summaryrefslogtreecommitdiff
path: root/gdb/infrun.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/infrun.c')
-rw-r--r--gdb/infrun.c4383
1 files changed, 0 insertions, 4383 deletions
diff --git a/gdb/infrun.c b/gdb/infrun.c
deleted file mode 100644
index c935db86a7b..00000000000
--- a/gdb/infrun.c
+++ /dev/null
@@ -1,4383 +0,0 @@
-/* Target-struct-independent code to start (run) and stop an inferior process.
-
- Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
- 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
- Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "gdb_string.h"
-#include <ctype.h>
-#include "symtab.h"
-#include "frame.h"
-#include "inferior.h"
-#include "breakpoint.h"
-#include "gdb_wait.h"
-#include "gdbcore.h"
-#include "gdbcmd.h"
-#include "cli/cli-script.h"
-#include "target.h"
-#include "gdbthread.h"
-#include "annotate.h"
-#include "symfile.h"
-#include "top.h"
-#include <signal.h>
-#include "inf-loop.h"
-#include "regcache.h"
-#include "value.h"
-
-/* Prototypes for local functions */
-
-static void signals_info (char *, int);
-
-static void handle_command (char *, int);
-
-static void sig_print_info (enum target_signal);
-
-static void sig_print_header (void);
-
-static void resume_cleanups (void *);
-
-static int hook_stop_stub (void *);
-
-static void delete_breakpoint_current_contents (void *);
-
-static void set_follow_fork_mode_command (char *arg, int from_tty,
- struct cmd_list_element * c);
-
-static struct inferior_status *xmalloc_inferior_status (void);
-
-static void free_inferior_status (struct inferior_status *);
-
-static int restore_selected_frame (void *);
-
-static void build_infrun (void);
-
-static void follow_inferior_fork (int parent_pid, int child_pid,
- int has_forked, int has_vforked);
-
-static void follow_fork (int parent_pid, int child_pid);
-
-static void follow_vfork (int parent_pid, int child_pid);
-
-static void set_schedlock_func (char *args, int from_tty,
- struct cmd_list_element * c);
-
-struct execution_control_state;
-
-static int currently_stepping (struct execution_control_state *ecs);
-
-static void xdb_handle_command (char *args, int from_tty);
-
-void _initialize_infrun (void);
-
-int inferior_ignoring_startup_exec_events = 0;
-int inferior_ignoring_leading_exec_events = 0;
-
-/* When set, stop the 'step' command if we enter a function which has
- no line number information. The normal behavior is that we step
- over such function. */
-int step_stop_if_no_debug = 0;
-
-/* In asynchronous mode, but simulating synchronous execution. */
-
-int sync_execution = 0;
-
-/* wait_for_inferior and normal_stop use this to notify the user
- when the inferior stopped in a different thread than it had been
- running in. */
-
-static ptid_t previous_inferior_ptid;
-
-/* This is true for configurations that may follow through execl() and
- similar functions. At present this is only true for HP-UX native. */
-
-#ifndef MAY_FOLLOW_EXEC
-#define MAY_FOLLOW_EXEC (0)
-#endif
-
-static int may_follow_exec = MAY_FOLLOW_EXEC;
-
-/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
- program. It needs to examine the jmp_buf argument and extract the PC
- from it. The return value is non-zero on success, zero otherwise. */
-
-#ifndef GET_LONGJMP_TARGET
-#define GET_LONGJMP_TARGET(PC_ADDR) 0
-#endif
-
-
-/* Dynamic function trampolines are similar to solib trampolines in that they
- are between the caller and the callee. The difference is that when you
- enter a dynamic trampoline, you can't determine the callee's address. Some
- (usually complex) code needs to run in the dynamic trampoline to figure out
- the callee's address. This macro is usually called twice. First, when we
- enter the trampoline (looks like a normal function call at that point). It
- should return the PC of a point within the trampoline where the callee's
- address is known. Second, when we hit the breakpoint, this routine returns
- the callee's address. At that point, things proceed as per a step resume
- breakpoint. */
-
-#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
-#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
-#endif
-
-/* If the program uses ELF-style shared libraries, then calls to
- functions in shared libraries go through stubs, which live in a
- table called the PLT (Procedure Linkage Table). The first time the
- function is called, the stub sends control to the dynamic linker,
- which looks up the function's real address, patches the stub so
- that future calls will go directly to the function, and then passes
- control to the function.
-
- If we are stepping at the source level, we don't want to see any of
- this --- we just want to skip over the stub and the dynamic linker.
- The simple approach is to single-step until control leaves the
- dynamic linker.
-
- However, on some systems (e.g., Red Hat Linux 5.2) the dynamic
- linker calls functions in the shared C library, so you can't tell
- from the PC alone whether the dynamic linker is still running. In
- this case, we use a step-resume breakpoint to get us past the
- dynamic linker, as if we were using "next" to step over a function
- call.
-
- IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
- linker code or not. Normally, this means we single-step. However,
- if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
- address where we can place a step-resume breakpoint to get past the
- linker's symbol resolution function.
-
- IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
- pretty portable way, by comparing the PC against the address ranges
- of the dynamic linker's sections.
-
- SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
- it depends on internal details of the dynamic linker. It's usually
- not too hard to figure out where to put a breakpoint, but it
- certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
- sanity checking. If it can't figure things out, returning zero and
- getting the (possibly confusing) stepping behavior is better than
- signalling an error, which will obscure the change in the
- inferior's state. */
-
-#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
-#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
-#endif
-
-#ifndef SKIP_SOLIB_RESOLVER
-#define SKIP_SOLIB_RESOLVER(pc) 0
-#endif
-
-/* In some shared library schemes, the return path from a shared library
- call may need to go through a trampoline too. */
-
-#ifndef IN_SOLIB_RETURN_TRAMPOLINE
-#define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
-#endif
-
-/* This function returns TRUE if pc is the address of an instruction
- that lies within the dynamic linker (such as the event hook, or the
- dld itself).
-
- This function must be used only when a dynamic linker event has
- been caught, and the inferior is being stepped out of the hook, or
- undefined results are guaranteed. */
-
-#ifndef SOLIB_IN_DYNAMIC_LINKER
-#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
-#endif
-
-/* On MIPS16, a function that returns a floating point value may call
- a library helper function to copy the return value to a floating point
- register. The IGNORE_HELPER_CALL macro returns non-zero if we
- should ignore (i.e. step over) this function call. */
-#ifndef IGNORE_HELPER_CALL
-#define IGNORE_HELPER_CALL(pc) 0
-#endif
-
-/* On some systems, the PC may be left pointing at an instruction that won't
- actually be executed. This is usually indicated by a bit in the PSW. If
- we find ourselves in such a state, then we step the target beyond the
- nullified instruction before returning control to the user so as to avoid
- confusion. */
-
-#ifndef INSTRUCTION_NULLIFIED
-#define INSTRUCTION_NULLIFIED 0
-#endif
-
-/* We can't step off a permanent breakpoint in the ordinary way, because we
- can't remove it. Instead, we have to advance the PC to the next
- instruction. This macro should expand to a pointer to a function that
- does that, or zero if we have no such function. If we don't have a
- definition for it, we have to report an error. */
-#ifndef SKIP_PERMANENT_BREAKPOINT
-#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
-static void
-default_skip_permanent_breakpoint (void)
-{
- error ("\
-The program is stopped at a permanent breakpoint, but GDB does not know\n\
-how to step past a permanent breakpoint on this architecture. Try using\n\
-a command like `return' or `jump' to continue execution.");
-}
-#endif
-
-
-/* Convert the #defines into values. This is temporary until wfi control
- flow is completely sorted out. */
-
-#ifndef HAVE_STEPPABLE_WATCHPOINT
-#define HAVE_STEPPABLE_WATCHPOINT 0
-#else
-#undef HAVE_STEPPABLE_WATCHPOINT
-#define HAVE_STEPPABLE_WATCHPOINT 1
-#endif
-
-#ifndef HAVE_NONSTEPPABLE_WATCHPOINT
-#define HAVE_NONSTEPPABLE_WATCHPOINT 0
-#else
-#undef HAVE_NONSTEPPABLE_WATCHPOINT
-#define HAVE_NONSTEPPABLE_WATCHPOINT 1
-#endif
-
-#ifndef HAVE_CONTINUABLE_WATCHPOINT
-#define HAVE_CONTINUABLE_WATCHPOINT 0
-#else
-#undef HAVE_CONTINUABLE_WATCHPOINT
-#define HAVE_CONTINUABLE_WATCHPOINT 1
-#endif
-
-#ifndef CANNOT_STEP_HW_WATCHPOINTS
-#define CANNOT_STEP_HW_WATCHPOINTS 0
-#else
-#undef CANNOT_STEP_HW_WATCHPOINTS
-#define CANNOT_STEP_HW_WATCHPOINTS 1
-#endif
-
-/* Tables of how to react to signals; the user sets them. */
-
-static unsigned char *signal_stop;
-static unsigned char *signal_print;
-static unsigned char *signal_program;
-
-#define SET_SIGS(nsigs,sigs,flags) \
- do { \
- int signum = (nsigs); \
- while (signum-- > 0) \
- if ((sigs)[signum]) \
- (flags)[signum] = 1; \
- } while (0)
-
-#define UNSET_SIGS(nsigs,sigs,flags) \
- do { \
- int signum = (nsigs); \
- while (signum-- > 0) \
- if ((sigs)[signum]) \
- (flags)[signum] = 0; \
- } while (0)
-
-/* Value to pass to target_resume() to cause all threads to resume */
-
-#define RESUME_ALL (pid_to_ptid (-1))
-
-/* Command list pointer for the "stop" placeholder. */
-
-static struct cmd_list_element *stop_command;
-
-/* Nonzero if breakpoints are now inserted in the inferior. */
-
-static int breakpoints_inserted;
-
-/* Function inferior was in as of last step command. */
-
-static struct symbol *step_start_function;
-
-/* Nonzero if we are expecting a trace trap and should proceed from it. */
-
-static int trap_expected;
-
-#ifdef SOLIB_ADD
-/* Nonzero if we want to give control to the user when we're notified
- of shared library events by the dynamic linker. */
-static int stop_on_solib_events;
-#endif
-
-#ifdef HP_OS_BUG
-/* Nonzero if the next time we try to continue the inferior, it will
- step one instruction and generate a spurious trace trap.
- This is used to compensate for a bug in HP-UX. */
-
-static int trap_expected_after_continue;
-#endif
-
-/* Nonzero means expecting a trace trap
- and should stop the inferior and return silently when it happens. */
-
-int stop_after_trap;
-
-/* Nonzero means expecting a trap and caller will handle it themselves.
- It is used after attach, due to attaching to a process;
- when running in the shell before the child program has been exec'd;
- and when running some kinds of remote stuff (FIXME?). */
-
-int stop_soon_quietly;
-
-/* Nonzero if proceed is being used for a "finish" command or a similar
- situation when stop_registers should be saved. */
-
-int proceed_to_finish;
-
-/* Save register contents here when about to pop a stack dummy frame,
- if-and-only-if proceed_to_finish is set.
- Thus this contains the return value from the called function (assuming
- values are returned in a register). */
-
-char *stop_registers;
-
-/* Nonzero if program stopped due to error trying to insert breakpoints. */
-
-static int breakpoints_failed;
-
-/* Nonzero after stop if current stack frame should be printed. */
-
-static int stop_print_frame;
-
-static struct breakpoint *step_resume_breakpoint = NULL;
-static struct breakpoint *through_sigtramp_breakpoint = NULL;
-
-/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
- interactions with an inferior that is running a kernel function
- (aka, a system call or "syscall"). wait_for_inferior therefore
- may have a need to know when the inferior is in a syscall. This
- is a count of the number of inferior threads which are known to
- currently be running in a syscall. */
-static int number_of_threads_in_syscalls;
-
-/* This is a cached copy of the pid/waitstatus of the last event
- returned by target_wait()/target_wait_hook(). This information is
- returned by get_last_target_status(). */
-static ptid_t target_last_wait_ptid;
-static struct target_waitstatus target_last_waitstatus;
-
-/* This is used to remember when a fork, vfork or exec event
- was caught by a catchpoint, and thus the event is to be
- followed at the next resume of the inferior, and not
- immediately. */
-static struct
- {
- enum target_waitkind kind;
- struct
- {
- int parent_pid;
- int saw_parent_fork;
- int child_pid;
- int saw_child_fork;
- int saw_child_exec;
- }
- fork_event;
- char *execd_pathname;
- }
-pending_follow;
-
-/* Some platforms don't allow us to do anything meaningful with a
- vforked child until it has exec'd. Vforked processes on such
- platforms can only be followed after they've exec'd.
-
- When this is set to 0, a vfork can be immediately followed,
- and an exec can be followed merely as an exec. When this is
- set to 1, a vfork event has been seen, but cannot be followed
- until the exec is seen.
-
- (In the latter case, inferior_ptid is still the parent of the
- vfork, and pending_follow.fork_event.child_pid is the child. The
- appropriate process is followed, according to the setting of
- follow-fork-mode.) */
-static int follow_vfork_when_exec;
-
-static const char follow_fork_mode_ask[] = "ask";
-static const char follow_fork_mode_both[] = "both";
-static const char follow_fork_mode_child[] = "child";
-static const char follow_fork_mode_parent[] = "parent";
-
-static const char *follow_fork_mode_kind_names[] =
-{
- follow_fork_mode_ask,
- /* ??rehrauer: The "both" option is broken, by what may be a 10.20
- kernel problem. It's also not terribly useful without a GUI to
- help the user drive two debuggers. So for now, I'm disabling the
- "both" option. */
- /* follow_fork_mode_both, */
- follow_fork_mode_child,
- follow_fork_mode_parent,
- NULL
-};
-
-static const char *follow_fork_mode_string = follow_fork_mode_parent;
-
-
-static void
-follow_inferior_fork (int parent_pid, int child_pid, int has_forked,
- int has_vforked)
-{
- int followed_parent = 0;
- int followed_child = 0;
-
- /* Which process did the user want us to follow? */
- const char *follow_mode = follow_fork_mode_string;
-
- /* Or, did the user not know, and want us to ask? */
- if (follow_fork_mode_string == follow_fork_mode_ask)
- {
- internal_error (__FILE__, __LINE__,
- "follow_inferior_fork: \"ask\" mode not implemented");
- /* follow_mode = follow_fork_mode_...; */
- }
-
- /* If we're to be following the parent, then detach from child_pid.
- We're already following the parent, so need do nothing explicit
- for it. */
- if (follow_mode == follow_fork_mode_parent)
- {
- followed_parent = 1;
-
- /* We're already attached to the parent, by default. */
-
- /* Before detaching from the child, remove all breakpoints from
- it. (This won't actually modify the breakpoint list, but will
- physically remove the breakpoints from the child.) */
- if (!has_vforked || !follow_vfork_when_exec)
- {
- detach_breakpoints (child_pid);
-#ifdef SOLIB_REMOVE_INFERIOR_HOOK
- SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
-#endif
- }
-
- /* Detach from the child. */
- dont_repeat ();
-
- target_require_detach (child_pid, "", 1);
- }
-
- /* If we're to be following the child, then attach to it, detach
- from inferior_ptid, and set inferior_ptid to child_pid. */
- else if (follow_mode == follow_fork_mode_child)
- {
- char child_pid_spelling[100]; /* Arbitrary length. */
-
- followed_child = 1;
-
- /* Before detaching from the parent, detach all breakpoints from
- the child. But only if we're forking, or if we follow vforks
- as soon as they happen. (If we're following vforks only when
- the child has exec'd, then it's very wrong to try to write
- back the "shadow contents" of inserted breakpoints now -- they
- belong to the child's pre-exec'd a.out.) */
- if (!has_vforked || !follow_vfork_when_exec)
- {
- detach_breakpoints (child_pid);
- }
-
- /* Before detaching from the parent, remove all breakpoints from it. */
- remove_breakpoints ();
-
- /* Also reset the solib inferior hook from the parent. */
-#ifdef SOLIB_REMOVE_INFERIOR_HOOK
- SOLIB_REMOVE_INFERIOR_HOOK (PIDGET (inferior_ptid));
-#endif
-
- /* Detach from the parent. */
- dont_repeat ();
- target_detach (NULL, 1);
-
- /* Attach to the child. */
- inferior_ptid = pid_to_ptid (child_pid);
- sprintf (child_pid_spelling, "%d", child_pid);
- dont_repeat ();
-
- target_require_attach (child_pid_spelling, 1);
-
- /* Was there a step_resume breakpoint? (There was if the user
- did a "next" at the fork() call.) If so, explicitly reset its
- thread number.
-
- step_resumes are a form of bp that are made to be per-thread.
- Since we created the step_resume bp when the parent process
- was being debugged, and now are switching to the child process,
- from the breakpoint package's viewpoint, that's a switch of
- "threads". We must update the bp's notion of which thread
- it is for, or it'll be ignored when it triggers... */
- if (step_resume_breakpoint &&
- (!has_vforked || !follow_vfork_when_exec))
- breakpoint_re_set_thread (step_resume_breakpoint);
-
- /* Reinsert all breakpoints in the child. (The user may've set
- breakpoints after catching the fork, in which case those
- actually didn't get set in the child, but only in the parent.) */
- if (!has_vforked || !follow_vfork_when_exec)
- {
- breakpoint_re_set ();
- insert_breakpoints ();
- }
- }
-
- /* If we're to be following both parent and child, then fork ourselves,
- and attach the debugger clone to the child. */
- else if (follow_mode == follow_fork_mode_both)
- {
- char pid_suffix[100]; /* Arbitrary length. */
-
- /* Clone ourselves to follow the child. This is the end of our
- involvement with child_pid; our clone will take it from here... */
- dont_repeat ();
- target_clone_and_follow_inferior (child_pid, &followed_child);
- followed_parent = !followed_child;
-
- /* We continue to follow the parent. To help distinguish the two
- debuggers, though, both we and our clone will reset our prompts. */
- sprintf (pid_suffix, "[%d] ", PIDGET (inferior_ptid));
- set_prompt (strcat (get_prompt (), pid_suffix));
- }
-
- /* The parent and child of a vfork share the same address space.
- Also, on some targets the order in which vfork and exec events
- are received for parent in child requires some delicate handling
- of the events.
-
- For instance, on ptrace-based HPUX we receive the child's vfork
- event first, at which time the parent has been suspended by the
- OS and is essentially untouchable until the child's exit or second
- exec event arrives. At that time, the parent's vfork event is
- delivered to us, and that's when we see and decide how to follow
- the vfork. But to get to that point, we must continue the child
- until it execs or exits. To do that smoothly, all breakpoints
- must be removed from the child, in case there are any set between
- the vfork() and exec() calls. But removing them from the child
- also removes them from the parent, due to the shared-address-space
- nature of a vfork'd parent and child. On HPUX, therefore, we must
- take care to restore the bp's to the parent before we continue it.
- Else, it's likely that we may not stop in the expected place. (The
- worst scenario is when the user tries to step over a vfork() call;
- the step-resume bp must be restored for the step to properly stop
- in the parent after the call completes!)
-
- Sequence of events, as reported to gdb from HPUX:
-
- Parent Child Action for gdb to take
- -------------------------------------------------------
- 1 VFORK Continue child
- 2 EXEC
- 3 EXEC or EXIT
- 4 VFORK */
- if (has_vforked)
- {
- target_post_follow_vfork (parent_pid,
- followed_parent,
- child_pid,
- followed_child);
- }
-
- pending_follow.fork_event.saw_parent_fork = 0;
- pending_follow.fork_event.saw_child_fork = 0;
-}
-
-static void
-follow_fork (int parent_pid, int child_pid)
-{
- follow_inferior_fork (parent_pid, child_pid, 1, 0);
-}
-
-
-/* Forward declaration. */
-static void follow_exec (int, char *);
-
-static void
-follow_vfork (int parent_pid, int child_pid)
-{
- follow_inferior_fork (parent_pid, child_pid, 0, 1);
-
- /* Did we follow the child? Had it exec'd before we saw the parent vfork? */
- if (pending_follow.fork_event.saw_child_exec
- && (PIDGET (inferior_ptid) == child_pid))
- {
- pending_follow.fork_event.saw_child_exec = 0;
- pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
- follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
- xfree (pending_follow.execd_pathname);
- }
-}
-
-/* EXECD_PATHNAME is assumed to be non-NULL. */
-
-static void
-follow_exec (int pid, char *execd_pathname)
-{
- int saved_pid = pid;
- struct target_ops *tgt;
-
- if (!may_follow_exec)
- return;
-
- /* Did this exec() follow a vfork()? If so, we must follow the
- vfork now too. Do it before following the exec. */
- if (follow_vfork_when_exec &&
- (pending_follow.kind == TARGET_WAITKIND_VFORKED))
- {
- pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
- follow_vfork (PIDGET (inferior_ptid),
- pending_follow.fork_event.child_pid);
- follow_vfork_when_exec = 0;
- saved_pid = PIDGET (inferior_ptid);
-
- /* Did we follow the parent? If so, we're done. If we followed
- the child then we must also follow its exec(). */
- if (PIDGET (inferior_ptid) == pending_follow.fork_event.parent_pid)
- return;
- }
-
- /* This is an exec event that we actually wish to pay attention to.
- Refresh our symbol table to the newly exec'd program, remove any
- momentary bp's, etc.
-
- If there are breakpoints, they aren't really inserted now,
- since the exec() transformed our inferior into a fresh set
- of instructions.
-
- We want to preserve symbolic breakpoints on the list, since
- we have hopes that they can be reset after the new a.out's
- symbol table is read.
-
- However, any "raw" breakpoints must be removed from the list
- (e.g., the solib bp's), since their address is probably invalid
- now.
-
- And, we DON'T want to call delete_breakpoints() here, since
- that may write the bp's "shadow contents" (the instruction
- value that was overwritten witha TRAP instruction). Since
- we now have a new a.out, those shadow contents aren't valid. */
- update_breakpoints_after_exec ();
-
- /* If there was one, it's gone now. We cannot truly step-to-next
- statement through an exec(). */
- step_resume_breakpoint = NULL;
- step_range_start = 0;
- step_range_end = 0;
-
- /* If there was one, it's gone now. */
- through_sigtramp_breakpoint = NULL;
-
- /* What is this a.out's name? */
- printf_unfiltered ("Executing new program: %s\n", execd_pathname);
-
- /* We've followed the inferior through an exec. Therefore, the
- inferior has essentially been killed & reborn. */
-
- /* First collect the run target in effect. */
- tgt = find_run_target ();
- /* If we can't find one, things are in a very strange state... */
- if (tgt == NULL)
- error ("Could find run target to save before following exec");
-
- gdb_flush (gdb_stdout);
- target_mourn_inferior ();
- inferior_ptid = pid_to_ptid (saved_pid);
- /* Because mourn_inferior resets inferior_ptid. */
- push_target (tgt);
-
- /* That a.out is now the one to use. */
- exec_file_attach (execd_pathname, 0);
-
- /* And also is where symbols can be found. */
- symbol_file_add_main (execd_pathname, 0);
-
- /* Reset the shared library package. This ensures that we get
- a shlib event when the child reaches "_start", at which point
- the dld will have had a chance to initialize the child. */
-#if defined(SOLIB_RESTART)
- SOLIB_RESTART ();
-#endif
-#ifdef SOLIB_CREATE_INFERIOR_HOOK
- SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
-#endif
-
- /* Reinsert all breakpoints. (Those which were symbolic have
- been reset to the proper address in the new a.out, thanks
- to symbol_file_command...) */
- insert_breakpoints ();
-
- /* The next resume of this inferior should bring it to the shlib
- startup breakpoints. (If the user had also set bp's on
- "main" from the old (parent) process, then they'll auto-
- matically get reset there in the new process.) */
-}
-
-/* Non-zero if we just simulating a single-step. This is needed
- because we cannot remove the breakpoints in the inferior process
- until after the `wait' in `wait_for_inferior'. */
-static int singlestep_breakpoints_inserted_p = 0;
-
-
-/* Things to clean up if we QUIT out of resume (). */
-/* ARGSUSED */
-static void
-resume_cleanups (void *ignore)
-{
- normal_stop ();
-}
-
-static const char schedlock_off[] = "off";
-static const char schedlock_on[] = "on";
-static const char schedlock_step[] = "step";
-static const char *scheduler_mode = schedlock_off;
-static const char *scheduler_enums[] =
-{
- schedlock_off,
- schedlock_on,
- schedlock_step,
- NULL
-};
-
-static void
-set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
-{
- if (c->type == set_cmd)
- if (!target_can_lock_scheduler)
- {
- scheduler_mode = schedlock_off;
- error ("Target '%s' cannot support this command.",
- target_shortname);
- }
-}
-
-
-/* Resume the inferior, but allow a QUIT. This is useful if the user
- wants to interrupt some lengthy single-stepping operation
- (for child processes, the SIGINT goes to the inferior, and so
- we get a SIGINT random_signal, but for remote debugging and perhaps
- other targets, that's not true).
-
- STEP nonzero if we should step (zero to continue instead).
- SIG is the signal to give the inferior (zero for none). */
-void
-resume (int step, enum target_signal sig)
-{
- int should_resume = 1;
- struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
- QUIT;
-
- /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
-
-
- /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
- over an instruction that causes a page fault without triggering
- a hardware watchpoint. The kernel properly notices that it shouldn't
- stop, because the hardware watchpoint is not triggered, but it forgets
- the step request and continues the program normally.
- Work around the problem by removing hardware watchpoints if a step is
- requested, GDB will check for a hardware watchpoint trigger after the
- step anyway. */
- if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
- remove_hw_watchpoints ();
-
-
- /* Normally, by the time we reach `resume', the breakpoints are either
- removed or inserted, as appropriate. The exception is if we're sitting
- at a permanent breakpoint; we need to step over it, but permanent
- breakpoints can't be removed. So we have to test for it here. */
- if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
- SKIP_PERMANENT_BREAKPOINT ();
-
- if (SOFTWARE_SINGLE_STEP_P () && step)
- {
- /* Do it the hard way, w/temp breakpoints */
- SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
- /* ...and don't ask hardware to do it. */
- step = 0;
- /* and do not pull these breakpoints until after a `wait' in
- `wait_for_inferior' */
- singlestep_breakpoints_inserted_p = 1;
- }
-
- /* Handle any optimized stores to the inferior NOW... */
-#ifdef DO_DEFERRED_STORES
- DO_DEFERRED_STORES;
-#endif
-
- /* If there were any forks/vforks/execs that were caught and are
- now to be followed, then do so. */
- switch (pending_follow.kind)
- {
- case (TARGET_WAITKIND_FORKED):
- pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
- follow_fork (PIDGET (inferior_ptid),
- pending_follow.fork_event.child_pid);
- break;
-
- case (TARGET_WAITKIND_VFORKED):
- {
- int saw_child_exec = pending_follow.fork_event.saw_child_exec;
-
- pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
- follow_vfork (PIDGET (inferior_ptid),
- pending_follow.fork_event.child_pid);
-
- /* Did we follow the child, but not yet see the child's exec event?
- If so, then it actually ought to be waiting for us; we respond to
- parent vfork events. We don't actually want to resume the child
- in this situation; we want to just get its exec event. */
- if (!saw_child_exec &&
- (PIDGET (inferior_ptid) == pending_follow.fork_event.child_pid))
- should_resume = 0;
- }
- break;
-
- case (TARGET_WAITKIND_EXECD):
- /* If we saw a vfork event but couldn't follow it until we saw
- an exec, then now might be the time! */
- pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
- /* follow_exec is called as soon as the exec event is seen. */
- break;
-
- default:
- break;
- }
-
- /* Install inferior's terminal modes. */
- target_terminal_inferior ();
-
- if (should_resume)
- {
- ptid_t resume_ptid;
-
- resume_ptid = RESUME_ALL; /* Default */
-
- if ((step || singlestep_breakpoints_inserted_p) &&
- !breakpoints_inserted && breakpoint_here_p (read_pc ()))
- {
- /* Stepping past a breakpoint without inserting breakpoints.
- Make sure only the current thread gets to step, so that
- other threads don't sneak past breakpoints while they are
- not inserted. */
-
- resume_ptid = inferior_ptid;
- }
-
- if ((scheduler_mode == schedlock_on) ||
- (scheduler_mode == schedlock_step &&
- (step || singlestep_breakpoints_inserted_p)))
- {
- /* User-settable 'scheduler' mode requires solo thread resume. */
- resume_ptid = inferior_ptid;
- }
-
-#ifdef CANNOT_STEP_BREAKPOINT
- /* Most targets can step a breakpoint instruction, thus executing it
- normally. But if this one cannot, just continue and we will hit
- it anyway. */
- if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
- step = 0;
-#endif
- target_resume (resume_ptid, step, sig);
- }
-
- discard_cleanups (old_cleanups);
-}
-
-
-/* Clear out all variables saying what to do when inferior is continued.
- First do this, then set the ones you want, then call `proceed'. */
-
-void
-clear_proceed_status (void)
-{
- trap_expected = 0;
- step_range_start = 0;
- step_range_end = 0;
- step_frame_address = 0;
- step_over_calls = STEP_OVER_UNDEBUGGABLE;
- stop_after_trap = 0;
- stop_soon_quietly = 0;
- proceed_to_finish = 0;
- breakpoint_proceeded = 1; /* We're about to proceed... */
-
- /* Discard any remaining commands or status from previous stop. */
- bpstat_clear (&stop_bpstat);
-}
-
-/* Basic routine for continuing the program in various fashions.
-
- ADDR is the address to resume at, or -1 for resume where stopped.
- SIGGNAL is the signal to give it, or 0 for none,
- or -1 for act according to how it stopped.
- STEP is nonzero if should trap after one instruction.
- -1 means return after that and print nothing.
- You should probably set various step_... variables
- before calling here, if you are stepping.
-
- You should call clear_proceed_status before calling proceed. */
-
-void
-proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
-{
- int oneproc = 0;
-
- if (step > 0)
- step_start_function = find_pc_function (read_pc ());
- if (step < 0)
- stop_after_trap = 1;
-
- if (addr == (CORE_ADDR) -1)
- {
- /* If there is a breakpoint at the address we will resume at,
- step one instruction before inserting breakpoints
- so that we do not stop right away (and report a second
- hit at this breakpoint). */
-
- if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
- oneproc = 1;
-
-#ifndef STEP_SKIPS_DELAY
-#define STEP_SKIPS_DELAY(pc) (0)
-#define STEP_SKIPS_DELAY_P (0)
-#endif
- /* Check breakpoint_here_p first, because breakpoint_here_p is fast
- (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
- is slow (it needs to read memory from the target). */
- if (STEP_SKIPS_DELAY_P
- && breakpoint_here_p (read_pc () + 4)
- && STEP_SKIPS_DELAY (read_pc ()))
- oneproc = 1;
- }
- else
- {
- write_pc (addr);
- }
-
-#ifdef PREPARE_TO_PROCEED
- /* In a multi-threaded task we may select another thread
- and then continue or step.
-
- But if the old thread was stopped at a breakpoint, it
- will immediately cause another breakpoint stop without
- any execution (i.e. it will report a breakpoint hit
- incorrectly). So we must step over it first.
-
- PREPARE_TO_PROCEED checks the current thread against the thread
- that reported the most recent event. If a step-over is required
- it returns TRUE and sets the current thread to the old thread. */
- if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
- {
- oneproc = 1;
- }
-
-#endif /* PREPARE_TO_PROCEED */
-
-#ifdef HP_OS_BUG
- if (trap_expected_after_continue)
- {
- /* If (step == 0), a trap will be automatically generated after
- the first instruction is executed. Force step one
- instruction to clear this condition. This should not occur
- if step is nonzero, but it is harmless in that case. */
- oneproc = 1;
- trap_expected_after_continue = 0;
- }
-#endif /* HP_OS_BUG */
-
- if (oneproc)
- /* We will get a trace trap after one instruction.
- Continue it automatically and insert breakpoints then. */
- trap_expected = 1;
- else
- {
- int temp = insert_breakpoints ();
- if (temp)
- {
- print_sys_errmsg ("insert_breakpoints", temp);
- error ("Cannot insert breakpoints.\n\
-The same program may be running in another process,\n\
-or you may have requested too many hardware\n\
-breakpoints and/or watchpoints.\n");
- }
-
- breakpoints_inserted = 1;
- }
-
- if (siggnal != TARGET_SIGNAL_DEFAULT)
- stop_signal = siggnal;
- /* If this signal should not be seen by program,
- give it zero. Used for debugging signals. */
- else if (!signal_program[stop_signal])
- stop_signal = TARGET_SIGNAL_0;
-
- annotate_starting ();
-
- /* Make sure that output from GDB appears before output from the
- inferior. */
- gdb_flush (gdb_stdout);
-
- /* Resume inferior. */
- resume (oneproc || step || bpstat_should_step (), stop_signal);
-
- /* Wait for it to stop (if not standalone)
- and in any case decode why it stopped, and act accordingly. */
- /* Do this only if we are not using the event loop, or if the target
- does not support asynchronous execution. */
- if (!event_loop_p || !target_can_async_p ())
- {
- wait_for_inferior ();
- normal_stop ();
- }
-}
-
-/* Record the pc and sp of the program the last time it stopped.
- These are just used internally by wait_for_inferior, but need
- to be preserved over calls to it and cleared when the inferior
- is started. */
-static CORE_ADDR prev_pc;
-static CORE_ADDR prev_func_start;
-static char *prev_func_name;
-
-
-/* Start remote-debugging of a machine over a serial link. */
-
-void
-start_remote (void)
-{
- init_thread_list ();
- init_wait_for_inferior ();
- stop_soon_quietly = 1;
- trap_expected = 0;
-
- /* Always go on waiting for the target, regardless of the mode. */
- /* FIXME: cagney/1999-09-23: At present it isn't possible to
- indicate to wait_for_inferior that a target should timeout if
- nothing is returned (instead of just blocking). Because of this,
- targets expecting an immediate response need to, internally, set
- things up so that the target_wait() is forced to eventually
- timeout. */
- /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
- differentiate to its caller what the state of the target is after
- the initial open has been performed. Here we're assuming that
- the target has stopped. It should be possible to eventually have
- target_open() return to the caller an indication that the target
- is currently running and GDB state should be set to the same as
- for an async run. */
- wait_for_inferior ();
- normal_stop ();
-}
-
-/* Initialize static vars when a new inferior begins. */
-
-void
-init_wait_for_inferior (void)
-{
- /* These are meaningless until the first time through wait_for_inferior. */
- prev_pc = 0;
- prev_func_start = 0;
- prev_func_name = NULL;
-
-#ifdef HP_OS_BUG
- trap_expected_after_continue = 0;
-#endif
- breakpoints_inserted = 0;
- breakpoint_init_inferior (inf_starting);
-
- /* Don't confuse first call to proceed(). */
- stop_signal = TARGET_SIGNAL_0;
-
- /* The first resume is not following a fork/vfork/exec. */
- pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
- pending_follow.fork_event.saw_parent_fork = 0;
- pending_follow.fork_event.saw_child_fork = 0;
- pending_follow.fork_event.saw_child_exec = 0;
-
- /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
- number_of_threads_in_syscalls = 0;
-
- clear_proceed_status ();
-}
-
-static void
-delete_breakpoint_current_contents (void *arg)
-{
- struct breakpoint **breakpointp = (struct breakpoint **) arg;
- if (*breakpointp != NULL)
- {
- delete_breakpoint (*breakpointp);
- *breakpointp = NULL;
- }
-}
-
-/* This enum encodes possible reasons for doing a target_wait, so that
- wfi can call target_wait in one place. (Ultimately the call will be
- moved out of the infinite loop entirely.) */
-
-enum infwait_states
-{
- infwait_normal_state,
- infwait_thread_hop_state,
- infwait_nullified_state,
- infwait_nonstep_watch_state
-};
-
-/* Why did the inferior stop? Used to print the appropriate messages
- to the interface from within handle_inferior_event(). */
-enum inferior_stop_reason
-{
- /* We don't know why. */
- STOP_UNKNOWN,
- /* Step, next, nexti, stepi finished. */
- END_STEPPING_RANGE,
- /* Found breakpoint. */
- BREAKPOINT_HIT,
- /* Inferior terminated by signal. */
- SIGNAL_EXITED,
- /* Inferior exited. */
- EXITED,
- /* Inferior received signal, and user asked to be notified. */
- SIGNAL_RECEIVED
-};
-
-/* This structure contains what used to be local variables in
- wait_for_inferior. Probably many of them can return to being
- locals in handle_inferior_event. */
-
-struct execution_control_state
- {
- struct target_waitstatus ws;
- struct target_waitstatus *wp;
- int another_trap;
- int random_signal;
- CORE_ADDR stop_func_start;
- CORE_ADDR stop_func_end;
- char *stop_func_name;
- struct symtab_and_line sal;
- int remove_breakpoints_on_following_step;
- int current_line;
- struct symtab *current_symtab;
- int handling_longjmp; /* FIXME */
- ptid_t ptid;
- ptid_t saved_inferior_ptid;
- int update_step_sp;
- int stepping_through_solib_after_catch;
- bpstat stepping_through_solib_catchpoints;
- int enable_hw_watchpoints_after_wait;
- int stepping_through_sigtramp;
- int new_thread_event;
- struct target_waitstatus tmpstatus;
- enum infwait_states infwait_state;
- ptid_t waiton_ptid;
- int wait_some_more;
- };
-
-void init_execution_control_state (struct execution_control_state * ecs);
-
-void handle_inferior_event (struct execution_control_state * ecs);
-
-static void check_sigtramp2 (struct execution_control_state *ecs);
-static void step_into_function (struct execution_control_state *ecs);
-static void step_over_function (struct execution_control_state *ecs);
-static void stop_stepping (struct execution_control_state *ecs);
-static void prepare_to_wait (struct execution_control_state *ecs);
-static void keep_going (struct execution_control_state *ecs);
-static void print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info);
-
-/* Wait for control to return from inferior to debugger.
- If inferior gets a signal, we may decide to start it up again
- instead of returning. That is why there is a loop in this function.
- When this function actually returns it means the inferior
- should be left stopped and GDB should read more commands. */
-
-void
-wait_for_inferior (void)
-{
- struct cleanup *old_cleanups;
- struct execution_control_state ecss;
- struct execution_control_state *ecs;
-
- old_cleanups = make_cleanup (delete_step_resume_breakpoint,
- &step_resume_breakpoint);
- make_cleanup (delete_breakpoint_current_contents,
- &through_sigtramp_breakpoint);
-
- /* wfi still stays in a loop, so it's OK just to take the address of
- a local to get the ecs pointer. */
- ecs = &ecss;
-
- /* Fill in with reasonable starting values. */
- init_execution_control_state (ecs);
-
- /* We'll update this if & when we switch to a new thread. */
- previous_inferior_ptid = inferior_ptid;
-
- overlay_cache_invalid = 1;
-
- /* We have to invalidate the registers BEFORE calling target_wait
- because they can be loaded from the target while in target_wait.
- This makes remote debugging a bit more efficient for those
- targets that provide critical registers as part of their normal
- status mechanism. */
-
- registers_changed ();
-
- while (1)
- {
- if (target_wait_hook)
- ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
- else
- ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
-
- /* Now figure out what to do with the result of the result. */
- handle_inferior_event (ecs);
-
- if (!ecs->wait_some_more)
- break;
- }
- do_cleanups (old_cleanups);
-}
-
-/* Asynchronous version of wait_for_inferior. It is called by the
- event loop whenever a change of state is detected on the file
- descriptor corresponding to the target. It can be called more than
- once to complete a single execution command. In such cases we need
- to keep the state in a global variable ASYNC_ECSS. If it is the
- last time that this function is called for a single execution
- command, then report to the user that the inferior has stopped, and
- do the necessary cleanups. */
-
-struct execution_control_state async_ecss;
-struct execution_control_state *async_ecs;
-
-void
-fetch_inferior_event (void *client_data)
-{
- static struct cleanup *old_cleanups;
-
- async_ecs = &async_ecss;
-
- if (!async_ecs->wait_some_more)
- {
- old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
- &step_resume_breakpoint);
- make_exec_cleanup (delete_breakpoint_current_contents,
- &through_sigtramp_breakpoint);
-
- /* Fill in with reasonable starting values. */
- init_execution_control_state (async_ecs);
-
- /* We'll update this if & when we switch to a new thread. */
- previous_inferior_ptid = inferior_ptid;
-
- overlay_cache_invalid = 1;
-
- /* We have to invalidate the registers BEFORE calling target_wait
- because they can be loaded from the target while in target_wait.
- This makes remote debugging a bit more efficient for those
- targets that provide critical registers as part of their normal
- status mechanism. */
-
- registers_changed ();
- }
-
- if (target_wait_hook)
- async_ecs->ptid = target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
- else
- async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
-
- /* Now figure out what to do with the result of the result. */
- handle_inferior_event (async_ecs);
-
- if (!async_ecs->wait_some_more)
- {
- /* Do only the cleanups that have been added by this
- function. Let the continuations for the commands do the rest,
- if there are any. */
- do_exec_cleanups (old_cleanups);
- normal_stop ();
- if (step_multi && stop_step)
- inferior_event_handler (INF_EXEC_CONTINUE, NULL);
- else
- inferior_event_handler (INF_EXEC_COMPLETE, NULL);
- }
-}
-
-/* Prepare an execution control state for looping through a
- wait_for_inferior-type loop. */
-
-void
-init_execution_control_state (struct execution_control_state *ecs)
-{
- /* ecs->another_trap? */
- ecs->random_signal = 0;
- ecs->remove_breakpoints_on_following_step = 0;
- ecs->handling_longjmp = 0; /* FIXME */
- ecs->update_step_sp = 0;
- ecs->stepping_through_solib_after_catch = 0;
- ecs->stepping_through_solib_catchpoints = NULL;
- ecs->enable_hw_watchpoints_after_wait = 0;
- ecs->stepping_through_sigtramp = 0;
- ecs->sal = find_pc_line (prev_pc, 0);
- ecs->current_line = ecs->sal.line;
- ecs->current_symtab = ecs->sal.symtab;
- ecs->infwait_state = infwait_normal_state;
- ecs->waiton_ptid = pid_to_ptid (-1);
- ecs->wp = &(ecs->ws);
-}
-
-/* Call this function before setting step_resume_breakpoint, as a
- sanity check. There should never be more than one step-resume
- breakpoint per thread, so we should never be setting a new
- step_resume_breakpoint when one is already active. */
-static void
-check_for_old_step_resume_breakpoint (void)
-{
- if (step_resume_breakpoint)
- warning ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
-}
-
-/* Return the cached copy of the last pid/waitstatus returned by
- target_wait()/target_wait_hook(). The data is actually cached by
- handle_inferior_event(), which gets called immediately after
- target_wait()/target_wait_hook(). */
-
-void
-get_last_target_status(ptid_t *ptidp, struct target_waitstatus *status)
-{
- *ptidp = target_last_wait_ptid;
- *status = target_last_waitstatus;
-}
-
-/* Switch thread contexts, maintaining "infrun state". */
-
-static void
-context_switch (struct execution_control_state *ecs)
-{
- /* Caution: it may happen that the new thread (or the old one!)
- is not in the thread list. In this case we must not attempt
- to "switch context", or we run the risk that our context may
- be lost. This may happen as a result of the target module
- mishandling thread creation. */
-
- if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
- { /* Perform infrun state context switch: */
- /* Save infrun state for the old thread. */
- save_infrun_state (inferior_ptid, prev_pc,
- prev_func_start, prev_func_name,
- trap_expected, step_resume_breakpoint,
- through_sigtramp_breakpoint, step_range_start,
- step_range_end, step_frame_address,
- ecs->handling_longjmp, ecs->another_trap,
- ecs->stepping_through_solib_after_catch,
- ecs->stepping_through_solib_catchpoints,
- ecs->stepping_through_sigtramp,
- ecs->current_line, ecs->current_symtab,
- step_sp);
-
- /* Load infrun state for the new thread. */
- load_infrun_state (ecs->ptid, &prev_pc,
- &prev_func_start, &prev_func_name,
- &trap_expected, &step_resume_breakpoint,
- &through_sigtramp_breakpoint, &step_range_start,
- &step_range_end, &step_frame_address,
- &ecs->handling_longjmp, &ecs->another_trap,
- &ecs->stepping_through_solib_after_catch,
- &ecs->stepping_through_solib_catchpoints,
- &ecs->stepping_through_sigtramp,
- &ecs->current_line, &ecs->current_symtab,
- &step_sp);
- }
- inferior_ptid = ecs->ptid;
-}
-
-
-/* Given an execution control state that has been freshly filled in
- by an event from the inferior, figure out what it means and take
- appropriate action. */
-
-void
-handle_inferior_event (struct execution_control_state *ecs)
-{
- CORE_ADDR tmp;
- int stepped_after_stopped_by_watchpoint;
-
- /* Cache the last pid/waitstatus. */
- target_last_wait_ptid = ecs->ptid;
- target_last_waitstatus = *ecs->wp;
-
- /* Keep this extra brace for now, minimizes diffs. */
- {
- switch (ecs->infwait_state)
- {
- case infwait_thread_hop_state:
- /* Cancel the waiton_ptid. */
- ecs->waiton_ptid = pid_to_ptid (-1);
- /* Fall thru to the normal_state case. */
-
- case infwait_normal_state:
- /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
- is serviced in this loop, below. */
- if (ecs->enable_hw_watchpoints_after_wait)
- {
- TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
- ecs->enable_hw_watchpoints_after_wait = 0;
- }
- stepped_after_stopped_by_watchpoint = 0;
- break;
-
- case infwait_nullified_state:
- break;
-
- case infwait_nonstep_watch_state:
- insert_breakpoints ();
-
- /* FIXME-maybe: is this cleaner than setting a flag? Does it
- handle things like signals arriving and other things happening
- in combination correctly? */
- stepped_after_stopped_by_watchpoint = 1;
- break;
- }
- ecs->infwait_state = infwait_normal_state;
-
- flush_cached_frames ();
-
- /* If it's a new process, add it to the thread database */
-
- ecs->new_thread_event = (! ptid_equal (ecs->ptid, inferior_ptid)
- && ! in_thread_list (ecs->ptid));
-
- if (ecs->ws.kind != TARGET_WAITKIND_EXITED
- && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
- && ecs->new_thread_event)
- {
- add_thread (ecs->ptid);
-
- ui_out_text (uiout, "[New ");
- ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
- ui_out_text (uiout, "]\n");
-
-#if 0
- /* NOTE: This block is ONLY meant to be invoked in case of a
- "thread creation event"! If it is invoked for any other
- sort of event (such as a new thread landing on a breakpoint),
- the event will be discarded, which is almost certainly
- a bad thing!
-
- To avoid this, the low-level module (eg. target_wait)
- should call in_thread_list and add_thread, so that the
- new thread is known by the time we get here. */
-
- /* We may want to consider not doing a resume here in order
- to give the user a chance to play with the new thread.
- It might be good to make that a user-settable option. */
-
- /* At this point, all threads are stopped (happens
- automatically in either the OS or the native code).
- Therefore we need to continue all threads in order to
- make progress. */
-
- target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
- prepare_to_wait (ecs);
- return;
-#endif
- }
-
- switch (ecs->ws.kind)
- {
- case TARGET_WAITKIND_LOADED:
- /* Ignore gracefully during startup of the inferior, as it
- might be the shell which has just loaded some objects,
- otherwise add the symbols for the newly loaded objects. */
-#ifdef SOLIB_ADD
- if (!stop_soon_quietly)
- {
- /* Remove breakpoints, SOLIB_ADD might adjust
- breakpoint addresses via breakpoint_re_set. */
- if (breakpoints_inserted)
- remove_breakpoints ();
-
- /* Check for any newly added shared libraries if we're
- supposed to be adding them automatically. Switch
- terminal for any messages produced by
- breakpoint_re_set. */
- target_terminal_ours_for_output ();
- SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
- target_terminal_inferior ();
-
- /* Reinsert breakpoints and continue. */
- if (breakpoints_inserted)
- insert_breakpoints ();
- }
-#endif
- resume (0, TARGET_SIGNAL_0);
- prepare_to_wait (ecs);
- return;
-
- case TARGET_WAITKIND_SPURIOUS:
- resume (0, TARGET_SIGNAL_0);
- prepare_to_wait (ecs);
- return;
-
- case TARGET_WAITKIND_EXITED:
- target_terminal_ours (); /* Must do this before mourn anyway */
- print_stop_reason (EXITED, ecs->ws.value.integer);
-
- /* Record the exit code in the convenience variable $_exitcode, so
- that the user can inspect this again later. */
- set_internalvar (lookup_internalvar ("_exitcode"),
- value_from_longest (builtin_type_int,
- (LONGEST) ecs->ws.value.integer));
- gdb_flush (gdb_stdout);
- target_mourn_inferior ();
- singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
- stop_print_frame = 0;
- stop_stepping (ecs);
- return;
-
- case TARGET_WAITKIND_SIGNALLED:
- stop_print_frame = 0;
- stop_signal = ecs->ws.value.sig;
- target_terminal_ours (); /* Must do this before mourn anyway */
-
- /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
- reach here unless the inferior is dead. However, for years
- target_kill() was called here, which hints that fatal signals aren't
- really fatal on some systems. If that's true, then some changes
- may be needed. */
- target_mourn_inferior ();
-
- print_stop_reason (SIGNAL_EXITED, stop_signal);
- singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
- stop_stepping (ecs);
- return;
-
- /* The following are the only cases in which we keep going;
- the above cases end in a continue or goto. */
- case TARGET_WAITKIND_FORKED:
- stop_signal = TARGET_SIGNAL_TRAP;
- pending_follow.kind = ecs->ws.kind;
-
- /* Ignore fork events reported for the parent; we're only
- interested in reacting to forks of the child. Note that
- we expect the child's fork event to be available if we
- waited for it now. */
- if (ptid_equal (inferior_ptid, ecs->ptid))
- {
- pending_follow.fork_event.saw_parent_fork = 1;
- pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
- pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
- prepare_to_wait (ecs);
- return;
- }
- else
- {
- pending_follow.fork_event.saw_child_fork = 1;
- pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
- pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
- }
-
- stop_pc = read_pc_pid (ecs->ptid);
- ecs->saved_inferior_ptid = inferior_ptid;
- inferior_ptid = ecs->ptid;
- /* The second argument of bpstat_stop_status is meant to help
- distinguish between a breakpoint trap and a singlestep trap.
- This is only important on targets where DECR_PC_AFTER_BREAK
- is non-zero. The prev_pc test is meant to distinguish between
- singlestepping a trap instruction, and singlestepping thru a
- jump to the instruction following a trap instruction. */
-
- stop_bpstat = bpstat_stop_status (&stop_pc,
- currently_stepping (ecs) &&
- prev_pc !=
- stop_pc - DECR_PC_AFTER_BREAK);
- ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
- inferior_ptid = ecs->saved_inferior_ptid;
- goto process_event_stop_test;
-
- /* If this a platform which doesn't allow a debugger to touch a
- vfork'd inferior until after it exec's, then we'd best keep
- our fingers entirely off the inferior, other than continuing
- it. This has the unfortunate side-effect that catchpoints
- of vforks will be ignored. But since the platform doesn't
- allow the inferior be touched at vfork time, there's really
- little choice. */
- case TARGET_WAITKIND_VFORKED:
- stop_signal = TARGET_SIGNAL_TRAP;
- pending_follow.kind = ecs->ws.kind;
-
- /* Is this a vfork of the parent? If so, then give any
- vfork catchpoints a chance to trigger now. (It's
- dangerous to do so if the child canot be touched until
- it execs, and the child has not yet exec'd. We probably
- should warn the user to that effect when the catchpoint
- triggers...) */
- if (ptid_equal (ecs->ptid, inferior_ptid))
- {
- pending_follow.fork_event.saw_parent_fork = 1;
- pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
- pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
- }
-
- /* If we've seen the child's vfork event but cannot really touch
- the child until it execs, then we must continue the child now.
- Else, give any vfork catchpoints a chance to trigger now. */
- else
- {
- pending_follow.fork_event.saw_child_fork = 1;
- pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
- pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
- target_post_startup_inferior (
- pid_to_ptid (pending_follow.fork_event.child_pid));
- follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
- if (follow_vfork_when_exec)
- {
- target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
- prepare_to_wait (ecs);
- return;
- }
- }
-
- stop_pc = read_pc ();
- /* The second argument of bpstat_stop_status is meant to help
- distinguish between a breakpoint trap and a singlestep trap.
- This is only important on targets where DECR_PC_AFTER_BREAK
- is non-zero. The prev_pc test is meant to distinguish between
- singlestepping a trap instruction, and singlestepping thru a
- jump to the instruction following a trap instruction. */
-
- stop_bpstat = bpstat_stop_status (&stop_pc,
- currently_stepping (ecs) &&
- prev_pc !=
- stop_pc - DECR_PC_AFTER_BREAK);
- ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
- goto process_event_stop_test;
-
- case TARGET_WAITKIND_EXECD:
- stop_signal = TARGET_SIGNAL_TRAP;
-
- /* Is this a target which reports multiple exec events per actual
- call to exec()? (HP-UX using ptrace does, for example.) If so,
- ignore all but the last one. Just resume the exec'r, and wait
- for the next exec event. */
- if (inferior_ignoring_leading_exec_events)
- {
- inferior_ignoring_leading_exec_events--;
- if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
- ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.parent_pid);
- target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
- prepare_to_wait (ecs);
- return;
- }
- inferior_ignoring_leading_exec_events =
- target_reported_exec_events_per_exec_call () - 1;
-
- pending_follow.execd_pathname =
- savestring (ecs->ws.value.execd_pathname,
- strlen (ecs->ws.value.execd_pathname));
-
- /* Did inferior_ptid exec, or did a (possibly not-yet-followed)
- child of a vfork exec?
-
- ??rehrauer: This is unabashedly an HP-UX specific thing. On
- HP-UX, events associated with a vforking inferior come in
- threes: a vfork event for the child (always first), followed
- a vfork event for the parent and an exec event for the child.
- The latter two can come in either order.
-
- If we get the parent vfork event first, life's good: We follow
- either the parent or child, and then the child's exec event is
- a "don't care".
-
- But if we get the child's exec event first, then we delay
- responding to it until we handle the parent's vfork. Because,
- otherwise we can't satisfy a "catch vfork". */
- if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
- {
- pending_follow.fork_event.saw_child_exec = 1;
-
- /* On some targets, the child must be resumed before
- the parent vfork event is delivered. A single-step
- suffices. */
- if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
- target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
- /* We expect the parent vfork event to be available now. */
- prepare_to_wait (ecs);
- return;
- }
-
- /* This causes the eventpoints and symbol table to be reset. Must
- do this now, before trying to determine whether to stop. */
- follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
- xfree (pending_follow.execd_pathname);
-
- stop_pc = read_pc_pid (ecs->ptid);
- ecs->saved_inferior_ptid = inferior_ptid;
- inferior_ptid = ecs->ptid;
- /* The second argument of bpstat_stop_status is meant to help
- distinguish between a breakpoint trap and a singlestep trap.
- This is only important on targets where DECR_PC_AFTER_BREAK
- is non-zero. The prev_pc test is meant to distinguish between
- singlestepping a trap instruction, and singlestepping thru a
- jump to the instruction following a trap instruction. */
-
- stop_bpstat = bpstat_stop_status (&stop_pc,
- currently_stepping (ecs) &&
- prev_pc !=
- stop_pc - DECR_PC_AFTER_BREAK);
- ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
- inferior_ptid = ecs->saved_inferior_ptid;
- goto process_event_stop_test;
-
- /* These syscall events are returned on HP-UX, as part of its
- implementation of page-protection-based "hardware" watchpoints.
- HP-UX has unfortunate interactions between page-protections and
- some system calls. Our solution is to disable hardware watches
- when a system call is entered, and reenable them when the syscall
- completes. The downside of this is that we may miss the precise
- point at which a watched piece of memory is modified. "Oh well."
-
- Note that we may have multiple threads running, which may each
- enter syscalls at roughly the same time. Since we don't have a
- good notion currently of whether a watched piece of memory is
- thread-private, we'd best not have any page-protections active
- when any thread is in a syscall. Thus, we only want to reenable
- hardware watches when no threads are in a syscall.
-
- Also, be careful not to try to gather much state about a thread
- that's in a syscall. It's frequently a losing proposition. */
- case TARGET_WAITKIND_SYSCALL_ENTRY:
- number_of_threads_in_syscalls++;
- if (number_of_threads_in_syscalls == 1)
- {
- TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
- }
- resume (0, TARGET_SIGNAL_0);
- prepare_to_wait (ecs);
- return;
-
- /* Before examining the threads further, step this thread to
- get it entirely out of the syscall. (We get notice of the
- event when the thread is just on the verge of exiting a
- syscall. Stepping one instruction seems to get it back
- into user code.)
-
- Note that although the logical place to reenable h/w watches
- is here, we cannot. We cannot reenable them before stepping
- the thread (this causes the next wait on the thread to hang).
-
- Nor can we enable them after stepping until we've done a wait.
- Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
- here, which will be serviced immediately after the target
- is waited on. */
- case TARGET_WAITKIND_SYSCALL_RETURN:
- target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
-
- if (number_of_threads_in_syscalls > 0)
- {
- number_of_threads_in_syscalls--;
- ecs->enable_hw_watchpoints_after_wait =
- (number_of_threads_in_syscalls == 0);
- }
- prepare_to_wait (ecs);
- return;
-
- case TARGET_WAITKIND_STOPPED:
- stop_signal = ecs->ws.value.sig;
- break;
-
- /* We had an event in the inferior, but we are not interested
- in handling it at this level. The lower layers have already
- done what needs to be done, if anything. This case can
- occur only when the target is async or extended-async. One
- of the circumstamces for this to happen is when the
- inferior produces output for the console. The inferior has
- not stopped, and we are ignoring the event. */
- case TARGET_WAITKIND_IGNORE:
- ecs->wait_some_more = 1;
- return;
- }
-
- /* We may want to consider not doing a resume here in order to give
- the user a chance to play with the new thread. It might be good
- to make that a user-settable option. */
-
- /* At this point, all threads are stopped (happens automatically in
- either the OS or the native code). Therefore we need to continue
- all threads in order to make progress. */
- if (ecs->new_thread_event)
- {
- target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
- prepare_to_wait (ecs);
- return;
- }
-
- stop_pc = read_pc_pid (ecs->ptid);
-
- /* See if a thread hit a thread-specific breakpoint that was meant for
- another thread. If so, then step that thread past the breakpoint,
- and continue it. */
-
- if (stop_signal == TARGET_SIGNAL_TRAP)
- {
- if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
- ecs->random_signal = 0;
- else if (breakpoints_inserted
- && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
- {
- ecs->random_signal = 0;
- if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
- ecs->ptid))
- {
- int remove_status;
-
- /* Saw a breakpoint, but it was hit by the wrong thread.
- Just continue. */
- if (DECR_PC_AFTER_BREAK)
- write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
-
- remove_status = remove_breakpoints ();
- /* Did we fail to remove breakpoints? If so, try
- to set the PC past the bp. (There's at least
- one situation in which we can fail to remove
- the bp's: On HP-UX's that use ttrace, we can't
- change the address space of a vforking child
- process until the child exits (well, okay, not
- then either :-) or execs. */
- if (remove_status != 0)
- {
- /* FIXME! This is obviously non-portable! */
- write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4,
- ecs->ptid);
- /* We need to restart all the threads now,
- * unles we're running in scheduler-locked mode.
- * Use currently_stepping to determine whether to
- * step or continue.
- */
- /* FIXME MVS: is there any reason not to call resume()? */
- if (scheduler_mode == schedlock_on)
- target_resume (ecs->ptid,
- currently_stepping (ecs),
- TARGET_SIGNAL_0);
- else
- target_resume (RESUME_ALL,
- currently_stepping (ecs),
- TARGET_SIGNAL_0);
- prepare_to_wait (ecs);
- return;
- }
- else
- { /* Single step */
- breakpoints_inserted = 0;
- if (!ptid_equal (inferior_ptid, ecs->ptid))
- context_switch (ecs);
- ecs->waiton_ptid = ecs->ptid;
- ecs->wp = &(ecs->ws);
- ecs->another_trap = 1;
-
- ecs->infwait_state = infwait_thread_hop_state;
- keep_going (ecs);
- registers_changed ();
- return;
- }
- }
- }
- }
- else
- ecs->random_signal = 1;
-
- /* See if something interesting happened to the non-current thread. If
- so, then switch to that thread, and eventually give control back to
- the user.
-
- Note that if there's any kind of pending follow (i.e., of a fork,
- vfork or exec), we don't want to do this now. Rather, we'll let
- the next resume handle it. */
- if (! ptid_equal (ecs->ptid, inferior_ptid) &&
- (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
- {
- int printed = 0;
-
- /* If it's a random signal for a non-current thread, notify user
- if he's expressed an interest. */
- if (ecs->random_signal
- && signal_print[stop_signal])
- {
-/* ??rehrauer: I don't understand the rationale for this code. If the
- inferior will stop as a result of this signal, then the act of handling
- the stop ought to print a message that's couches the stoppage in user
- terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
- won't stop as a result of the signal -- i.e., if the signal is merely
- a side-effect of something GDB's doing "under the covers" for the
- user, such as stepping threads over a breakpoint they shouldn't stop
- for -- then the message seems to be a serious annoyance at best.
-
- For now, remove the message altogether. */
-#if 0
- printed = 1;
- target_terminal_ours_for_output ();
- printf_filtered ("\nProgram received signal %s, %s.\n",
- target_signal_to_name (stop_signal),
- target_signal_to_string (stop_signal));
- gdb_flush (gdb_stdout);
-#endif
- }
-
- /* If it's not SIGTRAP and not a signal we want to stop for, then
- continue the thread. */
-
- if (stop_signal != TARGET_SIGNAL_TRAP
- && !signal_stop[stop_signal])
- {
- if (printed)
- target_terminal_inferior ();
-
- /* Clear the signal if it should not be passed. */
- if (signal_program[stop_signal] == 0)
- stop_signal = TARGET_SIGNAL_0;
-
- target_resume (ecs->ptid, 0, stop_signal);
- prepare_to_wait (ecs);
- return;
- }
-
- /* It's a SIGTRAP or a signal we're interested in. Switch threads,
- and fall into the rest of wait_for_inferior(). */
-
- context_switch (ecs);
-
- if (context_hook)
- context_hook (pid_to_thread_id (ecs->ptid));
-
- flush_cached_frames ();
- }
-
- if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
- {
- /* Pull the single step breakpoints out of the target. */
- SOFTWARE_SINGLE_STEP (0, 0);
- singlestep_breakpoints_inserted_p = 0;
- }
-
- /* If PC is pointing at a nullified instruction, then step beyond
- it so that the user won't be confused when GDB appears to be ready
- to execute it. */
-
- /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
- if (INSTRUCTION_NULLIFIED)
- {
- registers_changed ();
- target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
-
- /* We may have received a signal that we want to pass to
- the inferior; therefore, we must not clobber the waitstatus
- in WS. */
-
- ecs->infwait_state = infwait_nullified_state;
- ecs->waiton_ptid = ecs->ptid;
- ecs->wp = &(ecs->tmpstatus);
- prepare_to_wait (ecs);
- return;
- }
-
- /* It may not be necessary to disable the watchpoint to stop over
- it. For example, the PA can (with some kernel cooperation)
- single step over a watchpoint without disabling the watchpoint. */
- if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
- {
- resume (1, 0);
- prepare_to_wait (ecs);
- return;
- }
-
- /* It is far more common to need to disable a watchpoint to step
- the inferior over it. FIXME. What else might a debug
- register or page protection watchpoint scheme need here? */
- if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
- {
- /* At this point, we are stopped at an instruction which has
- attempted to write to a piece of memory under control of
- a watchpoint. The instruction hasn't actually executed
- yet. If we were to evaluate the watchpoint expression
- now, we would get the old value, and therefore no change
- would seem to have occurred.
-
- In order to make watchpoints work `right', we really need
- to complete the memory write, and then evaluate the
- watchpoint expression. The following code does that by
- removing the watchpoint (actually, all watchpoints and
- breakpoints), single-stepping the target, re-inserting
- watchpoints, and then falling through to let normal
- single-step processing handle proceed. Since this
- includes evaluating watchpoints, things will come to a
- stop in the correct manner. */
-
- if (DECR_PC_AFTER_BREAK)
- write_pc (stop_pc - DECR_PC_AFTER_BREAK);
-
- remove_breakpoints ();
- registers_changed ();
- target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
-
- ecs->waiton_ptid = ecs->ptid;
- ecs->wp = &(ecs->ws);
- ecs->infwait_state = infwait_nonstep_watch_state;
- prepare_to_wait (ecs);
- return;
- }
-
- /* It may be possible to simply continue after a watchpoint. */
- if (HAVE_CONTINUABLE_WATCHPOINT)
- STOPPED_BY_WATCHPOINT (ecs->ws);
-
- ecs->stop_func_start = 0;
- ecs->stop_func_end = 0;
- ecs->stop_func_name = 0;
- /* Don't care about return value; stop_func_start and stop_func_name
- will both be 0 if it doesn't work. */
- find_pc_partial_function (stop_pc, &ecs->stop_func_name,
- &ecs->stop_func_start, &ecs->stop_func_end);
- ecs->stop_func_start += FUNCTION_START_OFFSET;
- ecs->another_trap = 0;
- bpstat_clear (&stop_bpstat);
- stop_step = 0;
- stop_stack_dummy = 0;
- stop_print_frame = 1;
- ecs->random_signal = 0;
- stopped_by_random_signal = 0;
- breakpoints_failed = 0;
-
- /* Look at the cause of the stop, and decide what to do.
- The alternatives are:
- 1) break; to really stop and return to the debugger,
- 2) drop through to start up again
- (set ecs->another_trap to 1 to single step once)
- 3) set ecs->random_signal to 1, and the decision between 1 and 2
- will be made according to the signal handling tables. */
-
- /* First, distinguish signals caused by the debugger from signals
- that have to do with the program's own actions.
- Note that breakpoint insns may cause SIGTRAP or SIGILL
- or SIGEMT, depending on the operating system version.
- Here we detect when a SIGILL or SIGEMT is really a breakpoint
- and change it to SIGTRAP. */
-
- if (stop_signal == TARGET_SIGNAL_TRAP
- || (breakpoints_inserted &&
- (stop_signal == TARGET_SIGNAL_ILL
- || stop_signal == TARGET_SIGNAL_EMT
- ))
- || stop_soon_quietly)
- {
- if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
- {
- stop_print_frame = 0;
- stop_stepping (ecs);
- return;
- }
- if (stop_soon_quietly)
- {
- stop_stepping (ecs);
- return;
- }
-
- /* Don't even think about breakpoints
- if just proceeded over a breakpoint.
-
- However, if we are trying to proceed over a breakpoint
- and end up in sigtramp, then through_sigtramp_breakpoint
- will be set and we should check whether we've hit the
- step breakpoint. */
- if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
- && through_sigtramp_breakpoint == NULL)
- bpstat_clear (&stop_bpstat);
- else
- {
- /* See if there is a breakpoint at the current PC. */
-
- /* The second argument of bpstat_stop_status is meant to help
- distinguish between a breakpoint trap and a singlestep trap.
- This is only important on targets where DECR_PC_AFTER_BREAK
- is non-zero. The prev_pc test is meant to distinguish between
- singlestepping a trap instruction, and singlestepping thru a
- jump to the instruction following a trap instruction. */
-
- stop_bpstat = bpstat_stop_status
- (&stop_pc,
- /* Pass TRUE if our reason for stopping is something other
- than hitting a breakpoint. We do this by checking that
- 1) stepping is going on and 2) we didn't hit a breakpoint
- in a signal handler without an intervening stop in
- sigtramp, which is detected by a new stack pointer value
- below any usual function calling stack adjustments. */
- (currently_stepping (ecs)
- && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
- && !(step_range_end
- && INNER_THAN (read_sp (), (step_sp - 16))))
- );
- /* Following in case break condition called a
- function. */
- stop_print_frame = 1;
- }
-
- if (stop_signal == TARGET_SIGNAL_TRAP)
- ecs->random_signal
- = !(bpstat_explains_signal (stop_bpstat)
- || trap_expected
- || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
- && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
- FRAME_FP (get_current_frame ())))
- || (step_range_end && step_resume_breakpoint == NULL));
-
- else
- {
- ecs->random_signal
- = !(bpstat_explains_signal (stop_bpstat)
- /* End of a stack dummy. Some systems (e.g. Sony
- news) give another signal besides SIGTRAP, so
- check here as well as above. */
- || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
- && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
- FRAME_FP (get_current_frame ())))
- );
- if (!ecs->random_signal)
- stop_signal = TARGET_SIGNAL_TRAP;
- }
- }
-
- /* When we reach this point, we've pretty much decided
- that the reason for stopping must've been a random
- (unexpected) signal. */
-
- else
- ecs->random_signal = 1;
- /* If a fork, vfork or exec event was seen, then there are two
- possible responses we can make:
-
- 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
- then we must stop now and issue a prompt. We will resume
- the inferior when the user tells us to.
- 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
- then we must resume the inferior now and keep checking.
-
- In either case, we must take appropriate steps to "follow" the
- the fork/vfork/exec when the inferior is resumed. For example,
- if follow-fork-mode is "child", then we must detach from the
- parent inferior and follow the new child inferior.
-
- In either case, setting pending_follow causes the next resume()
- to take the appropriate following action. */
- process_event_stop_test:
- if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
- {
- if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
- {
- trap_expected = 1;
- stop_signal = TARGET_SIGNAL_0;
- keep_going (ecs);
- return;
- }
- }
- else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
- {
- if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
- {
- stop_signal = TARGET_SIGNAL_0;
- keep_going (ecs);
- return;
- }
- }
- else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
- {
- pending_follow.kind = ecs->ws.kind;
- if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
- {
- trap_expected = 1;
- stop_signal = TARGET_SIGNAL_0;
- keep_going (ecs);
- return;
- }
- }
-
- /* For the program's own signals, act according to
- the signal handling tables. */
-
- if (ecs->random_signal)
- {
- /* Signal not for debugging purposes. */
- int printed = 0;
-
- stopped_by_random_signal = 1;
-
- if (signal_print[stop_signal])
- {
- printed = 1;
- target_terminal_ours_for_output ();
- print_stop_reason (SIGNAL_RECEIVED, stop_signal);
- }
- if (signal_stop[stop_signal])
- {
- stop_stepping (ecs);
- return;
- }
- /* If not going to stop, give terminal back
- if we took it away. */
- else if (printed)
- target_terminal_inferior ();
-
- /* Clear the signal if it should not be passed. */
- if (signal_program[stop_signal] == 0)
- stop_signal = TARGET_SIGNAL_0;
-
- /* I'm not sure whether this needs to be check_sigtramp2 or
- whether it could/should be keep_going.
-
- This used to jump to step_over_function if we are stepping,
- which is wrong.
-
- Suppose the user does a `next' over a function call, and while
- that call is in progress, the inferior receives a signal for
- which GDB does not stop (i.e., signal_stop[SIG] is false). In
- that case, when we reach this point, there is already a
- step-resume breakpoint established, right where it should be:
- immediately after the function call the user is "next"-ing
- over. If we call step_over_function now, two bad things
- happen:
-
- - we'll create a new breakpoint, at wherever the current
- frame's return address happens to be. That could be
- anywhere, depending on what function call happens to be on
- the top of the stack at that point. Point is, it's probably
- not where we need it.
-
- - the existing step-resume breakpoint (which is at the correct
- address) will get orphaned: step_resume_breakpoint will point
- to the new breakpoint, and the old step-resume breakpoint
- will never be cleaned up.
-
- The old behavior was meant to help HP-UX single-step out of
- sigtramps. It would place the new breakpoint at prev_pc, which
- was certainly wrong. I don't know the details there, so fixing
- this probably breaks that. As with anything else, it's up to
- the HP-UX maintainer to furnish a fix that doesn't break other
- platforms. --JimB, 20 May 1999 */
- check_sigtramp2 (ecs);
- keep_going (ecs);
- return;
- }
-
- /* Handle cases caused by hitting a breakpoint. */
- {
- CORE_ADDR jmp_buf_pc;
- struct bpstat_what what;
-
- what = bpstat_what (stop_bpstat);
-
- if (what.call_dummy)
- {
- stop_stack_dummy = 1;
-#ifdef HP_OS_BUG
- trap_expected_after_continue = 1;
-#endif
- }
-
- switch (what.main_action)
- {
- case BPSTAT_WHAT_SET_LONGJMP_RESUME:
- /* If we hit the breakpoint at longjmp, disable it for the
- duration of this command. Then, install a temporary
- breakpoint at the target of the jmp_buf. */
- disable_longjmp_breakpoint ();
- remove_breakpoints ();
- breakpoints_inserted = 0;
- if (!GET_LONGJMP_TARGET (&jmp_buf_pc))
- {
- keep_going (ecs);
- return;
- }
-
- /* Need to blow away step-resume breakpoint, as it
- interferes with us */
- if (step_resume_breakpoint != NULL)
- {
- delete_step_resume_breakpoint (&step_resume_breakpoint);
- }
- /* Not sure whether we need to blow this away too, but probably
- it is like the step-resume breakpoint. */
- if (through_sigtramp_breakpoint != NULL)
- {
- delete_breakpoint (through_sigtramp_breakpoint);
- through_sigtramp_breakpoint = NULL;
- }
-
-#if 0
- /* FIXME - Need to implement nested temporary breakpoints */
- if (step_over_calls > 0)
- set_longjmp_resume_breakpoint (jmp_buf_pc,
- get_current_frame ());
- else
-#endif /* 0 */
- set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
- ecs->handling_longjmp = 1; /* FIXME */
- keep_going (ecs);
- return;
-
- case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
- case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
- remove_breakpoints ();
- breakpoints_inserted = 0;
-#if 0
- /* FIXME - Need to implement nested temporary breakpoints */
- if (step_over_calls
- && (INNER_THAN (FRAME_FP (get_current_frame ()),
- step_frame_address)))
- {
- ecs->another_trap = 1;
- keep_going (ecs);
- return;
- }
-#endif /* 0 */
- disable_longjmp_breakpoint ();
- ecs->handling_longjmp = 0; /* FIXME */
- if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
- break;
- /* else fallthrough */
-
- case BPSTAT_WHAT_SINGLE:
- if (breakpoints_inserted)
- {
- remove_breakpoints ();
- }
- breakpoints_inserted = 0;
- ecs->another_trap = 1;
- /* Still need to check other stuff, at least the case
- where we are stepping and step out of the right range. */
- break;
-
- case BPSTAT_WHAT_STOP_NOISY:
- stop_print_frame = 1;
-
- /* We are about to nuke the step_resume_breakpoint and
- through_sigtramp_breakpoint via the cleanup chain, so
- no need to worry about it here. */
-
- stop_stepping (ecs);
- return;
-
- case BPSTAT_WHAT_STOP_SILENT:
- stop_print_frame = 0;
-
- /* We are about to nuke the step_resume_breakpoint and
- through_sigtramp_breakpoint via the cleanup chain, so
- no need to worry about it here. */
-
- stop_stepping (ecs);
- return;
-
- case BPSTAT_WHAT_STEP_RESUME:
- /* This proably demands a more elegant solution, but, yeah
- right...
-
- This function's use of the simple variable
- step_resume_breakpoint doesn't seem to accomodate
- simultaneously active step-resume bp's, although the
- breakpoint list certainly can.
-
- If we reach here and step_resume_breakpoint is already
- NULL, then apparently we have multiple active
- step-resume bp's. We'll just delete the breakpoint we
- stopped at, and carry on.
-
- Correction: what the code currently does is delete a
- step-resume bp, but it makes no effort to ensure that
- the one deleted is the one currently stopped at. MVS */
-
- if (step_resume_breakpoint == NULL)
- {
- step_resume_breakpoint =
- bpstat_find_step_resume_breakpoint (stop_bpstat);
- }
- delete_step_resume_breakpoint (&step_resume_breakpoint);
- break;
-
- case BPSTAT_WHAT_THROUGH_SIGTRAMP:
- if (through_sigtramp_breakpoint)
- delete_breakpoint (through_sigtramp_breakpoint);
- through_sigtramp_breakpoint = NULL;
-
- /* If were waiting for a trap, hitting the step_resume_break
- doesn't count as getting it. */
- if (trap_expected)
- ecs->another_trap = 1;
- break;
-
- case BPSTAT_WHAT_CHECK_SHLIBS:
- case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
-#ifdef SOLIB_ADD
- {
- /* Remove breakpoints, we eventually want to step over the
- shlib event breakpoint, and SOLIB_ADD might adjust
- breakpoint addresses via breakpoint_re_set. */
- if (breakpoints_inserted)
- remove_breakpoints ();
- breakpoints_inserted = 0;
-
- /* Check for any newly added shared libraries if we're
- supposed to be adding them automatically. Switch
- terminal for any messages produced by
- breakpoint_re_set. */
- target_terminal_ours_for_output ();
- SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
- target_terminal_inferior ();
-
- /* Try to reenable shared library breakpoints, additional
- code segments in shared libraries might be mapped in now. */
- re_enable_breakpoints_in_shlibs ();
-
- /* If requested, stop when the dynamic linker notifies
- gdb of events. This allows the user to get control
- and place breakpoints in initializer routines for
- dynamically loaded objects (among other things). */
- if (stop_on_solib_events)
- {
- stop_stepping (ecs);
- return;
- }
-
- /* If we stopped due to an explicit catchpoint, then the
- (see above) call to SOLIB_ADD pulled in any symbols
- from a newly-loaded library, if appropriate.
-
- We do want the inferior to stop, but not where it is
- now, which is in the dynamic linker callback. Rather,
- we would like it stop in the user's program, just after
- the call that caused this catchpoint to trigger. That
- gives the user a more useful vantage from which to
- examine their program's state. */
- else if (what.main_action == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
- {
- /* ??rehrauer: If I could figure out how to get the
- right return PC from here, we could just set a temp
- breakpoint and resume. I'm not sure we can without
- cracking open the dld's shared libraries and sniffing
- their unwind tables and text/data ranges, and that's
- not a terribly portable notion.
-
- Until that time, we must step the inferior out of the
- dld callback, and also out of the dld itself (and any
- code or stubs in libdld.sl, such as "shl_load" and
- friends) until we reach non-dld code. At that point,
- we can stop stepping. */
- bpstat_get_triggered_catchpoints (stop_bpstat,
- &ecs->stepping_through_solib_catchpoints);
- ecs->stepping_through_solib_after_catch = 1;
-
- /* Be sure to lift all breakpoints, so the inferior does
- actually step past this point... */
- ecs->another_trap = 1;
- break;
- }
- else
- {
- /* We want to step over this breakpoint, then keep going. */
- ecs->another_trap = 1;
- break;
- }
- }
-#endif
- break;
-
- case BPSTAT_WHAT_LAST:
- /* Not a real code, but listed here to shut up gcc -Wall. */
-
- case BPSTAT_WHAT_KEEP_CHECKING:
- break;
- }
- }
-
- /* We come here if we hit a breakpoint but should not
- stop for it. Possibly we also were stepping
- and should stop for that. So fall through and
- test for stepping. But, if not stepping,
- do not stop. */
-
- /* Are we stepping to get the inferior out of the dynamic
- linker's hook (and possibly the dld itself) after catching
- a shlib event? */
- if (ecs->stepping_through_solib_after_catch)
- {
-#if defined(SOLIB_ADD)
- /* Have we reached our destination? If not, keep going. */
- if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
- {
- ecs->another_trap = 1;
- keep_going (ecs);
- return;
- }
-#endif
- /* Else, stop and report the catchpoint(s) whose triggering
- caused us to begin stepping. */
- ecs->stepping_through_solib_after_catch = 0;
- bpstat_clear (&stop_bpstat);
- stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
- bpstat_clear (&ecs->stepping_through_solib_catchpoints);
- stop_print_frame = 1;
- stop_stepping (ecs);
- return;
- }
-
- if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
- {
- /* This is the old way of detecting the end of the stack dummy.
- An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
- handled above. As soon as we can test it on all of them, all
- architectures should define it. */
-
- /* If this is the breakpoint at the end of a stack dummy,
- just stop silently, unless the user was doing an si/ni, in which
- case she'd better know what she's doing. */
-
- if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
- FRAME_FP (get_current_frame ()))
- && !step_range_end)
- {
- stop_print_frame = 0;
- stop_stack_dummy = 1;
-#ifdef HP_OS_BUG
- trap_expected_after_continue = 1;
-#endif
- stop_stepping (ecs);
- return;
- }
- }
-
- if (step_resume_breakpoint)
- {
- /* Having a step-resume breakpoint overrides anything
- else having to do with stepping commands until
- that breakpoint is reached. */
- /* I'm not sure whether this needs to be check_sigtramp2 or
- whether it could/should be keep_going. */
- check_sigtramp2 (ecs);
- keep_going (ecs);
- return;
- }
-
- if (step_range_end == 0)
- {
- /* Likewise if we aren't even stepping. */
- /* I'm not sure whether this needs to be check_sigtramp2 or
- whether it could/should be keep_going. */
- check_sigtramp2 (ecs);
- keep_going (ecs);
- return;
- }
-
- /* If stepping through a line, keep going if still within it.
-
- Note that step_range_end is the address of the first instruction
- beyond the step range, and NOT the address of the last instruction
- within it! */
- if (stop_pc >= step_range_start
- && stop_pc < step_range_end)
- {
- /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
- So definately need to check for sigtramp here. */
- check_sigtramp2 (ecs);
- keep_going (ecs);
- return;
- }
-
- /* We stepped out of the stepping range. */
-
- /* If we are stepping at the source level and entered the runtime
- loader dynamic symbol resolution code, we keep on single stepping
- until we exit the run time loader code and reach the callee's
- address. */
- if (step_over_calls == STEP_OVER_UNDEBUGGABLE && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
- {
- CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
-
- if (pc_after_resolver)
- {
- /* Set up a step-resume breakpoint at the address
- indicated by SKIP_SOLIB_RESOLVER. */
- struct symtab_and_line sr_sal;
- INIT_SAL (&sr_sal);
- sr_sal.pc = pc_after_resolver;
-
- check_for_old_step_resume_breakpoint ();
- step_resume_breakpoint =
- set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
- if (breakpoints_inserted)
- insert_breakpoints ();
- }
-
- keep_going (ecs);
- return;
- }
-
- /* We can't update step_sp every time through the loop, because
- reading the stack pointer would slow down stepping too much.
- But we can update it every time we leave the step range. */
- ecs->update_step_sp = 1;
-
- /* Did we just take a signal? */
- if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
- && !IN_SIGTRAMP (prev_pc, prev_func_name)
- && INNER_THAN (read_sp (), step_sp))
- {
- /* We've just taken a signal; go until we are back to
- the point where we took it and one more. */
-
- /* Note: The test above succeeds not only when we stepped
- into a signal handler, but also when we step past the last
- statement of a signal handler and end up in the return stub
- of the signal handler trampoline. To distinguish between
- these two cases, check that the frame is INNER_THAN the
- previous one below. pai/1997-09-11 */
-
-
- {
- CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
-
- if (INNER_THAN (current_frame, step_frame_address))
- {
- /* We have just taken a signal; go until we are back to
- the point where we took it and one more. */
-
- /* This code is needed at least in the following case:
- The user types "next" and then a signal arrives (before
- the "next" is done). */
-
- /* Note that if we are stopped at a breakpoint, then we need
- the step_resume breakpoint to override any breakpoints at
- the same location, so that we will still step over the
- breakpoint even though the signal happened. */
- struct symtab_and_line sr_sal;
-
- INIT_SAL (&sr_sal);
- sr_sal.symtab = NULL;
- sr_sal.line = 0;
- sr_sal.pc = prev_pc;
- /* We could probably be setting the frame to
- step_frame_address; I don't think anyone thought to
- try it. */
- check_for_old_step_resume_breakpoint ();
- step_resume_breakpoint =
- set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
- if (breakpoints_inserted)
- insert_breakpoints ();
- }
- else
- {
- /* We just stepped out of a signal handler and into
- its calling trampoline.
-
- Normally, we'd call step_over_function from
- here, but for some reason GDB can't unwind the
- stack correctly to find the real PC for the point
- user code where the signal trampoline will return
- -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
- But signal trampolines are pretty small stubs of
- code, anyway, so it's OK instead to just
- single-step out. Note: assuming such trampolines
- don't exhibit recursion on any platform... */
- find_pc_partial_function (stop_pc, &ecs->stop_func_name,
- &ecs->stop_func_start,
- &ecs->stop_func_end);
- /* Readjust stepping range */
- step_range_start = ecs->stop_func_start;
- step_range_end = ecs->stop_func_end;
- ecs->stepping_through_sigtramp = 1;
- }
- }
-
-
- /* If this is stepi or nexti, make sure that the stepping range
- gets us past that instruction. */
- if (step_range_end == 1)
- /* FIXME: Does this run afoul of the code below which, if
- we step into the middle of a line, resets the stepping
- range? */
- step_range_end = (step_range_start = prev_pc) + 1;
-
- ecs->remove_breakpoints_on_following_step = 1;
- keep_going (ecs);
- return;
- }
-
- if (stop_pc == ecs->stop_func_start /* Quick test */
- || (in_prologue (stop_pc, ecs->stop_func_start) &&
- !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
- || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
- || ecs->stop_func_name == 0)
- {
- /* It's a subroutine call. */
-
- if ((step_over_calls == STEP_OVER_NONE)
- || ((step_range_end == 1)
- && in_prologue (prev_pc, ecs->stop_func_start)))
- {
- /* I presume that step_over_calls is only 0 when we're
- supposed to be stepping at the assembly language level
- ("stepi"). Just stop. */
- /* Also, maybe we just did a "nexti" inside a prolog,
- so we thought it was a subroutine call but it was not.
- Stop as well. FENN */
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
-
- if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
- {
- /* We're doing a "next". */
-
- if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
- && INNER_THAN (step_frame_address, read_sp()))
- /* We stepped out of a signal handler, and into its
- calling trampoline. This is misdetected as a
- subroutine call, but stepping over the signal
- trampoline isn't such a bad idea. In order to do
- that, we have to ignore the value in
- step_frame_address, since that doesn't represent the
- frame that'll reach when we return from the signal
- trampoline. Otherwise we'll probably continue to the
- end of the program. */
- step_frame_address = 0;
-
- step_over_function (ecs);
- keep_going (ecs);
- return;
- }
-
- /* If we are in a function call trampoline (a stub between
- the calling routine and the real function), locate the real
- function. That's what tells us (a) whether we want to step
- into it at all, and (b) what prologue we want to run to
- the end of, if we do step into it. */
- tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
- if (tmp != 0)
- ecs->stop_func_start = tmp;
- else
- {
- tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
- if (tmp)
- {
- struct symtab_and_line xxx;
- /* Why isn't this s_a_l called "sr_sal", like all of the
- other s_a_l's where this code is duplicated? */
- INIT_SAL (&xxx); /* initialize to zeroes */
- xxx.pc = tmp;
- xxx.section = find_pc_overlay (xxx.pc);
- check_for_old_step_resume_breakpoint ();
- step_resume_breakpoint =
- set_momentary_breakpoint (xxx, NULL, bp_step_resume);
- insert_breakpoints ();
- keep_going (ecs);
- return;
- }
- }
-
- /* If we have line number information for the function we
- are thinking of stepping into, step into it.
-
- If there are several symtabs at that PC (e.g. with include
- files), just want to know whether *any* of them have line
- numbers. find_pc_line handles this. */
- {
- struct symtab_and_line tmp_sal;
-
- tmp_sal = find_pc_line (ecs->stop_func_start, 0);
- if (tmp_sal.line != 0)
- {
- step_into_function (ecs);
- return;
- }
- }
-
- /* If we have no line number and the step-stop-if-no-debug
- is set, we stop the step so that the user has a chance to
- switch in assembly mode. */
- if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
- {
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
-
- step_over_function (ecs);
- keep_going (ecs);
- return;
-
- }
-
- /* We've wandered out of the step range. */
-
- ecs->sal = find_pc_line (stop_pc, 0);
-
- if (step_range_end == 1)
- {
- /* It is stepi or nexti. We always want to stop stepping after
- one instruction. */
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
-
- /* If we're in the return path from a shared library trampoline,
- we want to proceed through the trampoline when stepping. */
- if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
- {
- CORE_ADDR tmp;
-
- /* Determine where this trampoline returns. */
- tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
-
- /* Only proceed through if we know where it's going. */
- if (tmp)
- {
- /* And put the step-breakpoint there and go until there. */
- struct symtab_and_line sr_sal;
-
- INIT_SAL (&sr_sal); /* initialize to zeroes */
- sr_sal.pc = tmp;
- sr_sal.section = find_pc_overlay (sr_sal.pc);
- /* Do not specify what the fp should be when we stop
- since on some machines the prologue
- is where the new fp value is established. */
- check_for_old_step_resume_breakpoint ();
- step_resume_breakpoint =
- set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
- if (breakpoints_inserted)
- insert_breakpoints ();
-
- /* Restart without fiddling with the step ranges or
- other state. */
- keep_going (ecs);
- return;
- }
- }
-
- if (ecs->sal.line == 0)
- {
- /* We have no line number information. That means to stop
- stepping (does this always happen right after one instruction,
- when we do "s" in a function with no line numbers,
- or can this happen as a result of a return or longjmp?). */
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
-
- if ((stop_pc == ecs->sal.pc)
- && (ecs->current_line != ecs->sal.line || ecs->current_symtab != ecs->sal.symtab))
- {
- /* We are at the start of a different line. So stop. Note that
- we don't stop if we step into the middle of a different line.
- That is said to make things like for (;;) statements work
- better. */
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
-
- /* We aren't done stepping.
-
- Optimize by setting the stepping range to the line.
- (We might not be in the original line, but if we entered a
- new line in mid-statement, we continue stepping. This makes
- things like for(;;) statements work better.) */
-
- if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
- {
- /* If this is the last line of the function, don't keep stepping
- (it would probably step us out of the function).
- This is particularly necessary for a one-line function,
- in which after skipping the prologue we better stop even though
- we will be in mid-line. */
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
- step_range_start = ecs->sal.pc;
- step_range_end = ecs->sal.end;
- step_frame_address = FRAME_FP (get_current_frame ());
- ecs->current_line = ecs->sal.line;
- ecs->current_symtab = ecs->sal.symtab;
-
- /* In the case where we just stepped out of a function into the middle
- of a line of the caller, continue stepping, but step_frame_address
- must be modified to current frame */
- {
- CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
- if (!(INNER_THAN (current_frame, step_frame_address)))
- step_frame_address = current_frame;
- }
-
- keep_going (ecs);
-
- } /* extra brace, to preserve old indentation */
-}
-
-/* Are we in the middle of stepping? */
-
-static int
-currently_stepping (struct execution_control_state *ecs)
-{
- return ((through_sigtramp_breakpoint == NULL
- && !ecs->handling_longjmp
- && ((step_range_end && step_resume_breakpoint == NULL)
- || trap_expected))
- || ecs->stepping_through_solib_after_catch
- || bpstat_should_step ());
-}
-
-static void
-check_sigtramp2 (struct execution_control_state *ecs)
-{
- if (trap_expected
- && IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
- && !IN_SIGTRAMP (prev_pc, prev_func_name)
- && INNER_THAN (read_sp (), step_sp))
- {
- /* What has happened here is that we have just stepped the
- inferior with a signal (because it is a signal which
- shouldn't make us stop), thus stepping into sigtramp.
-
- So we need to set a step_resume_break_address breakpoint and
- continue until we hit it, and then step. FIXME: This should
- be more enduring than a step_resume breakpoint; we should
- know that we will later need to keep going rather than
- re-hitting the breakpoint here (see the testsuite,
- gdb.base/signals.exp where it says "exceedingly difficult"). */
-
- struct symtab_and_line sr_sal;
-
- INIT_SAL (&sr_sal); /* initialize to zeroes */
- sr_sal.pc = prev_pc;
- sr_sal.section = find_pc_overlay (sr_sal.pc);
- /* We perhaps could set the frame if we kept track of what the
- frame corresponding to prev_pc was. But we don't, so don't. */
- through_sigtramp_breakpoint =
- set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
- if (breakpoints_inserted)
- insert_breakpoints ();
-
- ecs->remove_breakpoints_on_following_step = 1;
- ecs->another_trap = 1;
- }
-}
-
-/* Subroutine call with source code we should not step over. Do step
- to the first line of code in it. */
-
-static void
-step_into_function (struct execution_control_state *ecs)
-{
- struct symtab *s;
- struct symtab_and_line sr_sal;
-
- s = find_pc_symtab (stop_pc);
- if (s && s->language != language_asm)
- ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
-
- ecs->sal = find_pc_line (ecs->stop_func_start, 0);
- /* Use the step_resume_break to step until the end of the prologue,
- even if that involves jumps (as it seems to on the vax under
- 4.2). */
- /* If the prologue ends in the middle of a source line, continue to
- the end of that source line (if it is still within the function).
- Otherwise, just go to end of prologue. */
-#ifdef PROLOGUE_FIRSTLINE_OVERLAP
- /* no, don't either. It skips any code that's legitimately on the
- first line. */
-#else
- if (ecs->sal.end
- && ecs->sal.pc != ecs->stop_func_start
- && ecs->sal.end < ecs->stop_func_end)
- ecs->stop_func_start = ecs->sal.end;
-#endif
-
- if (ecs->stop_func_start == stop_pc)
- {
- /* We are already there: stop now. */
- stop_step = 1;
- print_stop_reason (END_STEPPING_RANGE, 0);
- stop_stepping (ecs);
- return;
- }
- else
- {
- /* Put the step-breakpoint there and go until there. */
- INIT_SAL (&sr_sal); /* initialize to zeroes */
- sr_sal.pc = ecs->stop_func_start;
- sr_sal.section = find_pc_overlay (ecs->stop_func_start);
- /* Do not specify what the fp should be when we stop since on
- some machines the prologue is where the new fp value is
- established. */
- check_for_old_step_resume_breakpoint ();
- step_resume_breakpoint =
- set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
- if (breakpoints_inserted)
- insert_breakpoints ();
-
- /* And make sure stepping stops right away then. */
- step_range_end = step_range_start;
- }
- keep_going (ecs);
-}
-
-/* We've just entered a callee, and we wish to resume until it returns
- to the caller. Setting a step_resume breakpoint on the return
- address will catch a return from the callee.
-
- However, if the callee is recursing, we want to be careful not to
- catch returns of those recursive calls, but only of THIS instance
- of the call.
-
- To do this, we set the step_resume bp's frame to our current
- caller's frame (step_frame_address, which is set by the "next" or
- "until" command, before execution begins). */
-
-static void
-step_over_function (struct execution_control_state *ecs)
-{
- struct symtab_and_line sr_sal;
-
- INIT_SAL (&sr_sal); /* initialize to zeros */
- sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
- sr_sal.section = find_pc_overlay (sr_sal.pc);
-
- check_for_old_step_resume_breakpoint ();
- step_resume_breakpoint =
- set_momentary_breakpoint (sr_sal, get_current_frame (), bp_step_resume);
-
- if (step_frame_address && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
- step_resume_breakpoint->frame = step_frame_address;
-
- if (breakpoints_inserted)
- insert_breakpoints ();
-}
-
-static void
-stop_stepping (struct execution_control_state *ecs)
-{
- if (target_has_execution)
- {
- /* Are we stopping for a vfork event? We only stop when we see
- the child's event. However, we may not yet have seen the
- parent's event. And, inferior_ptid is still set to the
- parent's pid, until we resume again and follow either the
- parent or child.
-
- To ensure that we can really touch inferior_ptid (aka, the
- parent process) -- which calls to functions like read_pc
- implicitly do -- wait on the parent if necessary. */
- if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
- && !pending_follow.fork_event.saw_parent_fork)
- {
- ptid_t parent_ptid;
-
- do
- {
- if (target_wait_hook)
- parent_ptid = target_wait_hook (pid_to_ptid (-1), &(ecs->ws));
- else
- parent_ptid = target_wait (pid_to_ptid (-1), &(ecs->ws));
- }
- while (! ptid_equal (parent_ptid, inferior_ptid));
- }
-
- /* Assuming the inferior still exists, set these up for next
- time, just like we did above if we didn't break out of the
- loop. */
- prev_pc = read_pc ();
- prev_func_start = ecs->stop_func_start;
- prev_func_name = ecs->stop_func_name;
- }
-
- /* Let callers know we don't want to wait for the inferior anymore. */
- ecs->wait_some_more = 0;
-}
-
-/* This function handles various cases where we need to continue
- waiting for the inferior. */
-/* (Used to be the keep_going: label in the old wait_for_inferior) */
-
-static void
-keep_going (struct execution_control_state *ecs)
-{
- /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug a
- vforked child between its creation and subsequent exit or call to
- exec(). However, I had big problems in this rather creaky exec
- engine, getting that to work. The fundamental problem is that
- I'm trying to debug two processes via an engine that only
- understands a single process with possibly multiple threads.
-
- Hence, this spot is known to have problems when
- target_can_follow_vfork_prior_to_exec returns 1. */
-
- /* Save the pc before execution, to compare with pc after stop. */
- prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
- prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
- BREAK is defined, the
- original pc would not have
- been at the start of a
- function. */
- prev_func_name = ecs->stop_func_name;
-
- if (ecs->update_step_sp)
- step_sp = read_sp ();
- ecs->update_step_sp = 0;
-
- /* If we did not do break;, it means we should keep running the
- inferior and not return to debugger. */
-
- if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
- {
- /* We took a signal (which we are supposed to pass through to
- the inferior, else we'd have done a break above) and we
- haven't yet gotten our trap. Simply continue. */
- resume (currently_stepping (ecs), stop_signal);
- }
- else
- {
- /* Either the trap was not expected, but we are continuing
- anyway (the user asked that this signal be passed to the
- child)
- -- or --
- The signal was SIGTRAP, e.g. it was our signal, but we
- decided we should resume from it.
-
- We're going to run this baby now!
-
- Insert breakpoints now, unless we are trying to one-proceed
- past a breakpoint. */
- /* If we've just finished a special step resume and we don't
- want to hit a breakpoint, pull em out. */
- if (step_resume_breakpoint == NULL
- && through_sigtramp_breakpoint == NULL
- && ecs->remove_breakpoints_on_following_step)
- {
- ecs->remove_breakpoints_on_following_step = 0;
- remove_breakpoints ();
- breakpoints_inserted = 0;
- }
- else if (!breakpoints_inserted &&
- (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
- {
- breakpoints_failed = insert_breakpoints ();
- if (breakpoints_failed)
- {
- stop_stepping (ecs);
- return;
- }
- breakpoints_inserted = 1;
- }
-
- trap_expected = ecs->another_trap;
-
- /* Do not deliver SIGNAL_TRAP (except when the user explicitly
- specifies that such a signal should be delivered to the
- target program).
-
- Typically, this would occure when a user is debugging a
- target monitor on a simulator: the target monitor sets a
- breakpoint; the simulator encounters this break-point and
- halts the simulation handing control to GDB; GDB, noteing
- that the break-point isn't valid, returns control back to the
- simulator; the simulator then delivers the hardware
- equivalent of a SIGNAL_TRAP to the program being debugged. */
-
- if (stop_signal == TARGET_SIGNAL_TRAP
- && !signal_program[stop_signal])
- stop_signal = TARGET_SIGNAL_0;
-
-#ifdef SHIFT_INST_REGS
- /* I'm not sure when this following segment applies. I do know,
- now, that we shouldn't rewrite the regs when we were stopped
- by a random signal from the inferior process. */
- /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
- (this is only used on the 88k). */
-
- if (!bpstat_explains_signal (stop_bpstat)
- && (stop_signal != TARGET_SIGNAL_CHLD)
- && !stopped_by_random_signal)
- SHIFT_INST_REGS ();
-#endif /* SHIFT_INST_REGS */
-
- resume (currently_stepping (ecs), stop_signal);
- }
-
- prepare_to_wait (ecs);
-}
-
-/* This function normally comes after a resume, before
- handle_inferior_event exits. It takes care of any last bits of
- housekeeping, and sets the all-important wait_some_more flag. */
-
-static void
-prepare_to_wait (struct execution_control_state *ecs)
-{
- if (ecs->infwait_state == infwait_normal_state)
- {
- overlay_cache_invalid = 1;
-
- /* We have to invalidate the registers BEFORE calling
- target_wait because they can be loaded from the target while
- in target_wait. This makes remote debugging a bit more
- efficient for those targets that provide critical registers
- as part of their normal status mechanism. */
-
- registers_changed ();
- ecs->waiton_ptid = pid_to_ptid (-1);
- ecs->wp = &(ecs->ws);
- }
- /* This is the old end of the while loop. Let everybody know we
- want to wait for the inferior some more and get called again
- soon. */
- ecs->wait_some_more = 1;
-}
-
-/* Print why the inferior has stopped. We always print something when
- the inferior exits, or receives a signal. The rest of the cases are
- dealt with later on in normal_stop() and print_it_typical(). Ideally
- there should be a call to this function from handle_inferior_event()
- each time stop_stepping() is called.*/
-static void
-print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
-{
- switch (stop_reason)
- {
- case STOP_UNKNOWN:
- /* We don't deal with these cases from handle_inferior_event()
- yet. */
- break;
- case END_STEPPING_RANGE:
- /* We are done with a step/next/si/ni command. */
- /* For now print nothing. */
- /* Print a message only if not in the middle of doing a "step n"
- operation for n > 1 */
- if (!step_multi || !stop_step)
- if (ui_out_is_mi_like_p (uiout))
- ui_out_field_string (uiout, "reason", "end-stepping-range");
- break;
- case BREAKPOINT_HIT:
- /* We found a breakpoint. */
- /* For now print nothing. */
- break;
- case SIGNAL_EXITED:
- /* The inferior was terminated by a signal. */
- annotate_signalled ();
- if (ui_out_is_mi_like_p (uiout))
- ui_out_field_string (uiout, "reason", "exited-signalled");
- ui_out_text (uiout, "\nProgram terminated with signal ");
- annotate_signal_name ();
- ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
- annotate_signal_name_end ();
- ui_out_text (uiout, ", ");
- annotate_signal_string ();
- ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
- annotate_signal_string_end ();
- ui_out_text (uiout, ".\n");
- ui_out_text (uiout, "The program no longer exists.\n");
- break;
- case EXITED:
- /* The inferior program is finished. */
- annotate_exited (stop_info);
- if (stop_info)
- {
- if (ui_out_is_mi_like_p (uiout))
- ui_out_field_string (uiout, "reason", "exited");
- ui_out_text (uiout, "\nProgram exited with code ");
- ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) stop_info);
- ui_out_text (uiout, ".\n");
- }
- else
- {
- if (ui_out_is_mi_like_p (uiout))
- ui_out_field_string (uiout, "reason", "exited-normally");
- ui_out_text (uiout, "\nProgram exited normally.\n");
- }
- break;
- case SIGNAL_RECEIVED:
- /* Signal received. The signal table tells us to print about
- it. */
- annotate_signal ();
- ui_out_text (uiout, "\nProgram received signal ");
- annotate_signal_name ();
- if (ui_out_is_mi_like_p (uiout))
- ui_out_field_string (uiout, "reason", "signal-received");
- ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
- annotate_signal_name_end ();
- ui_out_text (uiout, ", ");
- annotate_signal_string ();
- ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
- annotate_signal_string_end ();
- ui_out_text (uiout, ".\n");
- break;
- default:
- internal_error (__FILE__, __LINE__,
- "print_stop_reason: unrecognized enum value");
- break;
- }
-}
-
-
-/* Here to return control to GDB when the inferior stops for real.
- Print appropriate messages, remove breakpoints, give terminal our modes.
-
- STOP_PRINT_FRAME nonzero means print the executing frame
- (pc, function, args, file, line number and line text).
- BREAKPOINTS_FAILED nonzero means stop was due to error
- attempting to insert breakpoints. */
-
-void
-normal_stop (void)
-{
- /* As with the notification of thread events, we want to delay
- notifying the user that we've switched thread context until
- the inferior actually stops.
-
- (Note that there's no point in saying anything if the inferior
- has exited!) */
- if (! ptid_equal (previous_inferior_ptid, inferior_ptid)
- && target_has_execution)
- {
- target_terminal_ours_for_output ();
- printf_filtered ("[Switching to %s]\n",
- target_pid_or_tid_to_str (inferior_ptid));
- previous_inferior_ptid = inferior_ptid;
- }
-
- /* Make sure that the current_frame's pc is correct. This
- is a correction for setting up the frame info before doing
- DECR_PC_AFTER_BREAK */
- if (target_has_execution && get_current_frame ())
- (get_current_frame ())->pc = read_pc ();
-
- if (breakpoints_failed)
- {
- target_terminal_ours_for_output ();
- print_sys_errmsg ("While inserting breakpoints", breakpoints_failed);
- printf_filtered ("Stopped; cannot insert breakpoints.\n\
-The same program may be running in another process,\n\
-or you may have requested too many hardware breakpoints\n\
-and/or watchpoints.\n");
- }
-
- if (target_has_execution && breakpoints_inserted)
- {
- if (remove_breakpoints ())
- {
- target_terminal_ours_for_output ();
- printf_filtered ("Cannot remove breakpoints because ");
- printf_filtered ("program is no longer writable.\n");
- printf_filtered ("It might be running in another process.\n");
- printf_filtered ("Further execution is probably impossible.\n");
- }
- }
- breakpoints_inserted = 0;
-
- /* Delete the breakpoint we stopped at, if it wants to be deleted.
- Delete any breakpoint that is to be deleted at the next stop. */
-
- breakpoint_auto_delete (stop_bpstat);
-
- /* If an auto-display called a function and that got a signal,
- delete that auto-display to avoid an infinite recursion. */
-
- if (stopped_by_random_signal)
- disable_current_display ();
-
- /* Don't print a message if in the middle of doing a "step n"
- operation for n > 1 */
- if (step_multi && stop_step)
- goto done;
-
- target_terminal_ours ();
-
- /* Look up the hook_stop and run it if it exists. */
-
- if (stop_command && stop_command->hook_pre)
- {
- catch_errors (hook_stop_stub, stop_command->hook_pre,
- "Error while running hook_stop:\n", RETURN_MASK_ALL);
- }
-
- if (!target_has_stack)
- {
-
- goto done;
- }
-
- /* Select innermost stack frame - i.e., current frame is frame 0,
- and current location is based on that.
- Don't do this on return from a stack dummy routine,
- or if the program has exited. */
-
- if (!stop_stack_dummy)
- {
- select_frame (get_current_frame (), 0);
-
- /* Print current location without a level number, if
- we have changed functions or hit a breakpoint.
- Print source line if we have one.
- bpstat_print() contains the logic deciding in detail
- what to print, based on the event(s) that just occurred. */
-
- if (stop_print_frame
- && selected_frame)
- {
- int bpstat_ret;
- int source_flag;
- int do_frame_printing = 1;
-
- bpstat_ret = bpstat_print (stop_bpstat);
- switch (bpstat_ret)
- {
- case PRINT_UNKNOWN:
- if (stop_step
- && step_frame_address == FRAME_FP (get_current_frame ())
- && step_start_function == find_pc_function (stop_pc))
- source_flag = SRC_LINE; /* finished step, just print source line */
- else
- source_flag = SRC_AND_LOC; /* print location and source line */
- break;
- case PRINT_SRC_AND_LOC:
- source_flag = SRC_AND_LOC; /* print location and source line */
- break;
- case PRINT_SRC_ONLY:
- source_flag = SRC_LINE;
- break;
- case PRINT_NOTHING:
- source_flag = SRC_LINE; /* something bogus */
- do_frame_printing = 0;
- break;
- default:
- internal_error (__FILE__, __LINE__,
- "Unknown value.");
- }
- /* For mi, have the same behavior every time we stop:
- print everything but the source line. */
- if (ui_out_is_mi_like_p (uiout))
- source_flag = LOC_AND_ADDRESS;
-
- if (ui_out_is_mi_like_p (uiout))
- ui_out_field_int (uiout, "thread-id",
- pid_to_thread_id (inferior_ptid));
- /* The behavior of this routine with respect to the source
- flag is:
- SRC_LINE: Print only source line
- LOCATION: Print only location
- SRC_AND_LOC: Print location and source line */
- if (do_frame_printing)
- show_and_print_stack_frame (selected_frame, -1, source_flag);
-
- /* Display the auto-display expressions. */
- do_displays ();
- }
- }
-
- /* Save the function value return registers, if we care.
- We might be about to restore their previous contents. */
- if (proceed_to_finish)
- read_register_bytes (0, stop_registers, REGISTER_BYTES);
-
- if (stop_stack_dummy)
- {
- /* Pop the empty frame that contains the stack dummy.
- POP_FRAME ends with a setting of the current frame, so we
- can use that next. */
- POP_FRAME;
- /* Set stop_pc to what it was before we called the function.
- Can't rely on restore_inferior_status because that only gets
- called if we don't stop in the called function. */
- stop_pc = read_pc ();
- select_frame (get_current_frame (), 0);
- }
-
-done:
- annotate_stopped ();
-}
-
-static int
-hook_stop_stub (void *cmd)
-{
- execute_user_command ((struct cmd_list_element *) cmd, 0);
- return (0);
-}
-
-int
-signal_stop_state (int signo)
-{
- return signal_stop[signo];
-}
-
-int
-signal_print_state (int signo)
-{
- return signal_print[signo];
-}
-
-int
-signal_pass_state (int signo)
-{
- return signal_program[signo];
-}
-
-int signal_stop_update (signo, state)
- int signo;
- int state;
-{
- int ret = signal_stop[signo];
- signal_stop[signo] = state;
- return ret;
-}
-
-int signal_print_update (signo, state)
- int signo;
- int state;
-{
- int ret = signal_print[signo];
- signal_print[signo] = state;
- return ret;
-}
-
-int signal_pass_update (signo, state)
- int signo;
- int state;
-{
- int ret = signal_program[signo];
- signal_program[signo] = state;
- return ret;
-}
-
-static void
-sig_print_header (void)
-{
- printf_filtered ("\
-Signal Stop\tPrint\tPass to program\tDescription\n");
-}
-
-static void
-sig_print_info (enum target_signal oursig)
-{
- char *name = target_signal_to_name (oursig);
- int name_padding = 13 - strlen (name);
-
- if (name_padding <= 0)
- name_padding = 0;
-
- printf_filtered ("%s", name);
- printf_filtered ("%*.*s ", name_padding, name_padding,
- " ");
- printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
- printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
- printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
- printf_filtered ("%s\n", target_signal_to_string (oursig));
-}
-
-/* Specify how various signals in the inferior should be handled. */
-
-static void
-handle_command (char *args, int from_tty)
-{
- char **argv;
- int digits, wordlen;
- int sigfirst, signum, siglast;
- enum target_signal oursig;
- int allsigs;
- int nsigs;
- unsigned char *sigs;
- struct cleanup *old_chain;
-
- if (args == NULL)
- {
- error_no_arg ("signal to handle");
- }
-
- /* Allocate and zero an array of flags for which signals to handle. */
-
- nsigs = (int) TARGET_SIGNAL_LAST;
- sigs = (unsigned char *) alloca (nsigs);
- memset (sigs, 0, nsigs);
-
- /* Break the command line up into args. */
-
- argv = buildargv (args);
- if (argv == NULL)
- {
- nomem (0);
- }
- old_chain = make_cleanup_freeargv (argv);
-
- /* Walk through the args, looking for signal oursigs, signal names, and
- actions. Signal numbers and signal names may be interspersed with
- actions, with the actions being performed for all signals cumulatively
- specified. Signal ranges can be specified as <LOW>-<HIGH>. */
-
- while (*argv != NULL)
- {
- wordlen = strlen (*argv);
- for (digits = 0; isdigit ((*argv)[digits]); digits++)
- {;
- }
- allsigs = 0;
- sigfirst = siglast = -1;
-
- if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
- {
- /* Apply action to all signals except those used by the
- debugger. Silently skip those. */
- allsigs = 1;
- sigfirst = 0;
- siglast = nsigs - 1;
- }
- else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
- {
- SET_SIGS (nsigs, sigs, signal_stop);
- SET_SIGS (nsigs, sigs, signal_print);
- }
- else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
- {
- UNSET_SIGS (nsigs, sigs, signal_program);
- }
- else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
- {
- SET_SIGS (nsigs, sigs, signal_print);
- }
- else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
- {
- SET_SIGS (nsigs, sigs, signal_program);
- }
- else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
- {
- UNSET_SIGS (nsigs, sigs, signal_stop);
- }
- else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
- {
- SET_SIGS (nsigs, sigs, signal_program);
- }
- else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
- {
- UNSET_SIGS (nsigs, sigs, signal_print);
- UNSET_SIGS (nsigs, sigs, signal_stop);
- }
- else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
- {
- UNSET_SIGS (nsigs, sigs, signal_program);
- }
- else if (digits > 0)
- {
- /* It is numeric. The numeric signal refers to our own
- internal signal numbering from target.h, not to host/target
- signal number. This is a feature; users really should be
- using symbolic names anyway, and the common ones like
- SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
-
- sigfirst = siglast = (int)
- target_signal_from_command (atoi (*argv));
- if ((*argv)[digits] == '-')
- {
- siglast = (int)
- target_signal_from_command (atoi ((*argv) + digits + 1));
- }
- if (sigfirst > siglast)
- {
- /* Bet he didn't figure we'd think of this case... */
- signum = sigfirst;
- sigfirst = siglast;
- siglast = signum;
- }
- }
- else
- {
- oursig = target_signal_from_name (*argv);
- if (oursig != TARGET_SIGNAL_UNKNOWN)
- {
- sigfirst = siglast = (int) oursig;
- }
- else
- {
- /* Not a number and not a recognized flag word => complain. */
- error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
- }
- }
-
- /* If any signal numbers or symbol names were found, set flags for
- which signals to apply actions to. */
-
- for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
- {
- switch ((enum target_signal) signum)
- {
- case TARGET_SIGNAL_TRAP:
- case TARGET_SIGNAL_INT:
- if (!allsigs && !sigs[signum])
- {
- if (query ("%s is used by the debugger.\n\
-Are you sure you want to change it? ",
- target_signal_to_name
- ((enum target_signal) signum)))
- {
- sigs[signum] = 1;
- }
- else
- {
- printf_unfiltered ("Not confirmed, unchanged.\n");
- gdb_flush (gdb_stdout);
- }
- }
- break;
- case TARGET_SIGNAL_0:
- case TARGET_SIGNAL_DEFAULT:
- case TARGET_SIGNAL_UNKNOWN:
- /* Make sure that "all" doesn't print these. */
- break;
- default:
- sigs[signum] = 1;
- break;
- }
- }
-
- argv++;
- }
-
- target_notice_signals (inferior_ptid);
-
- if (from_tty)
- {
- /* Show the results. */
- sig_print_header ();
- for (signum = 0; signum < nsigs; signum++)
- {
- if (sigs[signum])
- {
- sig_print_info (signum);
- }
- }
- }
-
- do_cleanups (old_chain);
-}
-
-static void
-xdb_handle_command (char *args, int from_tty)
-{
- char **argv;
- struct cleanup *old_chain;
-
- /* Break the command line up into args. */
-
- argv = buildargv (args);
- if (argv == NULL)
- {
- nomem (0);
- }
- old_chain = make_cleanup_freeargv (argv);
- if (argv[1] != (char *) NULL)
- {
- char *argBuf;
- int bufLen;
-
- bufLen = strlen (argv[0]) + 20;
- argBuf = (char *) xmalloc (bufLen);
- if (argBuf)
- {
- int validFlag = 1;
- enum target_signal oursig;
-
- oursig = target_signal_from_name (argv[0]);
- memset (argBuf, 0, bufLen);
- if (strcmp (argv[1], "Q") == 0)
- sprintf (argBuf, "%s %s", argv[0], "noprint");
- else
- {
- if (strcmp (argv[1], "s") == 0)
- {
- if (!signal_stop[oursig])
- sprintf (argBuf, "%s %s", argv[0], "stop");
- else
- sprintf (argBuf, "%s %s", argv[0], "nostop");
- }
- else if (strcmp (argv[1], "i") == 0)
- {
- if (!signal_program[oursig])
- sprintf (argBuf, "%s %s", argv[0], "pass");
- else
- sprintf (argBuf, "%s %s", argv[0], "nopass");
- }
- else if (strcmp (argv[1], "r") == 0)
- {
- if (!signal_print[oursig])
- sprintf (argBuf, "%s %s", argv[0], "print");
- else
- sprintf (argBuf, "%s %s", argv[0], "noprint");
- }
- else
- validFlag = 0;
- }
- if (validFlag)
- handle_command (argBuf, from_tty);
- else
- printf_filtered ("Invalid signal handling flag.\n");
- if (argBuf)
- xfree (argBuf);
- }
- }
- do_cleanups (old_chain);
-}
-
-/* Print current contents of the tables set by the handle command.
- It is possible we should just be printing signals actually used
- by the current target (but for things to work right when switching
- targets, all signals should be in the signal tables). */
-
-static void
-signals_info (char *signum_exp, int from_tty)
-{
- enum target_signal oursig;
- sig_print_header ();
-
- if (signum_exp)
- {
- /* First see if this is a symbol name. */
- oursig = target_signal_from_name (signum_exp);
- if (oursig == TARGET_SIGNAL_UNKNOWN)
- {
- /* No, try numeric. */
- oursig =
- target_signal_from_command (parse_and_eval_long (signum_exp));
- }
- sig_print_info (oursig);
- return;
- }
-
- printf_filtered ("\n");
- /* These ugly casts brought to you by the native VAX compiler. */
- for (oursig = TARGET_SIGNAL_FIRST;
- (int) oursig < (int) TARGET_SIGNAL_LAST;
- oursig = (enum target_signal) ((int) oursig + 1))
- {
- QUIT;
-
- if (oursig != TARGET_SIGNAL_UNKNOWN
- && oursig != TARGET_SIGNAL_DEFAULT
- && oursig != TARGET_SIGNAL_0)
- sig_print_info (oursig);
- }
-
- printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
-}
-
-struct inferior_status
-{
- enum target_signal stop_signal;
- CORE_ADDR stop_pc;
- bpstat stop_bpstat;
- int stop_step;
- int stop_stack_dummy;
- int stopped_by_random_signal;
- int trap_expected;
- CORE_ADDR step_range_start;
- CORE_ADDR step_range_end;
- CORE_ADDR step_frame_address;
- enum step_over_calls_kind step_over_calls;
- CORE_ADDR step_resume_break_address;
- int stop_after_trap;
- int stop_soon_quietly;
- CORE_ADDR selected_frame_address;
- char *stop_registers;
-
- /* These are here because if call_function_by_hand has written some
- registers and then decides to call error(), we better not have changed
- any registers. */
- char *registers;
-
- int selected_level;
- int breakpoint_proceeded;
- int restore_stack_info;
- int proceed_to_finish;
-};
-
-static struct inferior_status *
-xmalloc_inferior_status (void)
-{
- struct inferior_status *inf_status;
- inf_status = xmalloc (sizeof (struct inferior_status));
- inf_status->stop_registers = xmalloc (REGISTER_BYTES);
- inf_status->registers = xmalloc (REGISTER_BYTES);
- return inf_status;
-}
-
-static void
-free_inferior_status (struct inferior_status *inf_status)
-{
- xfree (inf_status->registers);
- xfree (inf_status->stop_registers);
- xfree (inf_status);
-}
-
-void
-write_inferior_status_register (struct inferior_status *inf_status, int regno,
- LONGEST val)
-{
- int size = REGISTER_RAW_SIZE (regno);
- void *buf = alloca (size);
- store_signed_integer (buf, size, val);
- memcpy (&inf_status->registers[REGISTER_BYTE (regno)], buf, size);
-}
-
-/* Save all of the information associated with the inferior<==>gdb
- connection. INF_STATUS is a pointer to a "struct inferior_status"
- (defined in inferior.h). */
-
-struct inferior_status *
-save_inferior_status (int restore_stack_info)
-{
- struct inferior_status *inf_status = xmalloc_inferior_status ();
-
- inf_status->stop_signal = stop_signal;
- inf_status->stop_pc = stop_pc;
- inf_status->stop_step = stop_step;
- inf_status->stop_stack_dummy = stop_stack_dummy;
- inf_status->stopped_by_random_signal = stopped_by_random_signal;
- inf_status->trap_expected = trap_expected;
- inf_status->step_range_start = step_range_start;
- inf_status->step_range_end = step_range_end;
- inf_status->step_frame_address = step_frame_address;
- inf_status->step_over_calls = step_over_calls;
- inf_status->stop_after_trap = stop_after_trap;
- inf_status->stop_soon_quietly = stop_soon_quietly;
- /* Save original bpstat chain here; replace it with copy of chain.
- If caller's caller is walking the chain, they'll be happier if we
- hand them back the original chain when restore_inferior_status is
- called. */
- inf_status->stop_bpstat = stop_bpstat;
- stop_bpstat = bpstat_copy (stop_bpstat);
- inf_status->breakpoint_proceeded = breakpoint_proceeded;
- inf_status->restore_stack_info = restore_stack_info;
- inf_status->proceed_to_finish = proceed_to_finish;
-
- memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
-
- read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
-
- record_selected_frame (&(inf_status->selected_frame_address),
- &(inf_status->selected_level));
- return inf_status;
-}
-
-struct restore_selected_frame_args
-{
- CORE_ADDR frame_address;
- int level;
-};
-
-static int
-restore_selected_frame (void *args)
-{
- struct restore_selected_frame_args *fr =
- (struct restore_selected_frame_args *) args;
- struct frame_info *frame;
- int level = fr->level;
-
- frame = find_relative_frame (get_current_frame (), &level);
-
- /* If inf_status->selected_frame_address is NULL, there was no
- previously selected frame. */
- if (frame == NULL ||
- /* FRAME_FP (frame) != fr->frame_address || */
- /* elz: deleted this check as a quick fix to the problem that
- for function called by hand gdb creates no internal frame
- structure and the real stack and gdb's idea of stack are
- different if nested calls by hands are made.
-
- mvs: this worries me. */
- level != 0)
- {
- warning ("Unable to restore previously selected frame.\n");
- return 0;
- }
-
- select_frame (frame, fr->level);
-
- return (1);
-}
-
-void
-restore_inferior_status (struct inferior_status *inf_status)
-{
- stop_signal = inf_status->stop_signal;
- stop_pc = inf_status->stop_pc;
- stop_step = inf_status->stop_step;
- stop_stack_dummy = inf_status->stop_stack_dummy;
- stopped_by_random_signal = inf_status->stopped_by_random_signal;
- trap_expected = inf_status->trap_expected;
- step_range_start = inf_status->step_range_start;
- step_range_end = inf_status->step_range_end;
- step_frame_address = inf_status->step_frame_address;
- step_over_calls = inf_status->step_over_calls;
- stop_after_trap = inf_status->stop_after_trap;
- stop_soon_quietly = inf_status->stop_soon_quietly;
- bpstat_clear (&stop_bpstat);
- stop_bpstat = inf_status->stop_bpstat;
- breakpoint_proceeded = inf_status->breakpoint_proceeded;
- proceed_to_finish = inf_status->proceed_to_finish;
-
- /* FIXME: Is the restore of stop_registers always needed */
- memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
-
- /* The inferior can be gone if the user types "print exit(0)"
- (and perhaps other times). */
- if (target_has_execution)
- write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
-
- /* FIXME: If we are being called after stopping in a function which
- is called from gdb, we should not be trying to restore the
- selected frame; it just prints a spurious error message (The
- message is useful, however, in detecting bugs in gdb (like if gdb
- clobbers the stack)). In fact, should we be restoring the
- inferior status at all in that case? . */
-
- if (target_has_stack && inf_status->restore_stack_info)
- {
- struct restore_selected_frame_args fr;
- fr.level = inf_status->selected_level;
- fr.frame_address = inf_status->selected_frame_address;
- /* The point of catch_errors is that if the stack is clobbered,
- walking the stack might encounter a garbage pointer and error()
- trying to dereference it. */
- if (catch_errors (restore_selected_frame, &fr,
- "Unable to restore previously selected frame:\n",
- RETURN_MASK_ERROR) == 0)
- /* Error in restoring the selected frame. Select the innermost
- frame. */
-
-
- select_frame (get_current_frame (), 0);
-
- }
-
- free_inferior_status (inf_status);
-}
-
-static void
-do_restore_inferior_status_cleanup (void *sts)
-{
- restore_inferior_status (sts);
-}
-
-struct cleanup *
-make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
-{
- return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
-}
-
-void
-discard_inferior_status (struct inferior_status *inf_status)
-{
- /* See save_inferior_status for info on stop_bpstat. */
- bpstat_clear (&inf_status->stop_bpstat);
- free_inferior_status (inf_status);
-}
-
-/* Oft used ptids */
-ptid_t null_ptid;
-ptid_t minus_one_ptid;
-
-/* Create a ptid given the necessary PID, LWP, and TID components. */
-
-ptid_t
-ptid_build (int pid, long lwp, long tid)
-{
- ptid_t ptid;
-
- ptid.pid = pid;
- ptid.lwp = lwp;
- ptid.tid = tid;
- return ptid;
-}
-
-/* Create a ptid from just a pid. */
-
-ptid_t
-pid_to_ptid (int pid)
-{
- return ptid_build (pid, 0, 0);
-}
-
-/* Fetch the pid (process id) component from a ptid. */
-
-int
-ptid_get_pid (ptid_t ptid)
-{
- return ptid.pid;
-}
-
-/* Fetch the lwp (lightweight process) component from a ptid. */
-
-long
-ptid_get_lwp (ptid_t ptid)
-{
- return ptid.lwp;
-}
-
-/* Fetch the tid (thread id) component from a ptid. */
-
-long
-ptid_get_tid (ptid_t ptid)
-{
- return ptid.tid;
-}
-
-/* ptid_equal() is used to test equality of two ptids. */
-
-int
-ptid_equal (ptid_t ptid1, ptid_t ptid2)
-{
- return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
- && ptid1.tid == ptid2.tid);
-}
-
-/* restore_inferior_ptid() will be used by the cleanup machinery
- to restore the inferior_ptid value saved in a call to
- save_inferior_ptid(). */
-
-static void
-restore_inferior_ptid (void *arg)
-{
- ptid_t *saved_ptid_ptr = arg;
- inferior_ptid = *saved_ptid_ptr;
- xfree (arg);
-}
-
-/* Save the value of inferior_ptid so that it may be restored by a
- later call to do_cleanups(). Returns the struct cleanup pointer
- needed for later doing the cleanup. */
-
-struct cleanup *
-save_inferior_ptid (void)
-{
- ptid_t *saved_ptid_ptr;
-
- saved_ptid_ptr = xmalloc (sizeof (ptid_t));
- *saved_ptid_ptr = inferior_ptid;
- return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
-}
-
-
-static void
-build_infrun (void)
-{
- stop_registers = xmalloc (REGISTER_BYTES);
-}
-
-void
-_initialize_infrun (void)
-{
- register int i;
- register int numsigs;
- struct cmd_list_element *c;
-
- build_infrun ();
-
- register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
- register_gdbarch_swap (NULL, 0, build_infrun);
-
- add_info ("signals", signals_info,
- "What debugger does when program gets various signals.\n\
-Specify a signal as argument to print info on that signal only.");
- add_info_alias ("handle", "signals", 0);
-
- add_com ("handle", class_run, handle_command,
- concat ("Specify how to handle a signal.\n\
-Args are signals and actions to apply to those signals.\n\
-Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
-from 1-15 are allowed for compatibility with old versions of GDB.\n\
-Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
-The special arg \"all\" is recognized to mean all signals except those\n\
-used by the debugger, typically SIGTRAP and SIGINT.\n",
- "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
-\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
-Stop means reenter debugger if this signal happens (implies print).\n\
-Print means print a message if this signal happens.\n\
-Pass means let program see this signal; otherwise program doesn't know.\n\
-Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
-Pass and Stop may be combined.", NULL));
- if (xdb_commands)
- {
- add_com ("lz", class_info, signals_info,
- "What debugger does when program gets various signals.\n\
-Specify a signal as argument to print info on that signal only.");
- add_com ("z", class_run, xdb_handle_command,
- concat ("Specify how to handle a signal.\n\
-Args are signals and actions to apply to those signals.\n\
-Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
-from 1-15 are allowed for compatibility with old versions of GDB.\n\
-Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
-The special arg \"all\" is recognized to mean all signals except those\n\
-used by the debugger, typically SIGTRAP and SIGINT.\n",
- "Recognized actions include \"s\" (toggles between stop and nostop), \n\
-\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
-nopass), \"Q\" (noprint)\n\
-Stop means reenter debugger if this signal happens (implies print).\n\
-Print means print a message if this signal happens.\n\
-Pass means let program see this signal; otherwise program doesn't know.\n\
-Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
-Pass and Stop may be combined.", NULL));
- }
-
- if (!dbx_commands)
- stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
- "There is no `stop' command, but you can set a hook on `stop'.\n\
-This allows you to set a list of commands to be run each time execution\n\
-of the program stops.", &cmdlist);
-
- numsigs = (int) TARGET_SIGNAL_LAST;
- signal_stop = (unsigned char *)
- xmalloc (sizeof (signal_stop[0]) * numsigs);
- signal_print = (unsigned char *)
- xmalloc (sizeof (signal_print[0]) * numsigs);
- signal_program = (unsigned char *)
- xmalloc (sizeof (signal_program[0]) * numsigs);
- for (i = 0; i < numsigs; i++)
- {
- signal_stop[i] = 1;
- signal_print[i] = 1;
- signal_program[i] = 1;
- }
-
- /* Signals caused by debugger's own actions
- should not be given to the program afterwards. */
- signal_program[TARGET_SIGNAL_TRAP] = 0;
- signal_program[TARGET_SIGNAL_INT] = 0;
-
- /* Signals that are not errors should not normally enter the debugger. */
- signal_stop[TARGET_SIGNAL_ALRM] = 0;
- signal_print[TARGET_SIGNAL_ALRM] = 0;
- signal_stop[TARGET_SIGNAL_VTALRM] = 0;
- signal_print[TARGET_SIGNAL_VTALRM] = 0;
- signal_stop[TARGET_SIGNAL_PROF] = 0;
- signal_print[TARGET_SIGNAL_PROF] = 0;
- signal_stop[TARGET_SIGNAL_CHLD] = 0;
- signal_print[TARGET_SIGNAL_CHLD] = 0;
- signal_stop[TARGET_SIGNAL_IO] = 0;
- signal_print[TARGET_SIGNAL_IO] = 0;
- signal_stop[TARGET_SIGNAL_POLL] = 0;
- signal_print[TARGET_SIGNAL_POLL] = 0;
- signal_stop[TARGET_SIGNAL_URG] = 0;
- signal_print[TARGET_SIGNAL_URG] = 0;
- signal_stop[TARGET_SIGNAL_WINCH] = 0;
- signal_print[TARGET_SIGNAL_WINCH] = 0;
-
- /* These signals are used internally by user-level thread
- implementations. (See signal(5) on Solaris.) Like the above
- signals, a healthy program receives and handles them as part of
- its normal operation. */
- signal_stop[TARGET_SIGNAL_LWP] = 0;
- signal_print[TARGET_SIGNAL_LWP] = 0;
- signal_stop[TARGET_SIGNAL_WAITING] = 0;
- signal_print[TARGET_SIGNAL_WAITING] = 0;
- signal_stop[TARGET_SIGNAL_CANCEL] = 0;
- signal_print[TARGET_SIGNAL_CANCEL] = 0;
-
-#ifdef SOLIB_ADD
- add_show_from_set
- (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
- (char *) &stop_on_solib_events,
- "Set stopping for shared library events.\n\
-If nonzero, gdb will give control to the user when the dynamic linker\n\
-notifies gdb of shared library events. The most common event of interest\n\
-to the user would be loading/unloading of a new library.\n",
- &setlist),
- &showlist);
-#endif
-
- c = add_set_enum_cmd ("follow-fork-mode",
- class_run,
- follow_fork_mode_kind_names,
- &follow_fork_mode_string,
-/* ??rehrauer: The "both" option is broken, by what may be a 10.20
- kernel problem. It's also not terribly useful without a GUI to
- help the user drive two debuggers. So for now, I'm disabling
- the "both" option. */
-/* "Set debugger response to a program call of fork \
- or vfork.\n\
- A fork or vfork creates a new process. follow-fork-mode can be:\n\
- parent - the original process is debugged after a fork\n\
- child - the new process is debugged after a fork\n\
- both - both the parent and child are debugged after a fork\n\
- ask - the debugger will ask for one of the above choices\n\
- For \"both\", another copy of the debugger will be started to follow\n\
- the new child process. The original debugger will continue to follow\n\
- the original parent process. To distinguish their prompts, the\n\
- debugger copy's prompt will be changed.\n\
- For \"parent\" or \"child\", the unfollowed process will run free.\n\
- By default, the debugger will follow the parent process.",
- */
- "Set debugger response to a program call of fork \
-or vfork.\n\
-A fork or vfork creates a new process. follow-fork-mode can be:\n\
- parent - the original process is debugged after a fork\n\
- child - the new process is debugged after a fork\n\
- ask - the debugger will ask for one of the above choices\n\
-For \"parent\" or \"child\", the unfollowed process will run free.\n\
-By default, the debugger will follow the parent process.",
- &setlist);
- add_show_from_set (c, &showlist);
-
- c = add_set_enum_cmd ("scheduler-locking", class_run,
- scheduler_enums, /* array of string names */
- &scheduler_mode, /* current mode */
- "Set mode for locking scheduler during execution.\n\
-off == no locking (threads may preempt at any time)\n\
-on == full locking (no thread except the current thread may run)\n\
-step == scheduler locked during every single-step operation.\n\
- In this mode, no other thread may run during a step command.\n\
- Other threads may run while stepping over a function call ('next').",
- &setlist);
-
- set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
- add_show_from_set (c, &showlist);
-
- c = add_set_cmd ("step-mode", class_run,
- var_boolean, (char*) &step_stop_if_no_debug,
-"Set mode of the step operation. When set, doing a step over a\n\
-function without debug line information will stop at the first\n\
-instruction of that function. Otherwise, the function is skipped and\n\
-the step command stops at a different source line.",
- &setlist);
- add_show_from_set (c, &showlist);
-
- /* ptid initializations */
- null_ptid = ptid_build (0, 0, 0);
- minus_one_ptid = ptid_build (-1, 0, 0);
- inferior_ptid = null_ptid;
- target_last_wait_ptid = minus_one_ptid;
-}