIZE));
-
- /* If the PC was explicitly saved, then just restore it. */
- if (fsr.regs[PCOQ_TAIL_REGNUM])
- {
- npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
- REGISTER_SIZE);
- write_register (PCOQ_TAIL_REGNUM, npc);
- }
- /* Else use the value in %rp to set the new PC. */
- else
- {
- npc = read_register (RP_REGNUM);
- write_pc (npc);
- }
-
- write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
-
- if (fsr.regs[IPSW_REGNUM]) /* call dummy */
- write_register (SP_REGNUM, fp - 48);
- else
- write_register (SP_REGNUM, fp);
-
- /* The PC we just restored may be inside a return trampoline. If so
- we want to restart the inferior and run it through the trampoline.
-
- Do this by setting a momentary breakpoint at the location the
- trampoline returns to.
-
- Don't skip through the trampoline if we're popping a dummy frame. */
- target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
- if (target_pc && !fsr.regs[IPSW_REGNUM])
- {
- struct symtab_and_line sal;
- struct breakpoint *breakpoint;
- struct cleanup *old_chain;
-
- /* Set up our breakpoint. Set it to be silent as the MI code
- for "return_command" will print the frame we returned to. */
- sal = find_pc_line (target_pc, 0);
- sal.pc = target_pc;
- breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
- breakpoint->silent = 1;
-
- /* So we can clean things up. */
- old_chain = make_cleanup_delete_breakpoint (breakpoint);
-
- /* Start up the inferior. */
- clear_proceed_status ();
- proceed_to_finish = 1;
- proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
-
- /* Perform our cleanups. */
- do_cleanups (old_chain);
- }
- flush_cached_frames ();
-}
-
-/* After returning to a dummy on the stack, restore the instruction
- queue space registers. */
-
-static int
-restore_pc_queue (struct frame_saved_regs *fsr)
-{
- CORE_ADDR pc = read_pc ();
- CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
- TARGET_PTR_BIT / 8);
- struct target_waitstatus w;
- int insn_count;
-
- /* Advance past break instruction in the call dummy. */
- write_register (PCOQ_HEAD_REGNUM, pc + 4);
- write_register (PCOQ_TAIL_REGNUM, pc + 8);
-
- /* HPUX doesn't let us set the space registers or the space
- registers of the PC queue through ptrace. Boo, hiss.
- Conveniently, the call dummy has this sequence of instructions
- after the break:
- mtsp r21, sr0
- ble,n 0(sr0, r22)
-
- So, load up the registers and single step until we are in the
- right place. */
-
- write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
- REGISTER_SIZE));
- write_register (22, new_pc);
-
- for (insn_count = 0; insn_count < 3; insn_count++)
- {
- /* FIXME: What if the inferior gets a signal right now? Want to
- merge this into wait_for_inferior (as a special kind of
- watchpoint? By setting a breakpoint at the end? Is there
- any other choice? Is there *any* way to do this stuff with
- ptrace() or some equivalent?). */
- resume (1, 0);
- target_wait (inferior_ptid, &w);
-
- if (w.kind == TARGET_WAITKIND_SIGNALLED)
- {
- stop_signal = w.value.sig;
- terminal_ours_for_output ();
- printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
- target_signal_to_name (stop_signal),
- target_signal_to_string (stop_signal));
- gdb_flush (gdb_stdout);
- return 0;
- }
- }
- target_terminal_ours ();
- target_fetch_registers (-1);
- return 1;
-}
-
-
-#ifdef PA20W_CALLING_CONVENTIONS
-
-/* This function pushes a stack frame with arguments as part of the
- inferior function calling mechanism.
-
- This is the version for the PA64, in which later arguments appear
- at higher addresses. (The stack always grows towards higher
- addresses.)
-
- We simply allocate the appropriate amount of stack space and put
- arguments into their proper slots. The call dummy code will copy
- arguments into registers as needed by the ABI.
-
- This ABI also requires that the caller provide an argument pointer
- to the callee, so we do that too. */
-
-CORE_ADDR
-hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- /* array of arguments' offsets */
- int *offset = (int *) alloca (nargs * sizeof (int));
-
- /* array of arguments' lengths: real lengths in bytes, not aligned to
- word size */
- int *lengths = (int *) alloca (nargs * sizeof (int));
-
- /* The value of SP as it was passed into this function after
- aligning. */
- CORE_ADDR orig_sp = STACK_ALIGN (sp);
-
- /* The number of stack bytes occupied by the current argument. */
- int bytes_reserved;
-
- /* The total number of bytes reserved for the arguments. */
- int cum_bytes_reserved = 0;
-
- /* Similarly, but aligned. */
- int cum_bytes_aligned = 0;
- int i;
-
- /* Iterate over each argument provided by the user. */
- for (i = 0; i < nargs; i++)
- {
- struct type *arg_type = VALUE_TYPE (args[i]);
-
- /* Integral scalar values smaller than a register are padded on
- the left. We do this by promoting them to full-width,
- although the ABI says to pad them with garbage. */
- if (is_integral_type (arg_type)
- && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
- {
- args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
- ? builtin_type_unsigned_long
- : builtin_type_long),
- args[i]);
- arg_type = VALUE_TYPE (args[i]);
- }
-
- lengths[i] = TYPE_LENGTH (arg_type);
-
- /* Align the size of the argument to the word size for this
- target. */
- bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
-
- offset[i] = cum_bytes_reserved;
-
- /* Aggregates larger than eight bytes (the only types larger
- than eight bytes we have) are aligned on a 16-byte boundary,
- possibly padded on the right with garbage. This may leave an
- empty word on the stack, and thus an unused register, as per
- the ABI. */
- if (bytes_reserved > 8)
- {
- /* Round up the offset to a multiple of two slots. */
- int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
- & -(2*REGISTER_SIZE));
-
- /* Note the space we've wasted, if any. */
- bytes_reserved += new_offset - offset[i];
- offset[i] = new_offset;
- }
-
- cum_bytes_reserved += bytes_reserved;
- }
-
- /* CUM_BYTES_RESERVED already accounts for all the arguments
- passed by the user. However, the ABIs mandate minimum stack space
- allocations for outgoing arguments.
-
- The ABIs also mandate minimum stack alignments which we must
- preserve. */
- cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
- sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
-
- /* Now write each of the args at the proper offset down the stack. */
- for (i = 0; i < nargs; i++)
- write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
-
- /* If a structure has to be returned, set up register 28 to hold its
- address */
- if (struct_return)
- write_register (28, struct_addr);
-
- /* For the PA64 we must pass a pointer to the outgoing argument list.
- The ABI mandates that the pointer should point to the first byte of
- storage beyond the register flushback area.
-
- However, the call dummy expects the outgoing argument pointer to
- be passed in register %r4. */
- write_register (4, orig_sp + REG_PARM_STACK_SPACE);
-
- /* ?!? This needs further work. We need to set up the global data
- pointer for this procedure. This assumes the same global pointer
- for every procedure. The call dummy expects the dp value to
- be passed in register %r6. */
- write_register (6, read_register (27));
-
- /* The stack will have 64 bytes of additional space for a frame marker. */
- return sp + 64;
-}
-
-#else
-
-/* This function pushes a stack frame with arguments as part of the
- inferior function calling mechanism.
-
- This is the version of the function for the 32-bit PA machines, in
- which later arguments appear at lower addresses. (The stack always
- grows towards higher addresses.)
-
- We simply allocate the appropriate amount of stack space and put
- arguments into their proper slots. The call dummy code will copy
- arguments into registers as needed by the ABI. */
-
-CORE_ADDR
-hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- /* array of arguments' offsets */
- int *offset = (int *) alloca (nargs * sizeof (int));
-
- /* array of arguments' lengths: real lengths in bytes, not aligned to
- word size */
- int *lengths = (int *) alloca (nargs * sizeof (int));
-
- /* The number of stack bytes occupied by the current argument. */
- int bytes_reserved;
-
- /* The total number of bytes reserved for the arguments. */
- int cum_bytes_reserved = 0;
-
- /* Similarly, but aligned. */
- int cum_bytes_aligned = 0;
- int i;
-
- /* Iterate over each argument provided by the user. */
- for (i = 0; i < nargs; i++)
- {
- lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
-
- /* Align the size of the argument to the word size for this
- target. */
- bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
-
- offset[i] = (cum_bytes_reserved
- + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
-
- /* If the argument is a double word argument, then it needs to be
- double word aligned. */
- if ((bytes_reserved == 2 * REGISTER_SIZE)
- && (offset[i] % 2 * REGISTER_SIZE))
- {
- int new_offset = 0;
- /* BYTES_RESERVED is already aligned to the word, so we put
- the argument at one word more down the stack.
-
- This will leave one empty word on the stack, and one unused
- register as mandated by the ABI. */
- new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
- & -(2 * REGISTER_SIZE));
-
- if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
- {
- bytes_reserved += REGISTER_SIZE;
- offset[i] += REGISTER_SIZE;
- }
- }
-
- cum_bytes_reserved += bytes_reserved;
-
- }
-
- /* CUM_BYTES_RESERVED already accounts for all the arguments passed
- by the user. However, the ABI mandates minimum stack space
- allocations for outgoing arguments.
-
- The ABI also mandates minimum stack alignments which we must
- preserve. */
- cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
- sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
-
- /* Now write each of the args at the proper offset down the stack.
- ?!? We need to promote values to a full register instead of skipping
- words in the stack. */
- for (i = 0; i < nargs; i++)
- write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
-
- /* If a structure has to be returned, set up register 28 to hold its
- address */
- if (struct_return)
- write_register (28, struct_addr);
-
- /* The stack will have 32 bytes of additional space for a frame marker. */
- return sp + 32;
-}
-
-#endif
-
-/* elz: this function returns a value which is built looking at the given address.
- It is called from call_function_by_hand, in case we need to return a
- value which is larger than 64 bits, and it is stored in the stack rather than
- in the registers r28 and r29 or fr4.
- This function does the same stuff as value_being_returned in values.c, but
- gets the value from the stack rather than from the buffer where all the
- registers were saved when the function called completed. */
-struct value *
-hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
-{
- register struct value *val;
-
- val = allocate_value (valtype);
- CHECK_TYPEDEF (valtype);
- target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
-
- return val;
-}
-
-
-
-/* elz: Used to lookup a symbol in the shared libraries.
- This function calls shl_findsym, indirectly through a
- call to __d_shl_get. __d_shl_get is in end.c, which is always
- linked in by the hp compilers/linkers.
- The call to shl_findsym cannot be made directly because it needs
- to be active in target address space.
- inputs: - minimal symbol pointer for the function we want to look up
- - address in target space of the descriptor for the library
- where we want to look the symbol up.
- This address is retrieved using the
- som_solib_get_solib_by_pc function (somsolib.c).
- output: - real address in the library of the function.
- note: the handle can be null, in which case shl_findsym will look for
- the symbol in all the loaded shared libraries.
- files to look at if you need reference on this stuff:
- dld.c, dld_shl_findsym.c
- end.c
- man entry for shl_findsym */
-
-CORE_ADDR
-find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
-{
- struct symbol *get_sym, *symbol2;
- struct minimal_symbol *buff_minsym, *msymbol;
- struct type *ftype;
- struct value **args;
- struct value *funcval;
- struct value *val;
-
- int x, namelen, err_value, tmp = -1;
- CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
- CORE_ADDR stub_addr;
-
-
- args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
- funcval = find_function_in_inferior ("__d_shl_get");
- get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
- buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
- msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
- symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
- endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
- namelen = strlen (SYMBOL_NAME (function));
- value_return_addr = endo_buff_addr + namelen;
- ftype = check_typedef (SYMBOL_TYPE (get_sym));
-
- /* do alignment */
- if ((x = value_return_addr % 64) != 0)
- value_return_addr = value_return_addr + 64 - x;
-
- errno_return_addr = value_return_addr + 64;
-
-
- /* set up stuff needed by __d_shl_get in buffer in end.o */
-
- target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
-
- target_write_memory (value_return_addr, (char *) &tmp, 4);
-
- target_write_memory (errno_return_addr, (char *) &tmp, 4);
-
- target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
- (char *) &handle, 4);
-
- /* now prepare the arguments for the call */
-
- args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
- args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
- args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
- args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
- args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
- args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
-
- /* now call the function */
-
- val = call_function_by_hand (funcval, 6, args);
-
- /* now get the results */
-
- target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
-
- target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
- if (stub_addr <= 0)
- error ("call to __d_shl_get failed, error code is %d", err_value);
-
- return (stub_addr);
-}
-
-/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
-static int
-cover_find_stub_with_shl_get (PTR args_untyped)
-{
- args_for_find_stub *args = args_untyped;
- args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
- return 0;
-}
-
-/* Insert the specified number of args and function address
- into a call sequence of the above form stored at DUMMYNAME.
-
- On the hppa we need to call the stack dummy through $$dyncall.
- Therefore our version of FIX_CALL_DUMMY takes an extra argument,
- real_pc, which is the location where gdb should start up the
- inferior to do the function call.
-
- This has to work across several versions of hpux, bsd, osf1. It has to
- work regardless of what compiler was used to build the inferior program.
- It should work regardless of whether or not end.o is available. It has
- to work even if gdb can not call into the dynamic loader in the inferior
- to query it for symbol names and addresses.
-
- Yes, all those cases should work. Luckily code exists to handle most
- of them. The complexity is in selecting exactly what scheme should
- be used to perform the inferior call.
-
- At the current time this routine is known not to handle cases where
- the program was linked with HP's compiler without including end.o.
-
- Please contact Jeff Law (law@cygnus.com) before changing this code. */
-
-CORE_ADDR
-hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
- struct value **args, struct type *type, int gcc_p)
-{
- CORE_ADDR dyncall_addr;
- struct minimal_symbol *msymbol;
- struct minimal_symbol *trampoline;
- int flags = read_register (FLAGS_REGNUM);
- struct unwind_table_entry *u = NULL;
- CORE_ADDR new_stub = 0;
- CORE_ADDR solib_handle = 0;
-
- /* Nonzero if we will use GCC's PLT call routine. This routine must be
- passed an import stub, not a PLABEL. It is also necessary to set %r19
- (the PIC register) before performing the call.
-
- If zero, then we are using __d_plt_call (HP's PLT call routine) or we
- are calling the target directly. When using __d_plt_call we want to
- use a PLABEL instead of an import stub. */
- int using_gcc_plt_call = 1;
-
-#ifdef GDB_TARGET_IS_HPPA_20W
- /* We currently use completely different code for the PA2.0W inferior
- function call sequences. This needs to be cleaned up. */
- {
- CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
- struct target_waitstatus w;
- int inst1, inst2;
- char buf[4];
- int status;
- struct objfile *objfile;
-
- /* We can not modify the PC space queues directly, so we start
- up the inferior and execute a couple instructions to set the
- space queues so that they point to the call dummy in the stack. */
- pcsqh = read_register (PCSQ_HEAD_REGNUM);
- sr5 = read_register (SR5_REGNUM);
- if (1)
- {
- pcoqh = read_register (PCOQ_HEAD_REGNUM);
- pcoqt = read_register (PCOQ_TAIL_REGNUM);
- if (target_read_memory (pcoqh, buf, 4) != 0)
- error ("Couldn't modify space queue\n");
- inst1 = extract_unsigned_integer (buf, 4);
-
- if (target_read_memory (pcoqt, buf, 4) != 0)
- error ("Couldn't modify space queue\n");
- inst2 = extract_unsigned_integer (buf, 4);
-
- /* BVE (r1) */
- *((int *) buf) = 0xe820d000;
- if (target_write_memory (pcoqh, buf, 4) != 0)
- error ("Couldn't modify space queue\n");
-
- /* NOP */
- *((int *) buf) = 0x08000240;
- if (target_write_memory (pcoqt, buf, 4) != 0)
- {
- *((int *) buf) = inst1;
- target_write_memory (pcoqh, buf, 4);
- error ("Couldn't modify space queue\n");
- }
-
- write_register (1, pc);
-
- /* Single step twice, the BVE instruction will set the space queue
- such that it points to the PC value written immediately above
- (ie the call dummy). */
- resume (1, 0);
- target_wait (inferior_ptid, &w);
- resume (1, 0);
- target_wait (inferior_ptid, &w);
-
- /* Restore the two instructions at the old PC locations. */
- *((int *) buf) = inst1;
- target_write_memory (pcoqh, buf, 4);
- *((int *) buf) = inst2;
- target_write_memory (pcoqt, buf, 4);
- }
-
- /* The call dummy wants the ultimate destination address initially
- in register %r5. */
- write_register (5, fun);
-
- /* We need to see if this objfile has a different DP value than our
- own (it could be a shared library for example). */
- ALL_OBJFILES (objfile)
- {
- struct obj_section *s;
- obj_private_data_t *obj_private;
-
- /* See if FUN is in any section within this shared library. */
- for (s = objfile->sections; s < objfile->sections_end; s++)
- if (s->addr <= fun && fun < s->endaddr)
- break;
-
- if (s >= objfile->sections_end)
- continue;
-
- obj_private = (obj_private_data_t *) objfile->obj_private;
-
- /* The DP value may be different for each objfile. But within an
- objfile each function uses the same dp value. Thus we do not need
- to grope around the opd section looking for dp values.
-
- ?!? This is not strictly correct since we may be in a shared library
- and want to call back into the main program. To make that case
- work correctly we need to set obj_private->dp for the main program's
- objfile, then remove this conditional. */
- if (obj_private->dp)
- write_register (27, obj_private->dp);
- break;
- }
- return pc;
- }
-#endif
-
-#ifndef GDB_TARGET_IS_HPPA_20W
- /* Prefer __gcc_plt_call over the HP supplied routine because
- __gcc_plt_call works for any number of arguments. */
- trampoline = NULL;
- if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
- using_gcc_plt_call = 0;
-
- msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (msymbol == NULL)
- error ("Can't find an address for $$dyncall trampoline");
-
- dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
-
- /* FUN could be a procedure label, in which case we have to get
- its real address and the value of its GOT/DP if we plan to
- call the routine via gcc_plt_call. */
- if ((fun & 0x2) && using_gcc_plt_call)
- {
- /* Get the GOT/DP value for the target function. It's
- at *(fun+4). Note the call dummy is *NOT* allowed to
- trash %r19 before calling the target function. */
- write_register (19, read_memory_integer ((fun & ~0x3) + 4,
- REGISTER_SIZE));
-
- /* Now get the real address for the function we are calling, it's
- at *fun. */
- fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
- TARGET_PTR_BIT / 8);
- }
- else
- {
-
-#ifndef GDB_TARGET_IS_PA_ELF
- /* FUN could be an export stub, the real address of a function, or
- a PLABEL. When using gcc's PLT call routine we must call an import
- stub rather than the export stub or real function for lazy binding
- to work correctly
-
- If we are using the gcc PLT call routine, then we need to
- get the import stub for the target function. */
- if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
- {
- struct objfile *objfile;
- struct minimal_symbol *funsymbol, *stub_symbol;
- CORE_ADDR newfun = 0;
-
- funsymbol = lookup_minimal_symbol_by_pc (fun);
- if (!funsymbol)
- error ("Unable to find minimal symbol for target function.\n");
-
- /* Search all the object files for an import symbol with the
- right name. */
- ALL_OBJFILES (objfile)
- {
- stub_symbol
- = lookup_minimal_symbol_solib_trampoline
- (SYMBOL_NAME (funsymbol), NULL, objfile);
-
- if (!stub_symbol)
- stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
- NULL, objfile);
-
- /* Found a symbol with the right name. */
- if (stub_symbol)
- {
- struct unwind_table_entry *u;
- /* It must be a shared library trampoline. */
- if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
- continue;
-
- /* It must also be an import stub. */
- u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
- if (u == NULL
- || (u->stub_unwind.stub_type != IMPORT
-#ifdef GDB_NATIVE_HPUX_11
- /* Sigh. The hpux 10.20 dynamic linker will blow
- chunks if we perform a call to an unbound function
- via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
- linker will blow chunks if we do not call the
- unbound function via the IMPORT_SHLIB stub.
-
- We currently have no way to select bevahior on just
- the target. However, we only support HPUX/SOM in
- native mode. So we conditinalize on a native
- #ifdef. Ugly. Ugly. Ugly */
- && u->stub_unwind.stub_type != IMPORT_SHLIB
-#endif
- ))
- continue;
-
- /* OK. Looks like the correct import stub. */
- newfun = SYMBOL_VALUE (stub_symbol);
- fun = newfun;
-
- /* If we found an IMPORT stub, then we want to stop
- searching now. If we found an IMPORT_SHLIB, we want
- to continue the search in the hopes that we will find
- an IMPORT stub. */
- if (u->stub_unwind.stub_type == IMPORT)
- break;
- }
- }
-
- /* Ouch. We did not find an import stub. Make an attempt to
- do the right thing instead of just croaking. Most of the
- time this will actually work. */
- if (newfun == 0)
- write_register (19, som_solib_get_got_by_pc (fun));
-
- u = find_unwind_entry (fun);
- if (u
- && (u->stub_unwind.stub_type == IMPORT
- || u->stub_unwind.stub_type == IMPORT_SHLIB))
- trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
-
- /* If we found the import stub in the shared library, then we have
- to set %r19 before we call the stub. */
- if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
- write_register (19, som_solib_get_got_by_pc (fun));
- }
-#endif
- }
-
- /* If we are calling into another load module then have sr4export call the
- magic __d_plt_call routine which is linked in from end.o.
-
- You can't use _sr4export to make the call as the value in sp-24 will get
- fried and you end up returning to the wrong location. You can't call the
- target as the code to bind the PLT entry to a function can't return to a
- stack address.
-
- Also, query the dynamic linker in the inferior to provide a suitable
- PLABEL for the target function. */
- if (!using_gcc_plt_call)
- {
- CORE_ADDR new_fun;
-
- /* Get a handle for the shared library containing FUN. Given the
- handle we can query the shared library for a PLABEL. */
- solib_handle = som_solib_get_solib_by_pc (fun);
-
- if (solib_handle)
- {
- struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
-
- trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
-
- if (trampoline == NULL)
- {
- error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
- }
-
- /* This is where sr4export will jump to. */
- new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
-
- /* If the function is in a shared library, then call __d_shl_get to
- get a PLABEL for the target function. */
- new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
-
- if (new_stub == 0)
- error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
-
- /* We have to store the address of the stub in __shlib_funcptr. */
- msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
- (struct objfile *) NULL);
-
- if (msymbol == NULL)
- error ("Can't find an address for __shlib_funcptr");
- target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
- (char *) &new_stub, 4);
-
- /* We want sr4export to call __d_plt_call, so we claim it is
- the final target. Clear trampoline. */
- fun = new_fun;
- trampoline = NULL;
- }
- }
-
- /* Store upper 21 bits of function address into ldil. fun will either be
- the final target (most cases) or __d_plt_call when calling into a shared
- library and __gcc_plt_call is not available. */
- store_unsigned_integer
- (&dummy[FUNC_LDIL_OFFSET],
- INSTRUCTION_SIZE,
- deposit_21 (fun >> 11,
- extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
- INSTRUCTION_SIZE)));
-
- /* Store lower 11 bits of function address into ldo */
- store_unsigned_integer
- (&dummy[FUNC_LDO_OFFSET],
- INSTRUCTION_SIZE,
- deposit_14 (fun & MASK_11,
- extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
- INSTRUCTION_SIZE)));
-#ifdef SR4EXPORT_LDIL_OFFSET
-
- {
- CORE_ADDR trampoline_addr;
-
- /* We may still need sr4export's address too. */
-
- if (trampoline == NULL)
- {
- msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (msymbol == NULL)
- error ("Can't find an address for _sr4export trampoline");
-
- trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
- }
- else
- trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
-
-
- /* Store upper 21 bits of trampoline's address into ldil */
- store_unsigned_integer
- (&dummy[SR4EXPORT_LDIL_OFFSET],
- INSTRUCTION_SIZE,
- deposit_21 (trampoline_addr >> 11,
- extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
- INSTRUCTION_SIZE)));
-
- /* Store lower 11 bits of trampoline's address into ldo */
- store_unsigned_integer
- (&dummy[SR4EXPORT_LDO_OFFSET],
- INSTRUCTION_SIZE,
- deposit_14 (trampoline_addr & MASK_11,
- extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
- INSTRUCTION_SIZE)));
- }
-#endif
-
- write_register (22, pc);
-
- /* If we are in a syscall, then we should call the stack dummy
- directly. $$dyncall is not needed as the kernel sets up the
- space id registers properly based on the value in %r31. In
- fact calling $$dyncall will not work because the value in %r22
- will be clobbered on the syscall exit path.
-
- Similarly if the current PC is in a shared library. Note however,
- this scheme won't work if the shared library isn't mapped into
- the same space as the stack. */
- if (flags & 2)
- return pc;
-#ifndef GDB_TARGET_IS_PA_ELF
- else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
- return pc;
-#endif
- else
- return dyncall_addr;
-#endif
-}
-
-
-
-
-/* If the pid is in a syscall, then the FP register is not readable.
- We'll return zero in that case, rather than attempting to read it
- and cause a warning. */
-CORE_ADDR
-target_read_fp (int pid)
-{
- int flags = read_register (FLAGS_REGNUM);
-
- if (flags & 2)
- {
- return (CORE_ADDR) 0;
- }
-
- /* This is the only site that may directly read_register () the FP
- register. All others must use TARGET_READ_FP (). */
- return read_register (FP_REGNUM);
-}
-
-
-/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
- bits. */
-
-CORE_ADDR
-target_read_pc (ptid_t ptid)
-{
- int flags = read_register_pid (FLAGS_REGNUM, ptid);
-
- /* The following test does not belong here. It is OS-specific, and belongs
- in native code. */
- /* Test SS_INSYSCALL */
- if (flags & 2)
- return read_register_pid (31, ptid) & ~0x3;
-
- return read_register_pid (PC_REGNUM, ptid) & ~0x3;
-}
-
-/* Write out the PC. If currently in a syscall, then also write the new
- PC value into %r31. */
-
-void
-target_write_pc (CORE_ADDR v, ptid_t ptid)
-{
- int flags = read_register_pid (FLAGS_REGNUM, ptid);
-
- /* The following test does not belong here. It is OS-specific, and belongs
- in native code. */
- /* If in a syscall, then set %r31. Also make sure to get the
- privilege bits set correctly. */
- /* Test SS_INSYSCALL */
- if (flags & 2)
- write_register_pid (31, v | 0x3, ptid);
-
- write_register_pid (PC_REGNUM, v, ptid);
- write_register_pid (NPC_REGNUM, v + 4, ptid);
-}
-
-/* return the alignment of a type in bytes. Structures have the maximum
- alignment required by their fields. */
-
-static int
-hppa_alignof (struct type *type)
-{
- int max_align, align, i;
- CHECK_TYPEDEF (type);
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_PTR:
- case TYPE_CODE_INT:
- case TYPE_CODE_FLT:
- return TYPE_LENGTH (type);
- case TYPE_CODE_ARRAY:
- return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- max_align = 1;
- for (i = 0; i < TYPE_NFIELDS (type); i++)
- {
- /* Bit fields have no real alignment. */
- /* if (!TYPE_FIELD_BITPOS (type, i)) */
- if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
- {
- align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
- max_align = max (max_align, align);
- }
- }
- return max_align;
- default:
- return 4;
- }
-}
-
-/* Print the register regnum, or all registers if regnum is -1 */
-
-void
-pa_do_registers_info (int regnum, int fpregs)
-{
- char raw_regs[REGISTER_BYTES];
- int i;
-
- /* Make a copy of gdb's save area (may cause actual
- reads from the target). */
- for (i = 0; i < NUM_REGS; i++)
- read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
-
- if (regnum == -1)
- pa_print_registers (raw_regs, regnum, fpregs);
- else if (regnum < FP4_REGNUM)
- {
- long reg_val[2];
-
- /* Why is the value not passed through "extract_signed_integer"
- as in "pa_print_registers" below? */
- pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
-
- if (!is_pa_2)
- {
- printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
- }
- else
- {
- /* Fancy % formats to prevent leading zeros. */
- if (reg_val[0] == 0)
- printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
- else
- printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
- reg_val[0], reg_val[1]);
- }
- }
- else
- /* Note that real floating point values only start at
- FP4_REGNUM. FP0 and up are just status and error
- registers, which have integral (bit) values. */
- pa_print_fp_reg (regnum);
-}
-
-/********** new function ********************/
-void
-pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
- enum precision_type precision)
-{
- char raw_regs[REGISTER_BYTES];
- int i;
-
- /* Make a copy of gdb's save area (may cause actual
- reads from the target). */
- for (i = 0; i < NUM_REGS; i++)
- read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
-
- if (regnum == -1)
- pa_strcat_registers (raw_regs, regnum, fpregs, stream);
-
- else if (regnum < FP4_REGNUM)
- {
- long reg_val[2];
-
- /* Why is the value not passed through "extract_signed_integer"
- as in "pa_print_registers" below? */
- pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
-
- if (!is_pa_2)
- {
- fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
- }
- else
- {
- /* Fancy % formats to prevent leading zeros. */
- if (reg_val[0] == 0)
- fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
- reg_val[1]);
- else
- fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
- reg_val[0], reg_val[1]);
- }
- }
- else
- /* Note that real floating point values only start at
- FP4_REGNUM. FP0 and up are just status and error
- registers, which have integral (bit) values. */
- pa_strcat_fp_reg (regnum, stream, precision);
-}
-
-/* If this is a PA2.0 machine, fetch the real 64-bit register
- value. Otherwise use the info from gdb's saved register area.
-
- Note that reg_val is really expected to be an array of longs,
- with two elements. */
-static void
-pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
-{
- static int know_which = 0; /* False */
-
- int regaddr;
- unsigned int offset;
- register int i;
- int start;
-
-
- char buf[MAX_REGISTER_RAW_SIZE];
- long long reg_val;
-
- if (!know_which)
- {
- if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
- {
- is_pa_2 = (1 == 1);
- }
-
- know_which = 1; /* True */
- }
-
- raw_val[0] = 0;
- raw_val[1] = 0;
-
- if (!is_pa_2)
- {
- raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
- return;
- }
-
- /* Code below copied from hppah-nat.c, with fixes for wide
- registers, using different area of save_state, etc. */
- if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
- !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
- {
- /* Use narrow regs area of save_state and default macro. */
- offset = U_REGS_OFFSET;
- regaddr = register_addr (regnum, offset);
- start = 1;
- }
- else
- {
- /* Use wide regs area, and calculate registers as 8 bytes wide.
-
- We'd like to do this, but current version of "C" doesn't
- permit "offsetof":
-
- offset = offsetof(save_state_t, ss_wide);
-
- Note that to avoid "C" doing typed pointer arithmetic, we
- have to cast away the type in our offset calculation:
- otherwise we get an offset of 1! */
-
- /* NB: save_state_t is not available before HPUX 9.
- The ss_wide field is not available previous to HPUX 10.20,
- so to avoid compile-time warnings, we only compile this for
- PA 2.0 processors. This control path should only be followed
- if we're debugging a PA 2.0 processor, so this should not cause
- problems. */
-
- /* #if the following code out so that this file can still be
- compiled on older HPUX boxes (< 10.20) which don't have
- this structure/structure member. */
-#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
- save_state_t temp;
-
- offset = ((int) &temp.ss_wide) - ((int) &temp);
- regaddr = offset + regnum * 8;
- start = 0;
-#endif
- }
-
- for (i = start; i < 2; i++)
- {
- errno = 0;
- raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
- (PTRACE_ARG3_TYPE) regaddr, 0);
- if (errno != 0)
- {
- /* Warning, not error, in case we are attached; sometimes the
- kernel doesn't let us at the registers. */
- char *err = safe_strerror (errno);
- char *msg = alloca (strlen (err) + 128);
- sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
- warning (msg);
- goto error_exit;
- }
-
- regaddr += sizeof (long);
- }
-
- if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
- raw_val[1] &= ~0x3; /* I think we're masking out space bits */
-
-error_exit:
- ;
-}
-
-/* "Info all-reg" command */
-
-static void
-pa_print_registers (char *raw_regs, int regnum, int fpregs)
-{
- int i, j;
- /* Alas, we are compiled so that "long long" is 32 bits */
- long raw_val[2];
- long long_val;
- int rows = 48, columns = 2;
-
- for (i = 0; i < rows; i++)
- {
- for (j = 0; j < columns; j++)
- {
- /* We display registers in column-major order. */
- int regnum = i + j * rows;
-
- /* Q: Why is the value passed through "extract_signed_integer",
- while above, in "pa_do_registers_info" it isn't?
- A: ? */
- pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
-
- /* Even fancier % formats to prevent leading zeros
- and still maintain the output in columns. */
- if (!is_pa_2)
- {
- /* Being big-endian, on this machine the low bits
- (the ones we want to look at) are in the second longword. */
- long_val = extract_signed_integer (&raw_val[1], 4);
- printf_filtered ("%10.10s: %8lx ",
- REGISTER_NAME (regnum), long_val);
- }
- else
- {
- /* raw_val = extract_signed_integer(&raw_val, 8); */
- if (raw_val[0] == 0)
- printf_filtered ("%10.10s: %8lx ",
- REGISTER_NAME (regnum), raw_val[1]);
- else
- printf_filtered ("%10.10s: %8lx%8.8lx ",
- REGISTER_NAME (regnum),
- raw_val[0], raw_val[1]);
- }
- }
- printf_unfiltered ("\n");
- }
-
- if (fpregs)
- for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
- pa_print_fp_reg (i);
-}
-
-/************* new function ******************/
-static void
-pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
- struct ui_file *stream)
-{
- int i, j;
- long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
- long long_val;
- enum precision_type precision;
-
- precision = unspecified_precision;
-
- for (i = 0; i < 18; i++)
- {
- for (j = 0; j < 4; j++)
- {
- /* Q: Why is the value passed through "extract_signed_integer",
- while above, in "pa_do_registers_info" it isn't?
- A: ? */
- pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
-
- /* Even fancier % formats to prevent leading zeros
- and still maintain the output in columns. */
- if (!is_pa_2)
- {
- /* Being big-endian, on this machine the low bits
- (the ones we want to look at) are in the second longword. */
- long_val = extract_signed_integer (&raw_val[1], 4);
- fprintf_filtered (stream, "%8.8s: %8lx ",
- REGISTER_NAME (i + (j * 18)), long_val);
- }
- else
- {
- /* raw_val = extract_signed_integer(&raw_val, 8); */
- if (raw_val[0] == 0)
- fprintf_filtered (stream, "%8.8s: %8lx ",
- REGISTER_NAME (i + (j * 18)), raw_val[1]);
- else
- fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
- REGISTER_NAME (i + (j * 18)), raw_val[0],
- raw_val[1]);
- }
- }
- fprintf_unfiltered (stream, "\n");
- }
-
- if (fpregs)
- for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
- pa_strcat_fp_reg (i, stream, precision);
-}
-
-static void
-pa_print_fp_reg (int i)
-{
- char raw_buffer[MAX_REGISTER_RAW_SIZE];
- char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
-
- /* Get 32bits of data. */
- read_relative_register_raw_bytes (i, raw_buffer);
-
- /* Put it in the buffer. No conversions are ever necessary. */
- memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
-
- fputs_filtered (REGISTER_NAME (i), gdb_stdout);
- print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
- fputs_filtered ("(single precision) ", gdb_stdout);
-
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
- 1, 0, Val_pretty_default);
- printf_filtered ("\n");
-
- /* If "i" is even, then this register can also be a double-precision
- FP register. Dump it out as such. */
- if ((i % 2) == 0)
- {
- /* Get the data in raw format for the 2nd half. */
- read_relative_register_raw_bytes (i + 1, raw_buffer);
-
- /* Copy it into the appropriate part of the virtual buffer. */
- memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
- REGISTER_RAW_SIZE (i));
-
- /* Dump it as a double. */
- fputs_filtered (REGISTER_NAME (i), gdb_stdout);
- print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
- fputs_filtered ("(double precision) ", gdb_stdout);
-
- val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
- 1, 0, Val_pretty_default);
- printf_filtered ("\n");
- }
-}
-
-/*************** new function ***********************/
-static void
-pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
-{
- char raw_buffer[MAX_REGISTER_RAW_SIZE];
- char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
-
- fputs_filtered (REGISTER_NAME (i), stream);
- print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
-
- /* Get 32bits of data. */
- read_relative_register_raw_bytes (i, raw_buffer);
-
- /* Put it in the buffer. No conversions are ever necessary. */
- memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
-
- if (precision == double_precision && (i % 2) == 0)
- {
-
- char raw_buf[MAX_REGISTER_RAW_SIZE];
-
- /* Get the data in raw format for the 2nd half. */
- read_relative_register_raw_bytes (i + 1, raw_buf);
-
- /* Copy it into the appropriate part of the virtual buffer. */
- memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
-
- val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
- 1, 0, Val_pretty_default);
-
- }
- else
- {
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
- 1, 0, Val_pretty_default);
- }
-
-}
-
-/* Return one if PC is in the call path of a trampoline, else return zero.
-
- Note we return one for *any* call trampoline (long-call, arg-reloc), not
- just shared library trampolines (import, export). */
-
-int
-in_solib_call_trampoline (CORE_ADDR pc, char *name)
-{
- struct minimal_symbol *minsym;
- struct unwind_table_entry *u;
- static CORE_ADDR dyncall = 0;
- static CORE_ADDR sr4export = 0;
-
-#ifdef GDB_TARGET_IS_HPPA_20W
- /* PA64 has a completely different stub/trampoline scheme. Is it
- better? Maybe. It's certainly harder to determine with any
- certainty that we are in a stub because we can not refer to the
- unwinders to help.
-
- The heuristic is simple. Try to lookup the current PC value in th
- minimal symbol table. If that fails, then assume we are not in a
- stub and return.
-
- Then see if the PC value falls within the section bounds for the
- section containing the minimal symbol we found in the first
- step. If it does, then assume we are not in a stub and return.
-
- Finally peek at the instructions to see if they look like a stub. */
- {
- struct minimal_symbol *minsym;
- asection *sec;
- CORE_ADDR addr;
- int insn, i;
-
- minsym = lookup_minimal_symbol_by_pc (pc);
- if (! minsym)
- return 0;
-
- sec = SYMBOL_BFD_SECTION (minsym);
-
- if (sec->vma <= pc
- && sec->vma + sec->_cooked_size < pc)
- return 0;
-
- /* We might be in a stub. Peek at the instructions. Stubs are 3
- instructions long. */
- insn = read_memory_integer (pc, 4);
-
- /* Find out where we think we are within the stub. */
- if ((insn & 0xffffc00e) == 0x53610000)
- addr = pc;
- else if ((insn & 0xffffffff) == 0xe820d000)
- addr = pc - 4;
- else if ((insn & 0xffffc00e) == 0x537b0000)
- addr = pc - 8;
- else
- return 0;
-
- /* Now verify each insn in the range looks like a stub instruction. */
- insn = read_memory_integer (addr, 4);
- if ((insn & 0xffffc00e) != 0x53610000)
- return 0;
-
- /* Now verify each insn in the range looks like a stub instruction. */
- insn = read_memory_integer (addr + 4, 4);
- if ((insn & 0xffffffff) != 0xe820d000)
- return 0;
-
- /* Now verify each insn in the range looks like a stub instruction. */
- insn = read_memory_integer (addr + 8, 4);
- if ((insn & 0xffffc00e) != 0x537b0000)
- return 0;
-
- /* Looks like a stub. */
- return 1;
- }
-#endif
-
- /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
- new exec file */
-
- /* First see if PC is in one of the two C-library trampolines. */
- if (!dyncall)
- {
- minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (minsym)
- dyncall = SYMBOL_VALUE_ADDRESS (minsym);
- else
- dyncall = -1;
- }
-
- if (!sr4export)
- {
- minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (minsym)
- sr4export = SYMBOL_VALUE_ADDRESS (minsym);
- else
- sr4export = -1;
- }
-
- if (pc == dyncall || pc == sr4export)
- return 1;
-
- minsym = lookup_minimal_symbol_by_pc (pc);
- if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
- return 1;
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub, then return now. */
- if (u->stub_unwind.stub_type == 0)
- return 0;
-
- /* By definition a long-branch stub is a call stub. */
- if (u->stub_unwind.stub_type == LONG_BRANCH)
- return 1;
-
- /* The call and return path execute the same instructions within
- an IMPORT stub! So an IMPORT stub is both a call and return
- trampoline. */
- if (u->stub_unwind.stub_type == IMPORT)
- return 1;
-
- /* Parameter relocation stubs always have a call path and may have a
- return path. */
- if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
- || u->stub_unwind.stub_type == EXPORT)
- {
- CORE_ADDR addr;
-
- /* Search forward from the current PC until we hit a branch
- or the end of the stub. */
- for (addr = pc; addr <= u->region_end; addr += 4)
- {
- unsigned long insn;
-
- insn = read_memory_integer (addr, 4);
-
- /* Does it look like a bl? If so then it's the call path, if
- we find a bv or be first, then we're on the return path. */
- if ((insn & 0xfc00e000) == 0xe8000000)
- return 1;
- else if ((insn & 0xfc00e001) == 0xe800c000
- || (insn & 0xfc000000) == 0xe0000000)
- return 0;
- }
-
- /* Should never happen. */
- warning ("Unable to find branch in parameter relocation stub.\n");
- return 0;
- }
-
- /* Unknown stub type. For now, just return zero. */
- return 0;
-}
-
-/* Return one if PC is in the return path of a trampoline, else return zero.
-
- Note we return one for *any* call trampoline (long-call, arg-reloc), not
- just shared library trampolines (import, export). */
-
-int
-in_solib_return_trampoline (CORE_ADDR pc, char *name)
-{
- struct unwind_table_entry *u;
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub or it's just a long branch stub, then
- return zero. */
- if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
- return 0;
-
- /* The call and return path execute the same instructions within
- an IMPORT stub! So an IMPORT stub is both a call and return
- trampoline. */
- if (u->stub_unwind.stub_type == IMPORT)
- return 1;
-
- /* Parameter relocation stubs always have a call path and may have a
- return path. */
- if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
- || u->stub_unwind.stub_type == EXPORT)
- {
- CORE_ADDR addr;
-
- /* Search forward from the current PC until we hit a branch
- or the end of the stub. */
- for (addr = pc; addr <= u->region_end; addr += 4)
- {
- unsigned long insn;
-
- insn = read_memory_integer (addr, 4);
-
- /* Does it look like a bl? If so then it's the call path, if
- we find a bv or be first, then we're on the return path. */
- if ((insn & 0xfc00e000) == 0xe8000000)
- return 0;
- else if ((insn & 0xfc00e001) == 0xe800c000
- || (insn & 0xfc000000) == 0xe0000000)
- return 1;
- }
-
- /* Should never happen. */
- warning ("Unable to find branch in parameter relocation stub.\n");
- return 0;
- }
-
- /* Unknown stub type. For now, just return zero. */
- return 0;
-
-}
-
-/* Figure out if PC is in a trampoline, and if so find out where
- the trampoline will jump to. If not in a trampoline, return zero.
-
- Simple code examination probably is not a good idea since the code
- sequences in trampolines can also appear in user code.
-
- We use unwinds and information from the minimal symbol table to
- determine when we're in a trampoline. This won't work for ELF
- (yet) since it doesn't create stub unwind entries. Whether or
- not ELF will create stub unwinds or normal unwinds for linker
- stubs is still being debated.
-
- This should handle simple calls through dyncall or sr4export,
- long calls, argument relocation stubs, and dyncall/sr4export
- calling an argument relocation stub. It even handles some stubs
- used in dynamic executables. */
-
-CORE_ADDR
-skip_trampoline_code (CORE_ADDR pc, char *name)
-{
- long orig_pc = pc;
- long prev_inst, curr_inst, loc;
- static CORE_ADDR dyncall = 0;
- static CORE_ADDR dyncall_external = 0;
- static CORE_ADDR sr4export = 0;
- struct minimal_symbol *msym;
- struct unwind_table_entry *u;
-
- /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
- new exec file */
-
- if (!dyncall)
- {
- msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (msym)
- dyncall = SYMBOL_VALUE_ADDRESS (msym);
- else
- dyncall = -1;
- }
-
- if (!dyncall_external)
- {
- msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
- if (msym)
- dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
- else
- dyncall_external = -1;
- }
-
- if (!sr4export)
- {
- msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (msym)
- sr4export = SYMBOL_VALUE_ADDRESS (msym);
- else
- sr4export = -1;
- }
-
- /* Addresses passed to dyncall may *NOT* be the actual address
- of the function. So we may have to do something special. */
- if (pc == dyncall)
- {
- pc = (CORE_ADDR) read_register (22);
-
- /* If bit 30 (counting from the left) is on, then pc is the address of
- the PLT entry for this function, not the address of the function
- itself. Bit 31 has meaning too, but only for MPE. */
- if (pc & 0x2)
- pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
- }
- if (pc == dyncall_external)
- {
- pc = (CORE_ADDR) read_register (22);
- pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
- }
- else if (pc == sr4export)
- pc = (CORE_ADDR) (read_register (22));
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub, then return now. */
- /* elz: attention here! (FIXME) because of a compiler/linker
- error, some stubs which should have a non zero stub_unwind.stub_type
- have unfortunately a value of zero. So this function would return here
- as if we were not in a trampoline. To fix this, we go look at the partial
- symbol information, which reports this guy as a stub.
- (FIXME): Unfortunately, we are not that lucky: it turns out that the
- partial symbol information is also wrong sometimes. This is because
- when it is entered (somread.c::som_symtab_read()) it can happen that
- if the type of the symbol (from the som) is Entry, and the symbol is
- in a shared library, then it can also be a trampoline. This would
- be OK, except that I believe the way they decide if we are ina shared library
- does not work. SOOOO..., even if we have a regular function w/o trampolines
- its minimal symbol can be assigned type mst_solib_trampoline.
- Also, if we find that the symbol is a real stub, then we fix the unwind
- descriptor, and define the stub type to be EXPORT.
- Hopefully this is correct most of the times. */
- if (u->stub_unwind.stub_type == 0)
- {
-
-/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
- we can delete all the code which appears between the lines */
-/*--------------------------------------------------------------------------*/
- msym = lookup_minimal_symbol_by_pc (pc);
-
- if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
- return orig_pc == pc ? 0 : pc & ~0x3;
-
- else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
- {
- struct objfile *objfile;
- struct minimal_symbol *msymbol;
- int function_found = 0;
-
- /* go look if there is another minimal symbol with the same name as
- this one, but with type mst_text. This would happen if the msym
- is an actual trampoline, in which case there would be another
- symbol with the same name corresponding to the real function */
-
- ALL_MSYMBOLS (objfile, msymbol)
- {
- if (MSYMBOL_TYPE (msymbol) == mst_text
- && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
- {
- function_found = 1;
- break;
- }
- }
-
- if (function_found)
- /* the type of msym is correct (mst_solib_trampoline), but
- the unwind info is wrong, so set it to the correct value */
- u->stub_unwind.stub_type = EXPORT;
- else
- /* the stub type info in the unwind is correct (this is not a
- trampoline), but the msym type information is wrong, it
- should be mst_text. So we need to fix the msym, and also
- get out of this function */
- {
- MSYMBOL_TYPE (msym) = mst_text;
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
-/*--------------------------------------------------------------------------*/
- }
-
- /* It's a stub. Search for a branch and figure out where it goes.
- Note we have to handle multi insn branch sequences like ldil;ble.
- Most (all?) other branches can be determined by examining the contents
- of certain registers and the stack. */
-
- loc = pc;
- curr_inst = 0;
- prev_inst = 0;
- while (1)
- {
- /* Make sure we haven't walked outside the range of this stub. */
- if (u != find_unwind_entry (loc))
- {
- warning ("Unable to find branch in linker stub");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- prev_inst = curr_inst;
- curr_inst = read_memory_integer (loc, 4);
-
- /* Does it look like a branch external using %r1? Then it's the
- branch from the stub to the actual function. */
- if ((curr_inst & 0xffe0e000) == 0xe0202000)
- {
- /* Yup. See if the previous instruction loaded
- a value into %r1. If so compute and return the jump address. */
- if ((prev_inst & 0xffe00000) == 0x20200000)
- return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
- else
- {
- warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
- /* Does it look like a be 0(sr0,%r21)? OR
- Does it look like a be, n 0(sr0,%r21)? OR
- Does it look like a bve (r21)? (this is on PA2.0)
- Does it look like a bve, n(r21)? (this is also on PA2.0)
- That's the branch from an
- import stub to an export stub.
-
- It is impossible to determine the target of the branch via
- simple examination of instructions and/or data (consider
- that the address in the plabel may be the address of the
- bind-on-reference routine in the dynamic loader).
-
- So we have try an alternative approach.
-
- Get the name of the symbol at our current location; it should
- be a stub symbol with the same name as the symbol in the
- shared library.
-
- Then lookup a minimal symbol with the same name; we should
- get the minimal symbol for the target routine in the shared
- library as those take precedence of import/export stubs. */
- if ((curr_inst == 0xe2a00000) ||
- (curr_inst == 0xe2a00002) ||
- (curr_inst == 0xeaa0d000) ||
- (curr_inst == 0xeaa0d002))
- {
- struct minimal_symbol *stubsym, *libsym;
-
- stubsym = lookup_minimal_symbol_by_pc (loc);
- if (stubsym == NULL)
- {
- warning ("Unable to find symbol for 0x%lx", loc);
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
- if (libsym == NULL)
- {
- warning ("Unable to find library symbol for %s\n",
- SYMBOL_NAME (stubsym));
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- return SYMBOL_VALUE (libsym);
- }
-
- /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
- branch from the stub to the actual function. */
- /*elz */
- else if ((curr_inst & 0xffe0e000) == 0xe8400000
- || (curr_inst & 0xffe0e000) == 0xe8000000
- || (curr_inst & 0xffe0e000) == 0xe800A000)
- return (loc + extract_17 (curr_inst) + 8) & ~0x3;
-
- /* Does it look like bv (rp)? Note this depends on the
- current stack pointer being the same as the stack
- pointer in the stub itself! This is a branch on from the
- stub back to the original caller. */
- /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
- else if ((curr_inst & 0xffe0f000) == 0xe840c000)
- {
- /* Yup. See if the previous instruction loaded
- rp from sp - 8. */
- if (prev_inst == 0x4bc23ff1)
- return (read_memory_integer
- (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
- else
- {
- warning ("Unable to find restore of %%rp before bv (%%rp).");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
- /* elz: added this case to capture the new instruction
- at the end of the return part of an export stub used by
- the PA2.0: BVE, n (rp) */
- else if ((curr_inst & 0xffe0f000) == 0xe840d000)
- {
- return (read_memory_integer
- (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
- }
-
- /* What about be,n 0(sr0,%rp)? It's just another way we return to
- the original caller from the stub. Used in dynamic executables. */
- else if (curr_inst == 0xe0400002)
- {
- /* The value we jump to is sitting in sp - 24. But that's
- loaded several instructions before the be instruction.
- I guess we could check for the previous instruction being
- mtsp %r1,%sr0 if we want to do sanity checking. */
- return (read_memory_integer
- (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
- }
-
- /* Haven't found the branch yet, but we're still in the stub.
- Keep looking. */
- loc += 4;
- }
-}
-
-
-/* For the given instruction (INST), return any adjustment it makes
- to the stack pointer or zero for no adjustment.
-
- This only handles instructions commonly found in prologues. */
-
-static int
-prologue_inst_adjust_sp (unsigned long inst)
-{
- /* This must persist across calls. */
- static int save_high21;
-
- /* The most common way to perform a stack adjustment ldo X(sp),sp */
- if ((inst & 0xffffc000) == 0x37de0000)
- return extract_14 (inst);
-
- /* stwm X,D(sp) */
- if ((inst & 0xffe00000) == 0x6fc00000)
- return extract_14 (inst);
-
- /* std,ma X,D(sp) */
- if ((inst & 0xffe00008) == 0x73c00008)
- return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
-
- /* addil high21,%r1; ldo low11,(%r1),%r30)
- save high bits in save_high21 for later use. */
- if ((inst & 0xffe00000) == 0x28200000)
- {
- save_high21 = extract_21 (inst);
- return 0;
- }
-
- if ((inst & 0xffff0000) == 0x343e0000)
- return save_high21 + extract_14 (inst);
-
- /* fstws as used by the HP compilers. */
- if ((inst & 0xffffffe0) == 0x2fd01220)
- return extract_5_load (inst);
-
- /* No adjustment. */
- return 0;
-}
-
-/* Return nonzero if INST is a branch of some kind, else return zero. */
-
-static int
-is_branch (unsigned long inst)
-{
- switch (inst >> 26)
- {
- case 0x20:
- case 0x21:
- case 0x22:
- case 0x23:
- case 0x27:
- case 0x28:
- case 0x29:
- case 0x2a:
- case 0x2b:
- case 0x2f:
- case 0x30:
- case 0x31:
- case 0x32:
- case 0x33:
- case 0x38:
- case 0x39:
- case 0x3a:
- case 0x3b:
- return 1;
-
- default:
- return 0;
- }
-}
-
-/* Return the register number for a GR which is saved by INST or
- zero it INST does not save a GR. */
-
-static int
-inst_saves_gr (unsigned long inst)
-{
- /* Does it look like a stw? */
- if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
- || (inst >> 26) == 0x1f
- || ((inst >> 26) == 0x1f
- && ((inst >> 6) == 0xa)))
- return extract_5R_store (inst);
-
- /* Does it look like a std? */
- if ((inst >> 26) == 0x1c
- || ((inst >> 26) == 0x03
- && ((inst >> 6) & 0xf) == 0xb))
- return extract_5R_store (inst);
-
- /* Does it look like a stwm? GCC & HPC may use this in prologues. */
- if ((inst >> 26) == 0x1b)
- return extract_5R_store (inst);
-
- /* Does it look like sth or stb? HPC versions 9.0 and later use these
- too. */
- if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
- || ((inst >> 26) == 0x3
- && (((inst >> 6) & 0xf) == 0x8
- || (inst >> 6) & 0xf) == 0x9))
- return extract_5R_store (inst);
-
- return 0;
-}
-
-/* Return the register number for a FR which is saved by INST or
- zero it INST does not save a FR.
-
- Note we only care about full 64bit register stores (that's the only
- kind of stores the prologue will use).
-
- FIXME: What about argument stores with the HP compiler in ANSI mode? */
-
-static int
-inst_saves_fr (unsigned long inst)
-{
- /* is this an FSTD ? */
- if ((inst & 0xfc00dfc0) == 0x2c001200)
- return extract_5r_store (inst);
- if ((inst & 0xfc000002) == 0x70000002)
- return extract_5R_store (inst);
- /* is this an FSTW ? */
- if ((inst & 0xfc00df80) == 0x24001200)
- return extract_5r_store (inst);
- if ((inst & 0xfc000002) == 0x7c000000)
- return extract_5R_store (inst);
- return 0;
-}
-
-/* Advance PC across any function entry prologue instructions
- to reach some "real" code.
-
- Use information in the unwind table to determine what exactly should
- be in the prologue. */
-
-
-CORE_ADDR
-skip_prologue_hard_way (CORE_ADDR pc)
-{
- char buf[4];
- CORE_ADDR orig_pc = pc;
- unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
- unsigned long args_stored, status, i, restart_gr, restart_fr;
- struct unwind_table_entry *u;
-
- restart_gr = 0;
- restart_fr = 0;
-
-restart:
- u = find_unwind_entry (pc);
- if (!u)
- return pc;
-
- /* If we are not at the beginning of a function, then return now. */
- if ((pc & ~0x3) != u->region_start)
- return pc;
-
- /* This is how much of a frame adjustment we need to account for. */
- stack_remaining = u->Total_frame_size << 3;
-
- /* Magic register saves we want to know about. */
- save_rp = u->Save_RP;
- save_sp = u->Save_SP;
-
- /* An indication that args may be stored into the stack. Unfortunately
- the HPUX compilers tend to set this in cases where no args were
- stored too!. */
- args_stored = 1;
-
- /* Turn the Entry_GR field into a bitmask. */
- save_gr = 0;
- for (i = 3; i < u->Entry_GR + 3; i++)
- {
- /* Frame pointer gets saved into a special location. */
- if (u->Save_SP && i == FP_REGNUM)
- continue;
-
- save_gr |= (1 << i);
- }
- save_gr &= ~restart_gr;
-
- /* Turn the Entry_FR field into a bitmask too. */
- save_fr = 0;
- for (i = 12; i < u->Entry_FR + 12; i++)
- save_fr |= (1 << i);
- save_fr &= ~restart_fr;
-
- /* Loop until we find everything of interest or hit a branch.
-
- For unoptimized GCC code and for any HP CC code this will never ever
- examine any user instructions.
-
- For optimzied GCC code we're faced with problems. GCC will schedule
- its prologue and make prologue instructions available for delay slot
- filling. The end result is user code gets mixed in with the prologue
- and a prologue instruction may be in the delay slot of the first branch
- or call.
-
- Some unexpected things are expected with debugging optimized code, so
- we allow this routine to walk past user instructions in optimized
- GCC code. */
- while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
- || args_stored)
- {
- unsigned int reg_num;
- unsigned long old_stack_remaining, old_save_gr, old_save_fr;
- unsigned long old_save_rp, old_save_sp, next_inst;
-
- /* Save copies of all the triggers so we can compare them later
- (only for HPC). */
- old_save_gr = save_gr;
- old_save_fr = save_fr;
- old_save_rp = save_rp;
- old_save_sp = save_sp;
- old_stack_remaining = stack_remaining;
-
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return pc;
-
- /* Note the interesting effects of this instruction. */
- stack_remaining -= prologue_inst_adjust_sp (inst);
-
- /* There are limited ways to store the return pointer into the
- stack. */
- if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
- save_rp = 0;
-
- /* These are the only ways we save SP into the stack. At this time
- the HP compilers never bother to save SP into the stack. */
- if ((inst & 0xffffc000) == 0x6fc10000
- || (inst & 0xffffc00c) == 0x73c10008)
- save_sp = 0;
-
- /* Are we loading some register with an offset from the argument
- pointer? */
- if ((inst & 0xffe00000) == 0x37a00000
- || (inst & 0xffffffe0) == 0x081d0240)
- {
- pc += 4;
- continue;
- }
-
- /* Account for general and floating-point register saves. */
- reg_num = inst_saves_gr (inst);
- save_gr &= ~(1 << reg_num);
-
- /* Ugh. Also account for argument stores into the stack.
- Unfortunately args_stored only tells us that some arguments
- where stored into the stack. Not how many or what kind!
-
- This is a kludge as on the HP compiler sets this bit and it
- never does prologue scheduling. So once we see one, skip past
- all of them. We have similar code for the fp arg stores below.
-
- FIXME. Can still die if we have a mix of GR and FR argument
- stores! */
- if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
- {
- while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
- {
- pc += 4;
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- reg_num = inst_saves_gr (inst);
- }
- args_stored = 0;
- continue;
- }
-
- reg_num = inst_saves_fr (inst);
- save_fr &= ~(1 << reg_num);
-
- status = target_read_memory (pc + 4, buf, 4);
- next_inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return pc;
-
- /* We've got to be read to handle the ldo before the fp register
- save. */
- if ((inst & 0xfc000000) == 0x34000000
- && inst_saves_fr (next_inst) >= 4
- && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
- {
- /* So we drop into the code below in a reasonable state. */
- reg_num = inst_saves_fr (next_inst);
- pc -= 4;
- }
-
- /* Ugh. Also account for argument stores into the stack.
- This is a kludge as on the HP compiler sets this bit and it
- never does prologue scheduling. So once we see one, skip past
- all of them. */
- if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
- {
- while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
- {
- pc += 8;
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- if ((inst & 0xfc000000) != 0x34000000)
- break;
- status = target_read_memory (pc + 4, buf, 4);
- next_inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- reg_num = inst_saves_fr (next_inst);
- }
- args_stored = 0;
- continue;
- }
-
- /* Quit if we hit any kind of branch. This can happen if a prologue
- instruction is in the delay slot of the first call/branch. */
- if (is_branch (inst))
- break;
-
- /* What a crock. The HP compilers set args_stored even if no
- arguments were stored into the stack (boo hiss). This could
- cause this code to then skip a bunch of user insns (up to the
- first branch).
-
- To combat this we try to identify when args_stored was bogusly
- set and clear it. We only do this when args_stored is nonzero,
- all other resources are accounted for, and nothing changed on
- this pass. */
- if (args_stored
- && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
- && old_save_gr == save_gr && old_save_fr == save_fr
- && old_save_rp == save_rp && old_save_sp == save_sp
- && old_stack_remaining == stack_remaining)
- break;
-
- /* Bump the PC. */
- pc += 4;
- }
-
- /* We've got a tenative location for the end of the prologue. However
- because of limitations in the unwind descriptor mechanism we may
- have went too far into user code looking for the save of a register
- that does not exist. So, if there registers we expected to be saved
- but never were, mask them out and restart.
-
- This should only happen in optimized code, and should be very rare. */
- if (save_gr || (save_fr && !(restart_fr || restart_gr)))
- {
- pc = orig_pc;
- restart_gr = save_gr;
- restart_fr = save_fr;
- goto restart;
- }
-
- return pc;
-}
-
-
-/* Return the address of the PC after the last prologue instruction if
- we can determine it from the debug symbols. Else return zero. */
-
-static CORE_ADDR
-after_prologue (CORE_ADDR pc)
-{
- struct symtab_and_line sal;
- CORE_ADDR func_addr, func_end;
- struct symbol *f;
-
- /* If we can not find the symbol in the partial symbol table, then
- there is no hope we can determine the function's start address
- with this code. */
- if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- return 0;
-
- /* Get the line associated with FUNC_ADDR. */
- sal = find_pc_line (func_addr, 0);
-
- /* There are only two cases to consider. First, the end of the source line
- is within the function bounds. In that case we return the end of the
- source line. Second is the end of the source line extends beyond the
- bounds of the current function. We need to use the slow code to
- examine instructions in that case.
-
- Anything else is simply a bug elsewhere. Fixing it here is absolutely
- the wrong thing to do. In fact, it should be entirely possible for this
- function to always return zero since the slow instruction scanning code
- is supposed to *always* work. If it does not, then it is a bug. */
- if (sal.end < func_end)
- return sal.end;
- else
- return 0;
-}
-
-/* To skip prologues, I use this predicate. Returns either PC itself
- if the code at PC does not look like a function prologue; otherwise
- returns an address that (if we're lucky) follows the prologue. If
- LENIENT, then we must skip everything which is involved in setting
- up the frame (it's OK to skip more, just so long as we don't skip
- anything which might clobber the registers which are being saved.
- Currently we must not skip more on the alpha, but we might the lenient
- stuff some day. */
-
-CORE_ADDR
-hppa_skip_prologue (CORE_ADDR pc)
-{
- unsigned long inst;
- int offset;
- CORE_ADDR post_prologue_pc;
- char buf[4];
-
- /* See if we can determine the end of the prologue via the symbol table.
- If so, then return either PC, or the PC after the prologue, whichever
- is greater. */
-
- post_prologue_pc = after_prologue (pc);
-
- /* If after_prologue returned a useful address, then use it. Else
- fall back on the instruction skipping code.
-
- Some folks have claimed this causes problems because the breakpoint
- may be the first instruction of the prologue. If that happens, then
- the instruction skipping code has a bug that needs to be fixed. */
- if (post_prologue_pc != 0)
- return max (pc, post_prologue_pc);
- else
- return (skip_prologue_hard_way (pc));
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame. */
-
-void
-hppa_frame_find_saved_regs (struct frame_info *frame_info,
- struct frame_saved_regs *frame_saved_regs)
-{
- CORE_ADDR pc;
- struct unwind_table_entry *u;
- unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
- int status, i, reg;
- char buf[4];
- int fp_loc = -1;
- int final_iteration;
-
- /* Zero out everything. */
- memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
-
- /* Call dummy frames always look the same, so there's no need to
- examine the dummy code to determine locations of saved registers;
- instead, let find_dummy_frame_regs fill in the correct offsets
- for the saved registers. */
- if ((frame_info->pc >= frame_info->frame
- && frame_info->pc <= (frame_info->frame
- /* A call dummy is sized in words, but it is
- actually a series of instructions. Account
- for that scaling factor. */
- + ((REGISTER_SIZE / INSTRUCTION_SIZE)
- * CALL_DUMMY_LENGTH)
- /* Similarly we have to account for 64bit
- wide register saves. */
- + (32 * REGISTER_SIZE)
- /* We always consider FP regs 8 bytes long. */
- + (NUM_REGS - FP0_REGNUM) * 8
- /* Similarly we have to account for 64bit
- wide register saves. */
- + (6 * REGISTER_SIZE))))
- find_dummy_frame_regs (frame_info, frame_saved_regs);
-
- /* Interrupt handlers are special too. They lay out the register
- state in the exact same order as the register numbers in GDB. */
- if (pc_in_interrupt_handler (frame_info->pc))
- {
- for (i = 0; i < NUM_REGS; i++)
- {
- /* SP is a little special. */
- if (i == SP_REGNUM)
- frame_saved_regs->regs[SP_REGNUM]
- = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
- TARGET_PTR_BIT / 8);
- else
- frame_saved_regs->regs[i] = frame_info->frame + i * 4;
- }
- return;
- }
-
-#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
- /* Handle signal handler callers. */
- if (frame_info->signal_handler_caller)
- {
- FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
- return;
- }
-#endif
-
- /* Get the starting address of the function referred to by the PC
- saved in frame. */
- pc = get_pc_function_start (frame_info->pc);
-
- /* Yow! */
- u = find_unwind_entry (pc);
- if (!u)
- return;
-
- /* This is how much of a frame adjustment we need to account for. */
- stack_remaining = u->Total_frame_size << 3;
-
- /* Magic register saves we want to know about. */
- save_rp = u->Save_RP;
- save_sp = u->Save_SP;
-
- /* Turn the Entry_GR field into a bitmask. */
- save_gr = 0;
- for (i = 3; i < u->Entry_GR + 3; i++)
- {
- /* Frame pointer gets saved into a special location. */
- if (u->Save_SP && i == FP_REGNUM)
- continue;
-
- save_gr |= (1 << i);
- }
-
- /* Turn the Entry_FR field into a bitmask too. */
- save_fr = 0;
- for (i = 12; i < u->Entry_FR + 12; i++)
- save_fr |= (1 << i);
-
- /* The frame always represents the value of %sp at entry to the
- current function (and is thus equivalent to the "saved" stack
- pointer. */
- frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
-
- /* Loop until we find everything of interest or hit a branch.
-
- For unoptimized GCC code and for any HP CC code this will never ever
- examine any user instructions.
-
- For optimized GCC code we're faced with problems. GCC will schedule
- its prologue and make prologue instructions available for delay slot
- filling. The end result is user code gets mixed in with the prologue
- and a prologue instruction may be in the delay slot of the first branch
- or call.
-
- Some unexpected things are expected with debugging optimized code, so
- we allow this routine to walk past user instructions in optimized
- GCC code. */
- final_iteration = 0;
- while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
- && pc <= frame_info->pc)
- {
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return;
-
- /* Note the interesting effects of this instruction. */
- stack_remaining -= prologue_inst_adjust_sp (inst);
-
- /* There are limited ways to store the return pointer into the
- stack. */
- if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
- {
- save_rp = 0;
- frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
- }
- else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
- {
- save_rp = 0;
- frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
- }
-
- /* Note if we saved SP into the stack. This also happens to indicate
- the location of the saved frame pointer. */
- if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
- || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
- {
- frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
- save_sp = 0;
- }
-
- /* Account for general and floating-point register saves. */
- reg = inst_saves_gr (inst);
- if (reg >= 3 && reg <= 18
- && (!u->Save_SP || reg != FP_REGNUM))
- {
- save_gr &= ~(1 << reg);
-
- /* stwm with a positive displacement is a *post modify*. */
- if ((inst >> 26) == 0x1b
- && extract_14 (inst) >= 0)
- frame_saved_regs->regs[reg] = frame_info->frame;
- /* A std has explicit post_modify forms. */
- else if ((inst & 0xfc00000c0) == 0x70000008)
- frame_saved_regs->regs[reg] = frame_info->frame;
- else
- {
- CORE_ADDR offset;
-
- if ((inst >> 26) == 0x1c)
- offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
- else if ((inst >> 26) == 0x03)
- offset = low_sign_extend (inst & 0x1f, 5);
- else
- offset = extract_14 (inst);
-
- /* Handle code with and without frame pointers. */
- if (u->Save_SP)
- frame_saved_regs->regs[reg]
- = frame_info->frame + offset;
- else
- frame_saved_regs->regs[reg]
- = (frame_info->frame + (u->Total_frame_size << 3)
- + offset);
- }
- }
-
-
- /* GCC handles callee saved FP regs a little differently.
-
- It emits an instruction to put the value of the start of
- the FP store area into %r1. It then uses fstds,ma with
- a basereg of %r1 for the stores.
-
- HP CC emits them at the current stack pointer modifying
- the stack pointer as it stores each register. */
-
- /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
- if ((inst & 0xffffc000) == 0x34610000
- || (inst & 0xffffc000) == 0x37c10000)
- fp_loc = extract_14 (inst);
-
- reg = inst_saves_fr (inst);
- if (reg >= 12 && reg <= 21)
- {
- /* Note +4 braindamage below is necessary because the FP status
- registers are internally 8 registers rather than the expected
- 4 registers. */
- save_fr &= ~(1 << reg);
- if (fp_loc == -1)
- {
- /* 1st HP CC FP register store. After this instruction
- we've set enough state that the GCC and HPCC code are
- both handled in the same manner. */
- frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
- fp_loc = 8;
- }
- else
- {
- frame_saved_regs->regs[reg + FP0_REGNUM + 4]
- = frame_info->frame + fp_loc;
- fp_loc += 8;
- }
- }
-
- /* Quit if we hit any kind of branch the previous iteration. */
- if (final_iteration)
- break;
-
- /* We want to look precisely one instruction beyond the branch
- if we have not found everything yet. */
- if (is_branch (inst))
- final_iteration = 1;
-
- /* Bump the PC. */
- pc += 4;
- }
-}
-
-
-/* Exception handling support for the HP-UX ANSI C++ compiler.
- The compiler (aCC) provides a callback for exception events;
- GDB can set a breakpoint on this callback and find out what
- exception event has occurred. */
-
-/* The name of the hook to be set to point to the callback function */
-static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
-/* The name of the function to be used to set the hook value */
-static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
-/* The name of the callback function in end.o */
-static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
-/* Name of function in end.o on which a break is set (called by above) */
-static char HP_ACC_EH_break[] = "__d_eh_break";
-/* Name of flag (in end.o) that enables catching throws */
-static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
-/* Name of flag (in end.o) that enables catching catching */
-static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
-/* The enum used by aCC */
-typedef enum
- {
- __EH_NOTIFY_THROW,
- __EH_NOTIFY_CATCH
- }
-__eh_notification;
-
-/* Is exception-handling support available with this executable? */
-static int hp_cxx_exception_support = 0;
-/* Has the initialize function been run? */
-int hp_cxx_exception_support_initialized = 0;
-/* Similar to above, but imported from breakpoint.c -- non-target-specific */
-extern int exception_support_initialized;
-/* Address of __eh_notify_hook */
-static CORE_ADDR eh_notify_hook_addr = 0;
-/* Address of __d_eh_notify_callback */
-static CORE_ADDR eh_notify_callback_addr = 0;
-/* Address of __d_eh_break */
-static CORE_ADDR eh_break_addr = 0;
-/* Address of __d_eh_catch_catch */
-static CORE_ADDR eh_catch_catch_addr = 0;
-/* Address of __d_eh_catch_throw */
-static CORE_ADDR eh_catch_throw_addr = 0;
-/* Sal for __d_eh_break */
-static struct symtab_and_line *break_callback_sal = 0;
-
-/* Code in end.c expects __d_pid to be set in the inferior,
- otherwise __d_eh_notify_callback doesn't bother to call
- __d_eh_break! So we poke the pid into this symbol
- ourselves.
- 0 => success
- 1 => failure */
-int
-setup_d_pid_in_inferior (void)
-{
- CORE_ADDR anaddr;
- struct minimal_symbol *msymbol;
- char buf[4]; /* FIXME 32x64? */
-
- /* Slam the pid of the process into __d_pid; failing is only a warning! */
- msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
- if (msymbol == NULL)
- {
- warning ("Unable to find __d_pid symbol in object file.");
- warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
- return 1;
- }
-
- anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
- store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
- if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
- {
- warning ("Unable to write __d_pid");
- warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
- return 1;
- }
- return 0;
-}
-
-/* Initialize exception catchpoint support by looking for the
- necessary hooks/callbacks in end.o, etc., and set the hook value to
- point to the required debug function
-
- Return 0 => failure
- 1 => success */
-
-static int
-initialize_hp_cxx_exception_support (void)
-{
- struct symtabs_and_lines sals;
- struct cleanup *old_chain;
- struct cleanup *canonical_strings_chain = NULL;
- int i;
- char *addr_start;
- char *addr_end = NULL;
- char **canonical = (char **) NULL;
- int thread = -1;
- struct symbol *sym = NULL;
- struct minimal_symbol *msym = NULL;
- struct objfile *objfile;
- asection *shlib_info;
-
- /* Detect and disallow recursion. On HP-UX with aCC, infinite
- recursion is a possibility because finding the hook for exception
- callbacks involves making a call in the inferior, which means
- re-inserting breakpoints which can re-invoke this code */
-
- static int recurse = 0;
- if (recurse > 0)
- {
- hp_cxx_exception_support_initialized = 0;
- exception_support_initialized = 0;
- return 0;
- }
-
- hp_cxx_exception_support = 0;
-
- /* First check if we have seen any HP compiled objects; if not,
- it is very unlikely that HP's idiosyncratic callback mechanism
- for exception handling debug support will be available!
- This will percolate back up to breakpoint.c, where our callers
- will decide to try the g++ exception-handling support instead. */
- if (!hp_som_som_object_present)
- return 0;
-
- /* We have a SOM executable with SOM debug info; find the hooks */
-
- /* First look for the notify hook provided by aCC runtime libs */
- /* If we find this symbol, we conclude that the executable must
- have HP aCC exception support built in. If this symbol is not
- found, even though we're a HP SOM-SOM file, we may have been
- built with some other compiler (not aCC). This results percolates
- back up to our callers in breakpoint.c which can decide to
- try the g++ style of exception support instead.
- If this symbol is found but the other symbols we require are
- not found, there is something weird going on, and g++ support
- should *not* be tried as an alternative.
-
- ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
- ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
-
- /* libCsup has this hook; it'll usually be non-debuggable */
- msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
- if (msym)
- {
- eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
- warning ("Executable may not have been compiled debuggable with HP aCC.");
- warning ("GDB will be unable to intercept exception events.");
- eh_notify_hook_addr = 0;
- hp_cxx_exception_support = 0;
- return 0;
- }
-
- /* Next look for the notify callback routine in end.o */
- /* This is always available in the SOM symbol dictionary if end.o is linked in */
- msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
- if (msym)
- {
- eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
- warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
- warning ("GDB will be unable to intercept exception events.");
- eh_notify_callback_addr = 0;
- return 0;
- }
-
-#ifndef GDB_TARGET_IS_HPPA_20W
- /* Check whether the executable is dynamically linked or archive bound */
- /* With an archive-bound executable we can use the raw addresses we find
- for the callback function, etc. without modification. For an executable
- with shared libraries, we have to do more work to find the plabel, which
- can be the target of a call through $$dyncall from the aCC runtime support
- library (libCsup) which is linked shared by default by aCC. */
- /* This test below was copied from somsolib.c/somread.c. It may not be a very
- reliable one to test that an executable is linked shared. pai/1997-07-18 */
- shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
- if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
- {
- /* The minsym we have has the local code address, but that's not the
- plabel that can be used by an inter-load-module call. */
- /* Find solib handle for main image (which has end.o), and use that
- and the min sym as arguments to __d_shl_get() (which does the equivalent
- of shl_findsym()) to find the plabel. */
-
- args_for_find_stub args;
- static char message[] = "Error while finding exception callback hook:\n";
-
- args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
- args.msym = msym;
- args.return_val = 0;
-
- recurse++;
- catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
- RETURN_MASK_ALL);
- eh_notify_callback_addr = args.return_val;
- recurse--;
-
- exception_catchpoints_are_fragile = 1;
-
- if (!eh_notify_callback_addr)
- {
- /* We can get here either if there is no plabel in the export list
- for the main image, or if something strange happened (?) */
- warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
- warning ("GDB will not be able to intercept exception events.");
- return 0;
- }
- }
- else
- exception_catchpoints_are_fragile = 0;
-#endif
-
- /* Now, look for the breakpointable routine in end.o */
- /* This should also be available in the SOM symbol dict. if end.o linked in */
- msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
- if (msym)
- {
- eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
- warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
- warning ("GDB will be unable to intercept exception events.");
- eh_break_addr = 0;
- return 0;
- }
-
- /* Next look for the catch enable flag provided in end.o */
- sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
- VAR_NAMESPACE, 0, (struct symtab **) NULL);
- if (sym) /* sometimes present in debug info */
- {
- eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
- hp_cxx_exception_support = 1;
- }
- else
- /* otherwise look in SOM symbol dict. */
- {
- msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
- if (msym)
- {
- eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to enable interception of exception catches.");
- warning ("Executable may not have been compiled debuggable with HP aCC.");
- warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
- return 0;
- }
- }
-
- /* Next look for the catch enable flag provided end.o */
- sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
- VAR_NAMESPACE, 0, (struct symtab **) NULL);
- if (sym) /* sometimes present in debug info */
- {
- eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
- hp_cxx_exception_support = 1;
- }
- else
- /* otherwise look in SOM symbol dict. */
- {
- msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
- if (msym)
- {
- eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
- hp_cxx_exception_support = 1;
- }
- else
- {
- warning ("Unable to enable interception of exception throws.");
- warning ("Executable may not have been compiled debuggable with HP aCC.");
- warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
- return 0;
- }
- }
-
- /* Set the flags */
- hp_cxx_exception_support = 2; /* everything worked so far */
- hp_cxx_exception_support_initialized = 1;
- exception_support_initialized = 1;
-
- return 1;
-}
-
-/* Target operation for enabling or disabling interception of
- exception events.
- KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
- ENABLE is either 0 (disable) or 1 (enable).
- Return value is NULL if no support found;
- -1 if something went wrong,
- or a pointer to a symtab/line struct if the breakpointable
- address was found. */
-
-struct symtab_and_line *
-child_enable_exception_callback (enum exception_event_kind kind, int enable)
-{
- char buf[4];
-
- if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
- if (!initialize_hp_cxx_exception_support ())
- return NULL;
-
- switch (hp_cxx_exception_support)
- {
- case 0:
- /* Assuming no HP support at all */
- return NULL;
- case 1:
- /* HP support should be present, but something went wrong */
- return (struct symtab_and_line *) -1; /* yuck! */
- /* there may be other cases in the future */
- }
-
- /* Set the EH hook to point to the callback routine */
- store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
- /* pai: (temp) FIXME should there be a pack operation first? */
- if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
- {
- warning ("Could not write to target memory for exception event callback.");
- warning ("Interception of exception events may not work.");
- return (struct symtab_and_line *) -1;
- }
- if (enable)
- {
- /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
- if (PIDGET (inferior_ptid) > 0)
- {
- if (setup_d_pid_in_inferior ())
- return (struct symtab_and_line *) -1;
- }
- else
- {
- warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
- return (struct symtab_and_line *) -1;
- }
- }
-
- switch (kind)
- {
- case EX_EVENT_THROW:
- store_unsigned_integer (buf, 4, enable ? 1 : 0);
- if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
- {
- warning ("Couldn't enable exception throw interception.");
- return (struct symtab_and_line *) -1;
- }
- break;
- case EX_EVENT_CATCH:
- store_unsigned_integer (buf, 4, enable ? 1 : 0);
- if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
- {
- warning ("Couldn't enable exception catch interception.");
- return (struct symtab_and_line *) -1;
- }
- break;
- default:
- error ("Request to enable unknown or unsupported exception event.");
- }
-
- /* Copy break address into new sal struct, malloc'ing if needed. */
- if (!break_callback_sal)
- {
- break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
- }
- INIT_SAL (break_callback_sal);
- break_callback_sal->symtab = NULL;
- break_callback_sal->pc = eh_break_addr;
- break_callback_sal->line = 0;
- break_callback_sal->end = eh_break_addr;
-
- return break_callback_sal;
-}
-
-/* Record some information about the current exception event */
-static struct exception_event_record current_ex_event;
-/* Convenience struct */
-static struct symtab_and_line null_symtab_and_line =
-{NULL, 0, 0, 0};
-
-/* Report current exception event. Returns a pointer to a record
- that describes the kind of the event, where it was thrown from,
- and where it will be caught. More information may be reported
- in the future */
-struct exception_event_record *
-child_get_current_exception_event (void)
-{
- CORE_ADDR event_kind;
- CORE_ADDR throw_addr;
- CORE_ADDR catch_addr;
- struct frame_info *fi, *curr_frame;
- int level = 1;
-
- curr_frame = get_current_frame ();
- if (!curr_frame)
- return (struct exception_event_record *) NULL;
-
- /* Go up one frame to __d_eh_notify_callback, because at the
- point when this code is executed, there's garbage in the
- arguments of __d_eh_break. */
- fi = find_relative_frame (curr_frame, &level);
- if (level != 0)
- return (struct exception_event_record *) NULL;
-
- select_frame (fi, -1);
-
- /* Read in the arguments */
- /* __d_eh_notify_callback() is called with 3 arguments:
- 1. event kind catch or throw
- 2. the target address if known
- 3. a flag -- not sure what this is. pai/1997-07-17 */
- event_kind = read_register (ARG0_REGNUM);
- catch_addr = read_register (ARG1_REGNUM);
-
- /* Now go down to a user frame */
- /* For a throw, __d_eh_break is called by
- __d_eh_notify_callback which is called by
- __notify_throw which is called
- from user code.
- For a catch, __d_eh_break is called by
- __d_eh_notify_callback which is called by
- <stackwalking stuff> which is called by
- __throw__<stuff> or __rethrow_<stuff> which is called
- from user code. */
- /* FIXME: Don't use such magic numbers; search for the frames */
- level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
- fi = find_relative_frame (curr_frame, &level);
- if (level != 0)
- return (struct exception_event_record *) NULL;
-
- select_frame (fi, -1);
- throw_addr = fi->pc;
-
- /* Go back to original (top) frame */
- select_frame (curr_frame, -1);
-
- current_ex_event.kind = (enum exception_event_kind) event_kind;
- current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
- current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
-
- return &current_ex_event;
-}
-
-static void
-unwind_command (char *exp, int from_tty)
-{
- CORE_ADDR address;
- struct unwind_table_entry *u;
-
- /* If we have an expression, evaluate it and use it as the address. */
-
- if (exp != 0 && *exp != 0)
- address = parse_and_eval_address (exp);
- else
- return;
-
- u = find_unwind_entry (address);
-
- if (!u)
- {
- printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
- return;
- }
-
- printf_unfiltered ("unwind_table_entry (0x%s):\n",
- paddr_nz (host_pointer_to_address (u)));
-
- printf_unfiltered ("\tregion_start = ");
- print_address (u->region_start, gdb_stdout);
-
- printf_unfiltered ("\n\tregion_end = ");
- print_address (u->region_end, gdb_stdout);
-
-#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
-
- printf_unfiltered ("\n\tflags =");
- pif (Cannot_unwind);
- pif (Millicode);
- pif (Millicode_save_sr0);
- pif (Entry_SR);
- pif (Args_stored);
- pif (Variable_Frame);
- pif (Separate_Package_Body);
- pif (Frame_Extension_Millicode);
- pif (Stack_Overflow_Check);
- pif (Two_Instruction_SP_Increment);
- pif (Ada_Region);
- pif (Save_SP);
- pif (Save_RP);
- pif (Save_MRP_in_frame);
- pif (extn_ptr_defined);
- pif (Cleanup_defined);
- pif (MPE_XL_interrupt_marker);
- pif (HP_UX_interrupt_marker);
- pif (Large_frame);
-
- putchar_unfiltered ('\n');
-
-#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
-
- pin (Region_description);
- pin (Entry_FR);
- pin (Entry_GR);
- pin (Total_frame_size);
-}
-
-#ifdef PREPARE_TO_PROCEED
-
-/* If the user has switched threads, and there is a breakpoint
- at the old thread's pc location, then switch to that thread
- and return TRUE, else return FALSE and don't do a thread
- switch (or rather, don't seem to have done a thread switch).
-
- Ptrace-based gdb will always return FALSE to the thread-switch
- query, and thus also to PREPARE_TO_PROCEED.
-
- The important thing is whether there is a BPT instruction,
- not how many user breakpoints there are. So we have to worry
- about things like these:
-
- o Non-bp stop -- NO
-
- o User hits bp, no switch -- NO
-
- o User hits bp, switches threads -- YES
-
- o User hits bp, deletes bp, switches threads -- NO
-
- o User hits bp, deletes one of two or more bps
- at that PC, user switches threads -- YES
-
- o Plus, since we're buffering events, the user may have hit a
- breakpoint, deleted the breakpoint and then gotten another
- hit on that same breakpoint on another thread which
- actually hit before the delete. (FIXME in breakpoint.c
- so that "dead" breakpoints are ignored?) -- NO
-
- For these reasons, we have to violate information hiding and
- call "breakpoint_here_p". If core gdb thinks there is a bpt
- here, that's what counts, as core gdb is the one which is
- putting the BPT instruction in and taking it out.
-
- Note that this implementation is potentially redundant now that
- default_prepare_to_proceed() has been added.
-
- FIXME This may not support switching threads after Ctrl-C
- correctly. The default implementation does support this. */
-int
-hppa_prepare_to_proceed (void)
-{
- pid_t old_thread;
- pid_t current_thread;
-
- old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
- if (old_thread != 0)
- {
- /* Switched over from "old_thread". Try to do
- as little work as possible, 'cause mostly
- we're going to switch back. */
- CORE_ADDR new_pc;
- CORE_ADDR old_pc = read_pc ();
-
- /* Yuk, shouldn't use global to specify current
- thread. But that's how gdb does it. */
- current_thread = PIDGET (inferior_ptid);
- inferior_ptid = pid_to_ptid (old_thread);
-
- new_pc = read_pc ();
- if (new_pc != old_pc /* If at same pc, no need */
- && breakpoint_here_p (new_pc))
- {
- /* User hasn't deleted the BP.
- Return TRUE, finishing switch to "old_thread". */
- flush_cached_frames ();
- registers_changed ();
-#if 0
- printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
- current_thread, PIDGET (inferior_ptid));
-#endif
-
- return 1;
- }
-
- /* Otherwise switch back to the user-chosen thread. */
- inferior_ptid = pid_to_ptid (current_thread);
- new_pc = read_pc (); /* Re-prime register cache */
- }
-
- return 0;
-}
-#endif /* PREPARE_TO_PROCEED */
-
-void
-hppa_skip_permanent_breakpoint (void)
-{
- /* To step over a breakpoint instruction on the PA takes some
- fiddling with the instruction address queue.
-
- When we stop at a breakpoint, the IA queue front (the instruction
- we're executing now) points at the breakpoint instruction, and
- the IA queue back (the next instruction to execute) points to
- whatever instruction we would execute after the breakpoint, if it
- were an ordinary instruction. This is the case even if the
- breakpoint is in the delay slot of a branch instruction.
-
- Clearly, to step past the breakpoint, we need to set the queue
- front to the back. But what do we put in the back? What
- instruction comes after that one? Because of the branch delay
- slot, the next insn is always at the back + 4. */
- write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
- write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
-
- write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
- /* We can leave the tail's space the same, since there's no jump. */
-}
-
-void
-_initialize_hppa_tdep (void)
-{
- struct cmd_list_element *c;
- void break_at_finish_command (char *arg, int from_tty);
- void tbreak_at_finish_command (char *arg, int from_tty);
- void break_at_finish_at_depth_command (char *arg, int from_tty);
-
- tm_print_insn = print_insn_hppa;
-
- add_cmd ("unwind", class_maintenance, unwind_command,
- "Print unwind table entry at given address.",
- &maintenanceprintlist);
-
- deprecate_cmd (add_com ("xbreak", class_breakpoint,
- break_at_finish_command,
- concat ("Set breakpoint at procedure exit. \n\
-Argument may be function name, or \"*\" and an address.\n\
-If function is specified, break at end of code for that function.\n\
-If an address is specified, break at the end of the function that contains \n\
-that exact address.\n",
- "With no arg, uses current execution address of selected stack frame.\n\
-This is useful for breaking on return to a stack frame.\n\
-\n\
-Multiple breakpoints at one place are permitted, and useful if conditional.\n\
-\n\
-Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
- deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
- deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
- deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
- deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
-
- deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
- tbreak_at_finish_command,
-"Set temporary breakpoint at procedure exit. Either there should\n\
-be no argument or the argument must be a depth.\n"), NULL);
- c->completer = location_completer;
-
- if (xdb_commands)
- deprecate_cmd (add_com ("bx", class_breakpoint,
- break_at_finish_at_depth_command,
-"Set breakpoint at procedure exit. Either there should\n\
-be no argument or the argument must be a depth.\n"), NULL);
-}
-
-/* Copy the function value from VALBUF into the proper location
- for a function return.
-
- Called only in the context of the "return" command. */
-
-void
-hppa_store_return_value (struct type *type, char *valbuf)
-{
- /* For software floating point, the return value goes into the
- integer registers. But we do not have any flag to key this on,
- so we always store the value into the integer registers.
-
- If its a float value, then we also store it into the floating
- point registers. */
- write_register_bytes (REGISTER_BYTE (28)
- + (TYPE_LENGTH (type) > 4
- ? (8 - TYPE_LENGTH (type))
- : (4 - TYPE_LENGTH (type))),
- valbuf,
- TYPE_LENGTH (type));
- if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
- write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
- valbuf,
- TYPE_LENGTH (type));
-}
-
-/* Copy the function's return value into VALBUF.
-
- This function is called only in the context of "target function calls",
- ie. when the debugger forces a function to be called in the child, and
- when the debugger forces a fucntion to return prematurely via the
- "return" command. */
-
-void
-hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
-{
- if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
- memcpy (valbuf,
- (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
- TYPE_LENGTH (type));
- else
- memcpy (valbuf,
- ((char *)regbuf
- + REGISTER_BYTE (28)
- + (TYPE_LENGTH (type) > 4
- ? (8 - TYPE_LENGTH (type))
- : (4 - TYPE_LENGTH (type)))),
- TYPE_LENGTH (type));
-}