summaryrefslogtreecommitdiff
path: root/gdb/ppc-linux-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/ppc-linux-tdep.c')
-rw-r--r--gdb/ppc-linux-tdep.c813
1 files changed, 0 insertions, 813 deletions
diff --git a/gdb/ppc-linux-tdep.c b/gdb/ppc-linux-tdep.c
deleted file mode 100644
index 5c1fa2807c4..00000000000
--- a/gdb/ppc-linux-tdep.c
+++ /dev/null
@@ -1,813 +0,0 @@
-/* Target-dependent code for GDB, the GNU debugger.
-
- Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
- 2000, 2001 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "inferior.h"
-#include "symtab.h"
-#include "target.h"
-#include "gdbcore.h"
-#include "gdbcmd.h"
-#include "symfile.h"
-#include "objfiles.h"
-#include "regcache.h"
-#include "value.h"
-
-#include "solib-svr4.h"
-#include "ppc-tdep.h"
-
-/* The following two instructions are used in the signal trampoline
- code on linux/ppc */
-#define INSTR_LI_R0_0x7777 0x38007777
-#define INSTR_SC 0x44000002
-
-/* Since the *-tdep.c files are platform independent (i.e, they may be
- used to build cross platform debuggers), we can't include system
- headers. Therefore, details concerning the sigcontext structure
- must be painstakingly rerecorded. What's worse, if these details
- ever change in the header files, they'll have to be changed here
- as well. */
-
-/* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
-#define PPC_LINUX_SIGNAL_FRAMESIZE 64
-
-/* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
-#define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
-
-/* From <asm/sigcontext.h>,
- offsetof(struct sigcontext_struct, handler) == 0x14 */
-#define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
-
-/* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
-#define PPC_LINUX_PT_R0 0
-#define PPC_LINUX_PT_R1 1
-#define PPC_LINUX_PT_R2 2
-#define PPC_LINUX_PT_R3 3
-#define PPC_LINUX_PT_R4 4
-#define PPC_LINUX_PT_R5 5
-#define PPC_LINUX_PT_R6 6
-#define PPC_LINUX_PT_R7 7
-#define PPC_LINUX_PT_R8 8
-#define PPC_LINUX_PT_R9 9
-#define PPC_LINUX_PT_R10 10
-#define PPC_LINUX_PT_R11 11
-#define PPC_LINUX_PT_R12 12
-#define PPC_LINUX_PT_R13 13
-#define PPC_LINUX_PT_R14 14
-#define PPC_LINUX_PT_R15 15
-#define PPC_LINUX_PT_R16 16
-#define PPC_LINUX_PT_R17 17
-#define PPC_LINUX_PT_R18 18
-#define PPC_LINUX_PT_R19 19
-#define PPC_LINUX_PT_R20 20
-#define PPC_LINUX_PT_R21 21
-#define PPC_LINUX_PT_R22 22
-#define PPC_LINUX_PT_R23 23
-#define PPC_LINUX_PT_R24 24
-#define PPC_LINUX_PT_R25 25
-#define PPC_LINUX_PT_R26 26
-#define PPC_LINUX_PT_R27 27
-#define PPC_LINUX_PT_R28 28
-#define PPC_LINUX_PT_R29 29
-#define PPC_LINUX_PT_R30 30
-#define PPC_LINUX_PT_R31 31
-#define PPC_LINUX_PT_NIP 32
-#define PPC_LINUX_PT_MSR 33
-#define PPC_LINUX_PT_CTR 35
-#define PPC_LINUX_PT_LNK 36
-#define PPC_LINUX_PT_XER 37
-#define PPC_LINUX_PT_CCR 38
-#define PPC_LINUX_PT_MQ 39
-#define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
-#define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
-#define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
-
-static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
-
-/* Determine if pc is in a signal trampoline...
-
- Ha! That's not what this does at all. wait_for_inferior in infrun.c
- calls IN_SIGTRAMP in order to detect entry into a signal trampoline
- just after delivery of a signal. But on linux, signal trampolines
- are used for the return path only. The kernel sets things up so that
- the signal handler is called directly.
-
- If we use in_sigtramp2() in place of in_sigtramp() (see below)
- we'll (often) end up with stop_pc in the trampoline and prev_pc in
- the (now exited) handler. The code there will cause a temporary
- breakpoint to be set on prev_pc which is not very likely to get hit
- again.
-
- If this is confusing, think of it this way... the code in
- wait_for_inferior() needs to be able to detect entry into a signal
- trampoline just after a signal is delivered, not after the handler
- has been run.
-
- So, we define in_sigtramp() below to return 1 if the following is
- true:
-
- 1) The previous frame is a real signal trampoline.
-
- - and -
-
- 2) pc is at the first or second instruction of the corresponding
- handler.
-
- Why the second instruction? It seems that wait_for_inferior()
- never sees the first instruction when single stepping. When a
- signal is delivered while stepping, the next instruction that
- would've been stepped over isn't, instead a signal is delivered and
- the first instruction of the handler is stepped over instead. That
- puts us on the second instruction. (I added the test for the
- first instruction long after the fact, just in case the observed
- behavior is ever fixed.)
-
- IN_SIGTRAMP is called from blockframe.c as well in order to set
- the signal_handler_caller flag. Because of our strange definition
- of in_sigtramp below, we can't rely on signal_handler_caller getting
- set correctly from within blockframe.c. This is why we take pains
- to set it in init_extra_frame_info(). */
-
-int
-ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
-{
- CORE_ADDR lr;
- CORE_ADDR sp;
- CORE_ADDR tramp_sp;
- char buf[4];
- CORE_ADDR handler;
-
- lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
- if (!ppc_linux_at_sigtramp_return_path (lr))
- return 0;
-
- sp = read_register (SP_REGNUM);
-
- if (target_read_memory (sp, buf, sizeof (buf)) != 0)
- return 0;
-
- tramp_sp = extract_unsigned_integer (buf, 4);
-
- if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
- sizeof (buf)) != 0)
- return 0;
-
- handler = extract_unsigned_integer (buf, 4);
-
- return (pc == handler || pc == handler + 4);
-}
-
-/*
- * The signal handler trampoline is on the stack and consists of exactly
- * two instructions. The easiest and most accurate way of determining
- * whether the pc is in one of these trampolines is by inspecting the
- * instructions. It'd be faster though if we could find a way to do this
- * via some simple address comparisons.
- */
-static int
-ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
-{
- char buf[12];
- unsigned long pcinsn;
- if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
- return 0;
-
- /* extract the instruction at the pc */
- pcinsn = extract_unsigned_integer (buf + 4, 4);
-
- return (
- (pcinsn == INSTR_LI_R0_0x7777
- && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
- ||
- (pcinsn == INSTR_SC
- && extract_unsigned_integer (buf, 4) == INSTR_LI_R0_0x7777));
-}
-
-CORE_ADDR
-ppc_linux_skip_trampoline_code (CORE_ADDR pc)
-{
- char buf[4];
- struct obj_section *sect;
- struct objfile *objfile;
- unsigned long insn;
- CORE_ADDR plt_start = 0;
- CORE_ADDR symtab = 0;
- CORE_ADDR strtab = 0;
- int num_slots = -1;
- int reloc_index = -1;
- CORE_ADDR plt_table;
- CORE_ADDR reloc;
- CORE_ADDR sym;
- long symidx;
- char symname[1024];
- struct minimal_symbol *msymbol;
-
- /* Find the section pc is in; return if not in .plt */
- sect = find_pc_section (pc);
- if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
- return 0;
-
- objfile = sect->objfile;
-
- /* Pick up the instruction at pc. It had better be of the
- form
- li r11, IDX
-
- where IDX is an index into the plt_table. */
-
- if (target_read_memory (pc, buf, 4) != 0)
- return 0;
- insn = extract_unsigned_integer (buf, 4);
-
- if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
- return 0;
-
- reloc_index = (insn << 16) >> 16;
-
- /* Find the objfile that pc is in and obtain the information
- necessary for finding the symbol name. */
- for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
- {
- const char *secname = sect->the_bfd_section->name;
- if (strcmp (secname, ".plt") == 0)
- plt_start = sect->addr;
- else if (strcmp (secname, ".rela.plt") == 0)
- num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
- else if (strcmp (secname, ".dynsym") == 0)
- symtab = sect->addr;
- else if (strcmp (secname, ".dynstr") == 0)
- strtab = sect->addr;
- }
-
- /* Make sure we have all the information we need. */
- if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
- return 0;
-
- /* Compute the value of the plt table */
- plt_table = plt_start + 72 + 8 * num_slots;
-
- /* Get address of the relocation entry (Elf32_Rela) */
- if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
- return 0;
- reloc = extract_address (buf, 4);
-
- sect = find_pc_section (reloc);
- if (!sect)
- return 0;
-
- if (strcmp (sect->the_bfd_section->name, ".text") == 0)
- return reloc;
-
- /* Now get the r_info field which is the relocation type and symbol
- index. */
- if (target_read_memory (reloc + 4, buf, 4) != 0)
- return 0;
- symidx = extract_unsigned_integer (buf, 4);
-
- /* Shift out the relocation type leaving just the symbol index */
- /* symidx = ELF32_R_SYM(symidx); */
- symidx = symidx >> 8;
-
- /* compute the address of the symbol */
- sym = symtab + symidx * 4;
-
- /* Fetch the string table index */
- if (target_read_memory (sym, buf, 4) != 0)
- return 0;
- symidx = extract_unsigned_integer (buf, 4);
-
- /* Fetch the string; we don't know how long it is. Is it possible
- that the following will fail because we're trying to fetch too
- much? */
- if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
- return 0;
-
- /* This might not work right if we have multiple symbols with the
- same name; the only way to really get it right is to perform
- the same sort of lookup as the dynamic linker. */
- msymbol = lookup_minimal_symbol_text (symname, NULL, NULL);
- if (!msymbol)
- return 0;
-
- return SYMBOL_VALUE_ADDRESS (msymbol);
-}
-
-/* The rs6000 version of FRAME_SAVED_PC will almost work for us. The
- signal handler details are different, so we'll handle those here
- and call the rs6000 version to do the rest. */
-CORE_ADDR
-ppc_linux_frame_saved_pc (struct frame_info *fi)
-{
- if (fi->signal_handler_caller)
- {
- CORE_ADDR regs_addr =
- read_memory_integer (fi->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
- /* return the NIP in the regs array */
- return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_NIP, 4);
- }
- else if (fi->next && fi->next->signal_handler_caller)
- {
- CORE_ADDR regs_addr =
- read_memory_integer (fi->next->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
- /* return LNK in the regs array */
- return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_LNK, 4);
- }
- else
- return rs6000_frame_saved_pc (fi);
-}
-
-void
-ppc_linux_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
- rs6000_init_extra_frame_info (fromleaf, fi);
-
- if (fi->next != 0)
- {
- /* We're called from get_prev_frame_info; check to see if
- this is a signal frame by looking to see if the pc points
- at trampoline code */
- if (ppc_linux_at_sigtramp_return_path (fi->pc))
- fi->signal_handler_caller = 1;
- else
- fi->signal_handler_caller = 0;
- }
-}
-
-int
-ppc_linux_frameless_function_invocation (struct frame_info *fi)
-{
- /* We'll find the wrong thing if we let
- rs6000_frameless_function_invocation () search for a signal trampoline */
- if (ppc_linux_at_sigtramp_return_path (fi->pc))
- return 0;
- else
- return rs6000_frameless_function_invocation (fi);
-}
-
-void
-ppc_linux_frame_init_saved_regs (struct frame_info *fi)
-{
- if (fi->signal_handler_caller)
- {
- CORE_ADDR regs_addr;
- int i;
- if (fi->saved_regs)
- return;
-
- frame_saved_regs_zalloc (fi);
-
- regs_addr =
- read_memory_integer (fi->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
- fi->saved_regs[PC_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_NIP;
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_ps_regnum] =
- regs_addr + 4 * PPC_LINUX_PT_MSR;
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
- regs_addr + 4 * PPC_LINUX_PT_CCR;
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
- regs_addr + 4 * PPC_LINUX_PT_LNK;
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum] =
- regs_addr + 4 * PPC_LINUX_PT_CTR;
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_xer_regnum] =
- regs_addr + 4 * PPC_LINUX_PT_XER;
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_mq_regnum] =
- regs_addr + 4 * PPC_LINUX_PT_MQ;
- for (i = 0; i < 32; i++)
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + i] =
- regs_addr + 4 * PPC_LINUX_PT_R0 + 4 * i;
- for (i = 0; i < 32; i++)
- fi->saved_regs[FP0_REGNUM + i] = regs_addr + 4 * PPC_LINUX_PT_FPR0 + 8 * i;
- }
- else
- rs6000_frame_init_saved_regs (fi);
-}
-
-CORE_ADDR
-ppc_linux_frame_chain (struct frame_info *thisframe)
-{
- /* Kernel properly constructs the frame chain for the handler */
- if (thisframe->signal_handler_caller)
- return read_memory_integer ((thisframe)->frame, 4);
- else
- return rs6000_frame_chain (thisframe);
-}
-
-/* FIXME: Move the following to rs6000-tdep.c (or some other file where
- it may be used generically by ports which use either the SysV ABI or
- the EABI */
-
-/* round2 rounds x up to the nearest multiple of s assuming that s is a
- power of 2 */
-
-#undef round2
-#define round2(x,s) ((((long) (x) - 1) & ~(long)((s)-1)) + (s))
-
-/* Pass the arguments in either registers, or in the stack. Using the
- ppc sysv ABI, the first eight words of the argument list (that might
- be less than eight parameters if some parameters occupy more than one
- word) are passed in r3..r10 registers. float and double parameters are
- passed in fpr's, in addition to that. Rest of the parameters if any
- are passed in user stack.
-
- If the function is returning a structure, then the return address is passed
- in r3, then the first 7 words of the parametes can be passed in registers,
- starting from r4. */
-
-CORE_ADDR
-ppc_sysv_abi_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- int argno;
- int greg, freg;
- int argstkspace;
- int structstkspace;
- int argoffset;
- int structoffset;
- struct value *arg;
- struct type *type;
- int len;
- char old_sp_buf[4];
- CORE_ADDR saved_sp;
-
- greg = struct_return ? 4 : 3;
- freg = 1;
- argstkspace = 0;
- structstkspace = 0;
-
- /* Figure out how much new stack space is required for arguments
- which don't fit in registers. Unlike the PowerOpen ABI, the
- SysV ABI doesn't reserve any extra space for parameters which
- are put in registers. */
- for (argno = 0; argno < nargs; argno++)
- {
- arg = args[argno];
- type = check_typedef (VALUE_TYPE (arg));
- len = TYPE_LENGTH (type);
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
- {
- if (freg <= 8)
- freg++;
- else
- {
- /* SysV ABI converts floats to doubles when placed in
- memory and requires 8 byte alignment */
- if (argstkspace & 0x4)
- argstkspace += 4;
- argstkspace += 8;
- }
- }
- else if (TYPE_CODE (type) == TYPE_CODE_INT && len == 8) /* long long */
- {
- if (greg > 9)
- {
- greg = 11;
- if (argstkspace & 0x4)
- argstkspace += 4;
- argstkspace += 8;
- }
- else
- {
- if ((greg & 1) == 0)
- greg++;
- greg += 2;
- }
- }
- else
- {
- if (len > 4
- || TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION)
- {
- /* Rounding to the nearest multiple of 8 may not be necessary,
- but it is safe. Particularly since we don't know the
- field types of the structure */
- structstkspace += round2 (len, 8);
- }
- if (greg <= 10)
- greg++;
- else
- argstkspace += 4;
- }
- }
-
- /* Get current SP location */
- saved_sp = read_sp ();
-
- sp -= argstkspace + structstkspace;
-
- /* Allocate space for backchain and callee's saved lr */
- sp -= 8;
-
- /* Make sure that we maintain 16 byte alignment */
- sp &= ~0x0f;
-
- /* Update %sp before proceeding any further */
- write_register (SP_REGNUM, sp);
-
- /* write the backchain */
- store_address (old_sp_buf, 4, saved_sp);
- write_memory (sp, old_sp_buf, 4);
-
- argoffset = 8;
- structoffset = argoffset + argstkspace;
- freg = 1;
- greg = 3;
- /* Fill in r3 with the return structure, if any */
- if (struct_return)
- {
- char val_buf[4];
- store_address (val_buf, 4, struct_addr);
- memcpy (&registers[REGISTER_BYTE (greg)], val_buf, 4);
- greg++;
- }
- /* Now fill in the registers and stack... */
- for (argno = 0; argno < nargs; argno++)
- {
- arg = args[argno];
- type = check_typedef (VALUE_TYPE (arg));
- len = TYPE_LENGTH (type);
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
- {
- if (freg <= 8)
- {
- if (len > 8)
- printf_unfiltered (
- "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
- memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + freg)],
- VALUE_CONTENTS (arg), len);
- freg++;
- }
- else
- {
- /* SysV ABI converts floats to doubles when placed in
- memory and requires 8 byte alignment */
- /* FIXME: Convert floats to doubles */
- if (argoffset & 0x4)
- argoffset += 4;
- write_memory (sp + argoffset, (char *) VALUE_CONTENTS (arg), len);
- argoffset += 8;
- }
- }
- else if (TYPE_CODE (type) == TYPE_CODE_INT && len == 8) /* long long */
- {
- if (greg > 9)
- {
- greg = 11;
- if (argoffset & 0x4)
- argoffset += 4;
- write_memory (sp + argoffset, (char *) VALUE_CONTENTS (arg), len);
- argoffset += 8;
- }
- else
- {
- if ((greg & 1) == 0)
- greg++;
-
- memcpy (&registers[REGISTER_BYTE (greg)],
- VALUE_CONTENTS (arg), 4);
- memcpy (&registers[REGISTER_BYTE (greg + 1)],
- VALUE_CONTENTS (arg) + 4, 4);
- greg += 2;
- }
- }
- else
- {
- char val_buf[4];
- if (len > 4
- || TYPE_CODE (type) == TYPE_CODE_STRUCT
- || TYPE_CODE (type) == TYPE_CODE_UNION)
- {
- write_memory (sp + structoffset, VALUE_CONTENTS (arg), len);
- store_address (val_buf, 4, sp + structoffset);
- structoffset += round2 (len, 8);
- }
- else
- {
- memset (val_buf, 0, 4);
- memcpy (val_buf, VALUE_CONTENTS (arg), len);
- }
- if (greg <= 10)
- {
- *(int *) &registers[REGISTER_BYTE (greg)] = 0;
- memcpy (&registers[REGISTER_BYTE (greg)], val_buf, 4);
- greg++;
- }
- else
- {
- write_memory (sp + argoffset, val_buf, 4);
- argoffset += 4;
- }
- }
- }
-
- target_store_registers (-1);
- return sp;
-}
-
-/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
- in much the same fashion as memory_remove_breakpoint in mem-break.c,
- but is careful not to write back the previous contents if the code
- in question has changed in between inserting the breakpoint and
- removing it.
-
- Here is the problem that we're trying to solve...
-
- Once upon a time, before introducing this function to remove
- breakpoints from the inferior, setting a breakpoint on a shared
- library function prior to running the program would not work
- properly. In order to understand the problem, it is first
- necessary to understand a little bit about dynamic linking on
- this platform.
-
- A call to a shared library function is accomplished via a bl
- (branch-and-link) instruction whose branch target is an entry
- in the procedure linkage table (PLT). The PLT in the object
- file is uninitialized. To gdb, prior to running the program, the
- entries in the PLT are all zeros.
-
- Once the program starts running, the shared libraries are loaded
- and the procedure linkage table is initialized, but the entries in
- the table are not (necessarily) resolved. Once a function is
- actually called, the code in the PLT is hit and the function is
- resolved. In order to better illustrate this, an example is in
- order; the following example is from the gdb testsuite.
-
- We start the program shmain.
-
- [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
- [...]
-
- We place two breakpoints, one on shr1 and the other on main.
-
- (gdb) b shr1
- Breakpoint 1 at 0x100409d4
- (gdb) b main
- Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
-
- Examine the instruction (and the immediatly following instruction)
- upon which the breakpoint was placed. Note that the PLT entry
- for shr1 contains zeros.
-
- (gdb) x/2i 0x100409d4
- 0x100409d4 <shr1>: .long 0x0
- 0x100409d8 <shr1+4>: .long 0x0
-
- Now run 'til main.
-
- (gdb) r
- Starting program: gdb.base/shmain
- Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
-
- Breakpoint 2, main ()
- at gdb.base/shmain.c:44
- 44 g = 1;
-
- Examine the PLT again. Note that the loading of the shared
- library has initialized the PLT to code which loads a constant
- (which I think is an index into the GOT) into r11 and then
- branchs a short distance to the code which actually does the
- resolving.
-
- (gdb) x/2i 0x100409d4
- 0x100409d4 <shr1>: li r11,4
- 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
- (gdb) c
- Continuing.
-
- Breakpoint 1, shr1 (x=1)
- at gdb.base/shr1.c:19
- 19 l = 1;
-
- Now we've hit the breakpoint at shr1. (The breakpoint was
- reset from the PLT entry to the actual shr1 function after the
- shared library was loaded.) Note that the PLT entry has been
- resolved to contain a branch that takes us directly to shr1.
- (The real one, not the PLT entry.)
-
- (gdb) x/2i 0x100409d4
- 0x100409d4 <shr1>: b 0xffaf76c <shr1>
- 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
-
- The thing to note here is that the PLT entry for shr1 has been
- changed twice.
-
- Now the problem should be obvious. GDB places a breakpoint (a
- trap instruction) on the zero value of the PLT entry for shr1.
- Later on, after the shared library had been loaded and the PLT
- initialized, GDB gets a signal indicating this fact and attempts
- (as it always does when it stops) to remove all the breakpoints.
-
- The breakpoint removal was causing the former contents (a zero
- word) to be written back to the now initialized PLT entry thus
- destroying a portion of the initialization that had occurred only a
- short time ago. When execution continued, the zero word would be
- executed as an instruction an an illegal instruction trap was
- generated instead. (0 is not a legal instruction.)
-
- The fix for this problem was fairly straightforward. The function
- memory_remove_breakpoint from mem-break.c was copied to this file,
- modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
- In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
- function.
-
- The differences between ppc_linux_memory_remove_breakpoint () and
- memory_remove_breakpoint () are minor. All that the former does
- that the latter does not is check to make sure that the breakpoint
- location actually contains a breakpoint (trap instruction) prior
- to attempting to write back the old contents. If it does contain
- a trap instruction, we allow the old contents to be written back.
- Otherwise, we silently do nothing.
-
- The big question is whether memory_remove_breakpoint () should be
- changed to have the same functionality. The downside is that more
- traffic is generated for remote targets since we'll have an extra
- fetch of a memory word each time a breakpoint is removed.
-
- For the time being, we'll leave this self-modifying-code-friendly
- version in ppc-linux-tdep.c, but it ought to be migrated somewhere
- else in the event that some other platform has similar needs with
- regard to removing breakpoints in some potentially self modifying
- code. */
-int
-ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
-{
- unsigned char *bp;
- int val;
- int bplen;
- char old_contents[BREAKPOINT_MAX];
-
- /* Determine appropriate breakpoint contents and size for this address. */
- bp = BREAKPOINT_FROM_PC (&addr, &bplen);
- if (bp == NULL)
- error ("Software breakpoints not implemented for this target.");
-
- val = target_read_memory (addr, old_contents, bplen);
-
- /* If our breakpoint is no longer at the address, this means that the
- program modified the code on us, so it is wrong to put back the
- old value */
- if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
- val = target_write_memory (addr, contents_cache, bplen);
-
- return val;
-}
-
-/* Fetch (and possibly build) an appropriate link_map_offsets
- structure for Linux/PPC targets using the struct offsets
- defined in link.h (but without actual reference to that file).
-
- This makes it possible to access Linux/PPC shared libraries from a
- GDB that was not built on an Linux/PPC host (for cross debugging). */
-
-struct link_map_offsets *
-ppc_linux_svr4_fetch_link_map_offsets (void)
-{
- static struct link_map_offsets lmo;
- static struct link_map_offsets *lmp = NULL;
-
- if (lmp == NULL)
- {
- lmp = &lmo;
-
- lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
- this is all we need. */
- lmo.r_map_offset = 4;
- lmo.r_map_size = 4;
-
- lmo.link_map_size = 20; /* The actual size is 560 bytes, but
- this is all we need. */
- lmo.l_addr_offset = 0;
- lmo.l_addr_size = 4;
-
- lmo.l_name_offset = 4;
- lmo.l_name_size = 4;
-
- lmo.l_next_offset = 12;
- lmo.l_next_size = 4;
-
- lmo.l_prev_offset = 16;
- lmo.l_prev_size = 4;
- }
-
- return lmp;
-}