summaryrefslogtreecommitdiff
path: root/gdb/rs6000-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/rs6000-tdep.c')
-rw-r--r--gdb/rs6000-tdep.c2661
1 files changed, 0 insertions, 2661 deletions
diff --git a/gdb/rs6000-tdep.c b/gdb/rs6000-tdep.c
deleted file mode 100644
index be8c5956c63..00000000000
--- a/gdb/rs6000-tdep.c
+++ /dev/null
@@ -1,2661 +0,0 @@
-/* Target-dependent code for GDB, the GNU debugger.
- Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
- 1998, 1999, 2000, 2001
- Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "inferior.h"
-#include "symtab.h"
-#include "target.h"
-#include "gdbcore.h"
-#include "gdbcmd.h"
-#include "symfile.h"
-#include "objfiles.h"
-#include "arch-utils.h"
-#include "regcache.h"
-#include "doublest.h"
-#include "value.h"
-#include "parser-defs.h"
-
-#include "bfd/libbfd.h" /* for bfd_default_set_arch_mach */
-#include "coff/internal.h" /* for libcoff.h */
-#include "bfd/libcoff.h" /* for xcoff_data */
-
-#include "elf-bfd.h"
-
-#include "solib-svr4.h"
-#include "ppc-tdep.h"
-
-/* If the kernel has to deliver a signal, it pushes a sigcontext
- structure on the stack and then calls the signal handler, passing
- the address of the sigcontext in an argument register. Usually
- the signal handler doesn't save this register, so we have to
- access the sigcontext structure via an offset from the signal handler
- frame.
- The following constants were determined by experimentation on AIX 3.2. */
-#define SIG_FRAME_PC_OFFSET 96
-#define SIG_FRAME_LR_OFFSET 108
-#define SIG_FRAME_FP_OFFSET 284
-
-/* To be used by skip_prologue. */
-
-struct rs6000_framedata
- {
- int offset; /* total size of frame --- the distance
- by which we decrement sp to allocate
- the frame */
- int saved_gpr; /* smallest # of saved gpr */
- int saved_fpr; /* smallest # of saved fpr */
- int alloca_reg; /* alloca register number (frame ptr) */
- char frameless; /* true if frameless functions. */
- char nosavedpc; /* true if pc not saved. */
- int gpr_offset; /* offset of saved gprs from prev sp */
- int fpr_offset; /* offset of saved fprs from prev sp */
- int lr_offset; /* offset of saved lr */
- int cr_offset; /* offset of saved cr */
- };
-
-/* Description of a single register. */
-
-struct reg
- {
- char *name; /* name of register */
- unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
- unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
- unsigned char fpr; /* whether register is floating-point */
- };
-
-/* Return the current architecture's gdbarch_tdep structure. */
-
-#define TDEP gdbarch_tdep (current_gdbarch)
-
-/* Breakpoint shadows for the single step instructions will be kept here. */
-
-static struct sstep_breaks
- {
- /* Address, or 0 if this is not in use. */
- CORE_ADDR address;
- /* Shadow contents. */
- char data[4];
- }
-stepBreaks[2];
-
-/* Hook for determining the TOC address when calling functions in the
- inferior under AIX. The initialization code in rs6000-nat.c sets
- this hook to point to find_toc_address. */
-
-CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
-
-/* Hook to set the current architecture when starting a child process.
- rs6000-nat.c sets this. */
-
-void (*rs6000_set_host_arch_hook) (int) = NULL;
-
-/* Static function prototypes */
-
-static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
- CORE_ADDR safety);
-static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
- struct rs6000_framedata *);
-static void frame_get_saved_regs (struct frame_info * fi,
- struct rs6000_framedata * fdatap);
-static CORE_ADDR frame_initial_stack_address (struct frame_info *);
-
-/* Read a LEN-byte address from debugged memory address MEMADDR. */
-
-static CORE_ADDR
-read_memory_addr (CORE_ADDR memaddr, int len)
-{
- return read_memory_unsigned_integer (memaddr, len);
-}
-
-static CORE_ADDR
-rs6000_skip_prologue (CORE_ADDR pc)
-{
- struct rs6000_framedata frame;
- pc = skip_prologue (pc, 0, &frame);
- return pc;
-}
-
-
-/* Fill in fi->saved_regs */
-
-struct frame_extra_info
-{
- /* Functions calling alloca() change the value of the stack
- pointer. We need to use initial stack pointer (which is saved in
- r31 by gcc) in such cases. If a compiler emits traceback table,
- then we should use the alloca register specified in traceback
- table. FIXME. */
- CORE_ADDR initial_sp; /* initial stack pointer. */
-};
-
-void
-rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
- fi->extra_info = (struct frame_extra_info *)
- frame_obstack_alloc (sizeof (struct frame_extra_info));
- fi->extra_info->initial_sp = 0;
- if (fi->next != (CORE_ADDR) 0
- && fi->pc < TEXT_SEGMENT_BASE)
- /* We're in get_prev_frame */
- /* and this is a special signal frame. */
- /* (fi->pc will be some low address in the kernel, */
- /* to which the signal handler returns). */
- fi->signal_handler_caller = 1;
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame. */
-
-/* In this implementation for RS/6000, we do *not* save sp. I am
- not sure if it will be needed. The following function takes care of gpr's
- and fpr's only. */
-
-void
-rs6000_frame_init_saved_regs (struct frame_info *fi)
-{
- frame_get_saved_regs (fi, NULL);
-}
-
-static CORE_ADDR
-rs6000_frame_args_address (struct frame_info *fi)
-{
- if (fi->extra_info->initial_sp != 0)
- return fi->extra_info->initial_sp;
- else
- return frame_initial_stack_address (fi);
-}
-
-/* Immediately after a function call, return the saved pc.
- Can't go through the frames for this because on some machines
- the new frame is not set up until the new function executes
- some instructions. */
-
-static CORE_ADDR
-rs6000_saved_pc_after_call (struct frame_info *fi)
-{
- return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-}
-
-/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
-
-static CORE_ADDR
-branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
-{
- CORE_ADDR dest;
- int immediate;
- int absolute;
- int ext_op;
-
- absolute = (int) ((instr >> 1) & 1);
-
- switch (opcode)
- {
- case 18:
- immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
- if (absolute)
- dest = immediate;
- else
- dest = pc + immediate;
- break;
-
- case 16:
- immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
- if (absolute)
- dest = immediate;
- else
- dest = pc + immediate;
- break;
-
- case 19:
- ext_op = (instr >> 1) & 0x3ff;
-
- if (ext_op == 16) /* br conditional register */
- {
- dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
-
- /* If we are about to return from a signal handler, dest is
- something like 0x3c90. The current frame is a signal handler
- caller frame, upon completion of the sigreturn system call
- execution will return to the saved PC in the frame. */
- if (dest < TEXT_SEGMENT_BASE)
- {
- struct frame_info *fi;
-
- fi = get_current_frame ();
- if (fi != NULL)
- dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
- TDEP->wordsize);
- }
- }
-
- else if (ext_op == 528) /* br cond to count reg */
- {
- dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
-
- /* If we are about to execute a system call, dest is something
- like 0x22fc or 0x3b00. Upon completion the system call
- will return to the address in the link register. */
- if (dest < TEXT_SEGMENT_BASE)
- dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
- }
- else
- return -1;
- break;
-
- default:
- return -1;
- }
- return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
-}
-
-
-/* Sequence of bytes for breakpoint instruction. */
-
-#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
-#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
-
-static unsigned char *
-rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
-{
- static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
- static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
- *bp_size = 4;
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
- return big_breakpoint;
- else
- return little_breakpoint;
-}
-
-
-/* AIX does not support PT_STEP. Simulate it. */
-
-void
-rs6000_software_single_step (enum target_signal signal,
- int insert_breakpoints_p)
-{
-#define INSNLEN(OPCODE) 4
-
- static char le_breakp[] = LITTLE_BREAKPOINT;
- static char be_breakp[] = BIG_BREAKPOINT;
- char *breakp = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? be_breakp : le_breakp;
- int ii, insn;
- CORE_ADDR loc;
- CORE_ADDR breaks[2];
- int opcode;
-
- if (insert_breakpoints_p)
- {
-
- loc = read_pc ();
-
- insn = read_memory_integer (loc, 4);
-
- breaks[0] = loc + INSNLEN (insn);
- opcode = insn >> 26;
- breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
-
- /* Don't put two breakpoints on the same address. */
- if (breaks[1] == breaks[0])
- breaks[1] = -1;
-
- stepBreaks[1].address = 0;
-
- for (ii = 0; ii < 2; ++ii)
- {
-
- /* ignore invalid breakpoint. */
- if (breaks[ii] == -1)
- continue;
-
- read_memory (breaks[ii], stepBreaks[ii].data, 4);
-
- write_memory (breaks[ii], breakp, 4);
- stepBreaks[ii].address = breaks[ii];
- }
-
- }
- else
- {
-
- /* remove step breakpoints. */
- for (ii = 0; ii < 2; ++ii)
- if (stepBreaks[ii].address != 0)
- write_memory
- (stepBreaks[ii].address, stepBreaks[ii].data, 4);
-
- }
- errno = 0; /* FIXME, don't ignore errors! */
- /* What errors? {read,write}_memory call error(). */
-}
-
-
-/* return pc value after skipping a function prologue and also return
- information about a function frame.
-
- in struct rs6000_framedata fdata:
- - frameless is TRUE, if function does not have a frame.
- - nosavedpc is TRUE, if function does not save %pc value in its frame.
- - offset is the initial size of this stack frame --- the amount by
- which we decrement the sp to allocate the frame.
- - saved_gpr is the number of the first saved gpr.
- - saved_fpr is the number of the first saved fpr.
- - alloca_reg is the number of the register used for alloca() handling.
- Otherwise -1.
- - gpr_offset is the offset of the first saved gpr from the previous frame.
- - fpr_offset is the offset of the first saved fpr from the previous frame.
- - lr_offset is the offset of the saved lr
- - cr_offset is the offset of the saved cr
- */
-
-#define SIGNED_SHORT(x) \
- ((sizeof (short) == 2) \
- ? ((int)(short)(x)) \
- : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
-
-#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
-
-/* Limit the number of skipped non-prologue instructions, as the examining
- of the prologue is expensive. */
-static int max_skip_non_prologue_insns = 10;
-
-/* Given PC representing the starting address of a function, and
- LIM_PC which is the (sloppy) limit to which to scan when looking
- for a prologue, attempt to further refine this limit by using
- the line data in the symbol table. If successful, a better guess
- on where the prologue ends is returned, otherwise the previous
- value of lim_pc is returned. */
-static CORE_ADDR
-refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
-{
- struct symtab_and_line prologue_sal;
-
- prologue_sal = find_pc_line (pc, 0);
- if (prologue_sal.line != 0)
- {
- int i;
- CORE_ADDR addr = prologue_sal.end;
-
- /* Handle the case in which compiler's optimizer/scheduler
- has moved instructions into the prologue. We scan ahead
- in the function looking for address ranges whose corresponding
- line number is less than or equal to the first one that we
- found for the function. (It can be less than when the
- scheduler puts a body instruction before the first prologue
- instruction.) */
- for (i = 2 * max_skip_non_prologue_insns;
- i > 0 && (lim_pc == 0 || addr < lim_pc);
- i--)
- {
- struct symtab_and_line sal;
-
- sal = find_pc_line (addr, 0);
- if (sal.line == 0)
- break;
- if (sal.line <= prologue_sal.line
- && sal.symtab == prologue_sal.symtab)
- {
- prologue_sal = sal;
- }
- addr = sal.end;
- }
-
- if (lim_pc == 0 || prologue_sal.end < lim_pc)
- lim_pc = prologue_sal.end;
- }
- return lim_pc;
-}
-
-
-static CORE_ADDR
-skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
-{
- CORE_ADDR orig_pc = pc;
- CORE_ADDR last_prologue_pc = pc;
- char buf[4];
- unsigned long op;
- long offset = 0;
- int lr_reg = -1;
- int cr_reg = -1;
- int reg;
- int framep = 0;
- int minimal_toc_loaded = 0;
- int prev_insn_was_prologue_insn = 1;
- int num_skip_non_prologue_insns = 0;
-
- /* Attempt to find the end of the prologue when no limit is specified.
- Note that refine_prologue_limit() has been written so that it may
- be used to "refine" the limits of non-zero PC values too, but this
- is only safe if we 1) trust the line information provided by the
- compiler and 2) iterate enough to actually find the end of the
- prologue.
-
- It may become a good idea at some point (for both performance and
- accuracy) to unconditionally call refine_prologue_limit(). But,
- until we can make a clear determination that this is beneficial,
- we'll play it safe and only use it to obtain a limit when none
- has been specified. */
- if (lim_pc == 0)
- lim_pc = refine_prologue_limit (pc, lim_pc);
-
- memset (fdata, 0, sizeof (struct rs6000_framedata));
- fdata->saved_gpr = -1;
- fdata->saved_fpr = -1;
- fdata->alloca_reg = -1;
- fdata->frameless = 1;
- fdata->nosavedpc = 1;
-
- for (;; pc += 4)
- {
- /* Sometimes it isn't clear if an instruction is a prologue
- instruction or not. When we encounter one of these ambiguous
- cases, we'll set prev_insn_was_prologue_insn to 0 (false).
- Otherwise, we'll assume that it really is a prologue instruction. */
- if (prev_insn_was_prologue_insn)
- last_prologue_pc = pc;
-
- /* Stop scanning if we've hit the limit. */
- if (lim_pc != 0 && pc >= lim_pc)
- break;
-
- prev_insn_was_prologue_insn = 1;
-
- /* Fetch the instruction and convert it to an integer. */
- if (target_read_memory (pc, buf, 4))
- break;
- op = extract_signed_integer (buf, 4);
-
- if ((op & 0xfc1fffff) == 0x7c0802a6)
- { /* mflr Rx */
- lr_reg = (op & 0x03e00000) | 0x90010000;
- continue;
-
- }
- else if ((op & 0xfc1fffff) == 0x7c000026)
- { /* mfcr Rx */
- cr_reg = (op & 0x03e00000) | 0x90010000;
- continue;
-
- }
- else if ((op & 0xfc1f0000) == 0xd8010000)
- { /* stfd Rx,NUM(r1) */
- reg = GET_SRC_REG (op);
- if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
- {
- fdata->saved_fpr = reg;
- fdata->fpr_offset = SIGNED_SHORT (op) + offset;
- }
- continue;
-
- }
- else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
- (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
- (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
- (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
- {
-
- reg = GET_SRC_REG (op);
- if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
- {
- fdata->saved_gpr = reg;
- if ((op & 0xfc1f0003) == 0xf8010000)
- op = (op >> 1) << 1;
- fdata->gpr_offset = SIGNED_SHORT (op) + offset;
- }
- continue;
-
- }
- else if ((op & 0xffff0000) == 0x60000000)
- {
- /* nop */
- /* Allow nops in the prologue, but do not consider them to
- be part of the prologue unless followed by other prologue
- instructions. */
- prev_insn_was_prologue_insn = 0;
- continue;
-
- }
- else if ((op & 0xffff0000) == 0x3c000000)
- { /* addis 0,0,NUM, used
- for >= 32k frames */
- fdata->offset = (op & 0x0000ffff) << 16;
- fdata->frameless = 0;
- continue;
-
- }
- else if ((op & 0xffff0000) == 0x60000000)
- { /* ori 0,0,NUM, 2nd ha
- lf of >= 32k frames */
- fdata->offset |= (op & 0x0000ffff);
- fdata->frameless = 0;
- continue;
-
- }
- else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
- { /* st Rx,NUM(r1)
- where Rx == lr */
- fdata->lr_offset = SIGNED_SHORT (op) + offset;
- fdata->nosavedpc = 0;
- lr_reg = 0;
- continue;
-
- }
- else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
- { /* st Rx,NUM(r1)
- where Rx == cr */
- fdata->cr_offset = SIGNED_SHORT (op) + offset;
- cr_reg = 0;
- continue;
-
- }
- else if (op == 0x48000005)
- { /* bl .+4 used in
- -mrelocatable */
- continue;
-
- }
- else if (op == 0x48000004)
- { /* b .+4 (xlc) */
- break;
-
- }
- else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
- in V.4 -mrelocatable */
- op == 0x7fc0f214) && /* add r30,r0,r30, used
- in V.4 -mrelocatable */
- lr_reg == 0x901e0000)
- {
- continue;
-
- }
- else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
- in V.4 -mminimal-toc */
- (op & 0xffff0000) == 0x3bde0000)
- { /* addi 30,30,foo@l */
- continue;
-
- }
- else if ((op & 0xfc000001) == 0x48000001)
- { /* bl foo,
- to save fprs??? */
-
- fdata->frameless = 0;
- /* Don't skip over the subroutine call if it is not within the first
- three instructions of the prologue. */
- if ((pc - orig_pc) > 8)
- break;
-
- op = read_memory_integer (pc + 4, 4);
-
- /* At this point, make sure this is not a trampoline function
- (a function that simply calls another functions, and nothing else).
- If the next is not a nop, this branch was part of the function
- prologue. */
-
- if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
- break; /* don't skip over
- this branch */
- continue;
-
- /* update stack pointer */
- }
- else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
- (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
- {
- fdata->frameless = 0;
- if ((op & 0xffff0003) == 0xf8210001)
- op = (op >> 1) << 1;
- fdata->offset = SIGNED_SHORT (op);
- offset = fdata->offset;
- continue;
-
- }
- else if (op == 0x7c21016e)
- { /* stwux 1,1,0 */
- fdata->frameless = 0;
- offset = fdata->offset;
- continue;
-
- /* Load up minimal toc pointer */
- }
- else if ((op >> 22) == 0x20f
- && !minimal_toc_loaded)
- { /* l r31,... or l r30,... */
- minimal_toc_loaded = 1;
- continue;
-
- /* move parameters from argument registers to local variable
- registers */
- }
- else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
- (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
- (((op >> 21) & 31) <= 10) &&
- (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
- {
- continue;
-
- /* store parameters in stack */
- }
- else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
- (op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
- (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
- (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
- {
- continue;
-
- /* store parameters in stack via frame pointer */
- }
- else if (framep &&
- ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
- (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
- (op & 0xfc1f0000) == 0xfc1f0000))
- { /* frsp, fp?,NUM(r1) */
- continue;
-
- /* Set up frame pointer */
- }
- else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
- || op == 0x7c3f0b78)
- { /* mr r31, r1 */
- fdata->frameless = 0;
- framep = 1;
- fdata->alloca_reg = 31;
- continue;
-
- /* Another way to set up the frame pointer. */
- }
- else if ((op & 0xfc1fffff) == 0x38010000)
- { /* addi rX, r1, 0x0 */
- fdata->frameless = 0;
- framep = 1;
- fdata->alloca_reg = (op & ~0x38010000) >> 21;
- continue;
-
- }
- else
- {
- /* Not a recognized prologue instruction.
- Handle optimizer code motions into the prologue by continuing
- the search if we have no valid frame yet or if the return
- address is not yet saved in the frame. */
- if (fdata->frameless == 0
- && (lr_reg == -1 || fdata->nosavedpc == 0))
- break;
-
- if (op == 0x4e800020 /* blr */
- || op == 0x4e800420) /* bctr */
- /* Do not scan past epilogue in frameless functions or
- trampolines. */
- break;
- if ((op & 0xf4000000) == 0x40000000) /* bxx */
- /* Never skip branches. */
- break;
-
- if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
- /* Do not scan too many insns, scanning insns is expensive with
- remote targets. */
- break;
-
- /* Continue scanning. */
- prev_insn_was_prologue_insn = 0;
- continue;
- }
- }
-
-#if 0
-/* I have problems with skipping over __main() that I need to address
- * sometime. Previously, I used to use misc_function_vector which
- * didn't work as well as I wanted to be. -MGO */
-
- /* If the first thing after skipping a prolog is a branch to a function,
- this might be a call to an initializer in main(), introduced by gcc2.
- We'd like to skip over it as well. Fortunately, xlc does some extra
- work before calling a function right after a prologue, thus we can
- single out such gcc2 behaviour. */
-
-
- if ((op & 0xfc000001) == 0x48000001)
- { /* bl foo, an initializer function? */
- op = read_memory_integer (pc + 4, 4);
-
- if (op == 0x4def7b82)
- { /* cror 0xf, 0xf, 0xf (nop) */
-
- /* check and see if we are in main. If so, skip over this initializer
- function as well. */
-
- tmp = find_pc_misc_function (pc);
- if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
- return pc + 8;
- }
- }
-#endif /* 0 */
-
- fdata->offset = -fdata->offset;
- return last_prologue_pc;
-}
-
-
-/*************************************************************************
- Support for creating pushing a dummy frame into the stack, and popping
- frames, etc.
-*************************************************************************/
-
-
-/* Pop the innermost frame, go back to the caller. */
-
-static void
-rs6000_pop_frame (void)
-{
- CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
- struct rs6000_framedata fdata;
- struct frame_info *frame = get_current_frame ();
- int ii, wordsize;
-
- pc = read_pc ();
- sp = FRAME_FP (frame);
-
- if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
- {
- generic_pop_dummy_frame ();
- flush_cached_frames ();
- return;
- }
-
- /* Make sure that all registers are valid. */
- read_register_bytes (0, NULL, REGISTER_BYTES);
-
- /* figure out previous %pc value. If the function is frameless, it is
- still in the link register, otherwise walk the frames and retrieve the
- saved %pc value in the previous frame. */
-
- addr = get_pc_function_start (frame->pc);
- (void) skip_prologue (addr, frame->pc, &fdata);
-
- wordsize = TDEP->wordsize;
- if (fdata.frameless)
- prev_sp = sp;
- else
- prev_sp = read_memory_addr (sp, wordsize);
- if (fdata.lr_offset == 0)
- lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
- else
- lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
-
- /* reset %pc value. */
- write_register (PC_REGNUM, lr);
-
- /* reset register values if any was saved earlier. */
-
- if (fdata.saved_gpr != -1)
- {
- addr = prev_sp + fdata.gpr_offset;
- for (ii = fdata.saved_gpr; ii <= 31; ++ii)
- {
- read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
- addr += wordsize;
- }
- }
-
- if (fdata.saved_fpr != -1)
- {
- addr = prev_sp + fdata.fpr_offset;
- for (ii = fdata.saved_fpr; ii <= 31; ++ii)
- {
- read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
- addr += 8;
- }
- }
-
- write_register (SP_REGNUM, prev_sp);
- target_store_registers (-1);
- flush_cached_frames ();
-}
-
-/* Fixup the call sequence of a dummy function, with the real function
- address. Its arguments will be passed by gdb. */
-
-static void
-rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
- int nargs, struct value **args, struct type *type,
- int gcc_p)
-{
-#define TOC_ADDR_OFFSET 20
-#define TARGET_ADDR_OFFSET 28
-
- int ii;
- CORE_ADDR target_addr;
-
- if (rs6000_find_toc_address_hook != NULL)
- {
- CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
- write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
- tocvalue);
- }
-}
-
-/* Pass the arguments in either registers, or in the stack. In RS/6000,
- the first eight words of the argument list (that might be less than
- eight parameters if some parameters occupy more than one word) are
- passed in r3..r10 registers. float and double parameters are
- passed in fpr's, in addition to that. Rest of the parameters if any
- are passed in user stack. There might be cases in which half of the
- parameter is copied into registers, the other half is pushed into
- stack.
-
- Stack must be aligned on 64-bit boundaries when synthesizing
- function calls.
-
- If the function is returning a structure, then the return address is passed
- in r3, then the first 7 words of the parameters can be passed in registers,
- starting from r4. */
-
-static CORE_ADDR
-rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- int ii;
- int len = 0;
- int argno; /* current argument number */
- int argbytes; /* current argument byte */
- char tmp_buffer[50];
- int f_argno = 0; /* current floating point argno */
- int wordsize = TDEP->wordsize;
-
- struct value *arg = 0;
- struct type *type;
-
- CORE_ADDR saved_sp;
-
- /* The first eight words of ther arguments are passed in registers. Copy
- them appropriately.
-
- If the function is returning a `struct', then the first word (which
- will be passed in r3) is used for struct return address. In that
- case we should advance one word and start from r4 register to copy
- parameters. */
-
- ii = struct_return ? 1 : 0;
-
-/*
- effectively indirect call... gcc does...
-
- return_val example( float, int);
-
- eabi:
- float in fp0, int in r3
- offset of stack on overflow 8/16
- for varargs, must go by type.
- power open:
- float in r3&r4, int in r5
- offset of stack on overflow different
- both:
- return in r3 or f0. If no float, must study how gcc emulates floats;
- pay attention to arg promotion.
- User may have to cast\args to handle promotion correctly
- since gdb won't know if prototype supplied or not.
- */
-
- for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
- {
- int reg_size = REGISTER_RAW_SIZE (ii + 3);
-
- arg = args[argno];
- type = check_typedef (VALUE_TYPE (arg));
- len = TYPE_LENGTH (type);
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
- {
-
- /* floating point arguments are passed in fpr's, as well as gpr's.
- There are 13 fpr's reserved for passing parameters. At this point
- there is no way we would run out of them. */
-
- if (len > 8)
- printf_unfiltered (
- "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
-
- memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
- VALUE_CONTENTS (arg),
- len);
- ++f_argno;
- }
-
- if (len > reg_size)
- {
-
- /* Argument takes more than one register. */
- while (argbytes < len)
- {
- memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
- memcpy (&registers[REGISTER_BYTE (ii + 3)],
- ((char *) VALUE_CONTENTS (arg)) + argbytes,
- (len - argbytes) > reg_size
- ? reg_size : len - argbytes);
- ++ii, argbytes += reg_size;
-
- if (ii >= 8)
- goto ran_out_of_registers_for_arguments;
- }
- argbytes = 0;
- --ii;
- }
- else
- { /* Argument can fit in one register. No problem. */
- int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
- memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
- memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
- VALUE_CONTENTS (arg), len);
- }
- ++argno;
- }
-
-ran_out_of_registers_for_arguments:
-
- saved_sp = read_sp ();
-#ifndef ELF_OBJECT_FORMAT
- /* location for 8 parameters are always reserved. */
- sp -= wordsize * 8;
-
- /* another six words for back chain, TOC register, link register, etc. */
- sp -= wordsize * 6;
-
- /* stack pointer must be quadword aligned */
- sp &= -16;
-#endif
-
- /* if there are more arguments, allocate space for them in
- the stack, then push them starting from the ninth one. */
-
- if ((argno < nargs) || argbytes)
- {
- int space = 0, jj;
-
- if (argbytes)
- {
- space += ((len - argbytes + 3) & -4);
- jj = argno + 1;
- }
- else
- jj = argno;
-
- for (; jj < nargs; ++jj)
- {
- struct value *val = args[jj];
- space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
- }
-
- /* add location required for the rest of the parameters */
- space = (space + 15) & -16;
- sp -= space;
-
- /* This is another instance we need to be concerned about securing our
- stack space. If we write anything underneath %sp (r1), we might conflict
- with the kernel who thinks he is free to use this area. So, update %sp
- first before doing anything else. */
-
- write_register (SP_REGNUM, sp);
-
- /* if the last argument copied into the registers didn't fit there
- completely, push the rest of it into stack. */
-
- if (argbytes)
- {
- write_memory (sp + 24 + (ii * 4),
- ((char *) VALUE_CONTENTS (arg)) + argbytes,
- len - argbytes);
- ++argno;
- ii += ((len - argbytes + 3) & -4) / 4;
- }
-
- /* push the rest of the arguments into stack. */
- for (; argno < nargs; ++argno)
- {
-
- arg = args[argno];
- type = check_typedef (VALUE_TYPE (arg));
- len = TYPE_LENGTH (type);
-
-
- /* float types should be passed in fpr's, as well as in the stack. */
- if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
- {
-
- if (len > 8)
- printf_unfiltered (
- "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
-
- memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
- VALUE_CONTENTS (arg),
- len);
- ++f_argno;
- }
-
- write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
- ii += ((len + 3) & -4) / 4;
- }
- }
- else
- /* Secure stack areas first, before doing anything else. */
- write_register (SP_REGNUM, sp);
-
- /* set back chain properly */
- store_address (tmp_buffer, 4, saved_sp);
- write_memory (sp, tmp_buffer, 4);
-
- target_store_registers (-1);
- return sp;
-}
-
-/* Function: ppc_push_return_address (pc, sp)
- Set up the return address for the inferior function call. */
-
-static CORE_ADDR
-ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-{
- write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
- CALL_DUMMY_ADDRESS ());
- return sp;
-}
-
-/* Extract a function return value of type TYPE from raw register array
- REGBUF, and copy that return value into VALBUF in virtual format. */
-
-static void
-rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
-{
- int offset = 0;
-
- if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
- {
-
- double dd;
- float ff;
- /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
- We need to truncate the return value into float size (4 byte) if
- necessary. */
-
- if (TYPE_LENGTH (valtype) > 4) /* this is a double */
- memcpy (valbuf,
- &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
- TYPE_LENGTH (valtype));
- else
- { /* float */
- memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
- ff = (float) dd;
- memcpy (valbuf, &ff, sizeof (float));
- }
- }
- else
- {
- /* return value is copied starting from r3. */
- if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
- && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
- offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
-
- memcpy (valbuf,
- regbuf + REGISTER_BYTE (3) + offset,
- TYPE_LENGTH (valtype));
- }
-}
-
-/* Keep structure return address in this variable.
- FIXME: This is a horrid kludge which should not be allowed to continue
- living. This only allows a single nested call to a structure-returning
- function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
-
-static CORE_ADDR rs6000_struct_return_address;
-
-/* Return whether handle_inferior_event() should proceed through code
- starting at PC in function NAME when stepping.
-
- The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
- handle memory references that are too distant to fit in instructions
- generated by the compiler. For example, if 'foo' in the following
- instruction:
-
- lwz r9,foo(r2)
-
- is greater than 32767, the linker might replace the lwz with a branch to
- somewhere in @FIX1 that does the load in 2 instructions and then branches
- back to where execution should continue.
-
- GDB should silently step over @FIX code, just like AIX dbx does.
- Unfortunately, the linker uses the "b" instruction for the branches,
- meaning that the link register doesn't get set. Therefore, GDB's usual
- step_over_function() mechanism won't work.
-
- Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
- in handle_inferior_event() to skip past @FIX code. */
-
-int
-rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
-{
- return name && !strncmp (name, "@FIX", 4);
-}
-
-/* Skip code that the user doesn't want to see when stepping:
-
- 1. Indirect function calls use a piece of trampoline code to do context
- switching, i.e. to set the new TOC table. Skip such code if we are on
- its first instruction (as when we have single-stepped to here).
-
- 2. Skip shared library trampoline code (which is different from
- indirect function call trampolines).
-
- 3. Skip bigtoc fixup code.
-
- Result is desired PC to step until, or NULL if we are not in
- code that should be skipped. */
-
-CORE_ADDR
-rs6000_skip_trampoline_code (CORE_ADDR pc)
-{
- register unsigned int ii, op;
- int rel;
- CORE_ADDR solib_target_pc;
- struct minimal_symbol *msymbol;
-
- static unsigned trampoline_code[] =
- {
- 0x800b0000, /* l r0,0x0(r11) */
- 0x90410014, /* st r2,0x14(r1) */
- 0x7c0903a6, /* mtctr r0 */
- 0x804b0004, /* l r2,0x4(r11) */
- 0x816b0008, /* l r11,0x8(r11) */
- 0x4e800420, /* bctr */
- 0x4e800020, /* br */
- 0
- };
-
- /* Check for bigtoc fixup code. */
- msymbol = lookup_minimal_symbol_by_pc (pc);
- if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
- {
- /* Double-check that the third instruction from PC is relative "b". */
- op = read_memory_integer (pc + 8, 4);
- if ((op & 0xfc000003) == 0x48000000)
- {
- /* Extract bits 6-29 as a signed 24-bit relative word address and
- add it to the containing PC. */
- rel = ((int)(op << 6) >> 6);
- return pc + 8 + rel;
- }
- }
-
- /* If pc is in a shared library trampoline, return its target. */
- solib_target_pc = find_solib_trampoline_target (pc);
- if (solib_target_pc)
- return solib_target_pc;
-
- for (ii = 0; trampoline_code[ii]; ++ii)
- {
- op = read_memory_integer (pc + (ii * 4), 4);
- if (op != trampoline_code[ii])
- return 0;
- }
- ii = read_register (11); /* r11 holds destination addr */
- pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
- return pc;
-}
-
-/* Determines whether the function FI has a frame on the stack or not. */
-
-int
-rs6000_frameless_function_invocation (struct frame_info *fi)
-{
- CORE_ADDR func_start;
- struct rs6000_framedata fdata;
-
- /* Don't even think about framelessness except on the innermost frame
- or if the function was interrupted by a signal. */
- if (fi->next != NULL && !fi->next->signal_handler_caller)
- return 0;
-
- func_start = get_pc_function_start (fi->pc);
-
- /* If we failed to find the start of the function, it is a mistake
- to inspect the instructions. */
-
- if (!func_start)
- {
- /* A frame with a zero PC is usually created by dereferencing a NULL
- function pointer, normally causing an immediate core dump of the
- inferior. Mark function as frameless, as the inferior has no chance
- of setting up a stack frame. */
- if (fi->pc == 0)
- return 1;
- else
- return 0;
- }
-
- (void) skip_prologue (func_start, fi->pc, &fdata);
- return fdata.frameless;
-}
-
-/* Return the PC saved in a frame */
-
-CORE_ADDR
-rs6000_frame_saved_pc (struct frame_info *fi)
-{
- CORE_ADDR func_start;
- struct rs6000_framedata fdata;
- int wordsize = TDEP->wordsize;
-
- if (fi->signal_handler_caller)
- return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
-
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
-
- func_start = get_pc_function_start (fi->pc);
-
- /* If we failed to find the start of the function, it is a mistake
- to inspect the instructions. */
- if (!func_start)
- return 0;
-
- (void) skip_prologue (func_start, fi->pc, &fdata);
-
- if (fdata.lr_offset == 0 && fi->next != NULL)
- {
- if (fi->next->signal_handler_caller)
- return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
- wordsize);
- else
- return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
- wordsize);
- }
-
- if (fdata.lr_offset == 0)
- return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-
- return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
-}
-
-/* If saved registers of frame FI are not known yet, read and cache them.
- &FDATAP contains rs6000_framedata; TDATAP can be NULL,
- in which case the framedata are read. */
-
-static void
-frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
-{
- CORE_ADDR frame_addr;
- struct rs6000_framedata work_fdata;
- int wordsize = TDEP->wordsize;
-
- if (fi->saved_regs)
- return;
-
- if (fdatap == NULL)
- {
- fdatap = &work_fdata;
- (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
- }
-
- frame_saved_regs_zalloc (fi);
-
- /* If there were any saved registers, figure out parent's stack
- pointer. */
- /* The following is true only if the frame doesn't have a call to
- alloca(), FIXME. */
-
- if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
- && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
- frame_addr = 0;
- else if (fi->prev && fi->prev->frame)
- frame_addr = fi->prev->frame;
- else
- frame_addr = read_memory_addr (fi->frame, wordsize);
-
- /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
- All fpr's from saved_fpr to fp31 are saved. */
-
- if (fdatap->saved_fpr >= 0)
- {
- int i;
- CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
- for (i = fdatap->saved_fpr; i < 32; i++)
- {
- fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
- fpr_addr += 8;
- }
- }
-
- /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
- All gpr's from saved_gpr to gpr31 are saved. */
-
- if (fdatap->saved_gpr >= 0)
- {
- int i;
- CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
- for (i = fdatap->saved_gpr; i < 32; i++)
- {
- fi->saved_regs[i] = gpr_addr;
- gpr_addr += wordsize;
- }
- }
-
- /* If != 0, fdatap->cr_offset is the offset from the frame that holds
- the CR. */
- if (fdatap->cr_offset != 0)
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
- frame_addr + fdatap->cr_offset;
-
- /* If != 0, fdatap->lr_offset is the offset from the frame that holds
- the LR. */
- if (fdatap->lr_offset != 0)
- fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
- frame_addr + fdatap->lr_offset;
-}
-
-/* Return the address of a frame. This is the inital %sp value when the frame
- was first allocated. For functions calling alloca(), it might be saved in
- an alloca register. */
-
-static CORE_ADDR
-frame_initial_stack_address (struct frame_info *fi)
-{
- CORE_ADDR tmpaddr;
- struct rs6000_framedata fdata;
- struct frame_info *callee_fi;
-
- /* if the initial stack pointer (frame address) of this frame is known,
- just return it. */
-
- if (fi->extra_info->initial_sp)
- return fi->extra_info->initial_sp;
-
- /* find out if this function is using an alloca register.. */
-
- (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
-
- /* if saved registers of this frame are not known yet, read and cache them. */
-
- if (!fi->saved_regs)
- frame_get_saved_regs (fi, &fdata);
-
- /* If no alloca register used, then fi->frame is the value of the %sp for
- this frame, and it is good enough. */
-
- if (fdata.alloca_reg < 0)
- {
- fi->extra_info->initial_sp = fi->frame;
- return fi->extra_info->initial_sp;
- }
-
- /* This function has an alloca register. If this is the top-most frame
- (with the lowest address), the value in alloca register is good. */
-
- if (!fi->next)
- return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
-
- /* Otherwise, this is a caller frame. Callee has usually already saved
- registers, but there are exceptions (such as when the callee
- has no parameters). Find the address in which caller's alloca
- register is saved. */
-
- for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
- {
-
- if (!callee_fi->saved_regs)
- frame_get_saved_regs (callee_fi, NULL);
-
- /* this is the address in which alloca register is saved. */
-
- tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
- if (tmpaddr)
- {
- fi->extra_info->initial_sp =
- read_memory_addr (tmpaddr, TDEP->wordsize);
- return fi->extra_info->initial_sp;
- }
-
- /* Go look into deeper levels of the frame chain to see if any one of
- the callees has saved alloca register. */
- }
-
- /* If alloca register was not saved, by the callee (or any of its callees)
- then the value in the register is still good. */
-
- fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
- return fi->extra_info->initial_sp;
-}
-
-/* Describe the pointer in each stack frame to the previous stack frame
- (its caller). */
-
-/* FRAME_CHAIN takes a frame's nominal address
- and produces the frame's chain-pointer. */
-
-/* In the case of the RS/6000, the frame's nominal address
- is the address of a 4-byte word containing the calling frame's address. */
-
-CORE_ADDR
-rs6000_frame_chain (struct frame_info *thisframe)
-{
- CORE_ADDR fp, fpp, lr;
- int wordsize = TDEP->wordsize;
-
- if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
- return thisframe->frame; /* dummy frame same as caller's frame */
-
- if (inside_entry_file (thisframe->pc) ||
- thisframe->pc == entry_point_address ())
- return 0;
-
- if (thisframe->signal_handler_caller)
- fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
- wordsize);
- else if (thisframe->next != NULL
- && thisframe->next->signal_handler_caller
- && FRAMELESS_FUNCTION_INVOCATION (thisframe))
- /* A frameless function interrupted by a signal did not change the
- frame pointer. */
- fp = FRAME_FP (thisframe);
- else
- fp = read_memory_addr ((thisframe)->frame, wordsize);
-
- lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
- if (lr == entry_point_address ())
- if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
- if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
- return fpp;
-
- return fp;
-}
-
-/* Return the size of register REG when words are WORDSIZE bytes long. If REG
- isn't available with that word size, return 0. */
-
-static int
-regsize (const struct reg *reg, int wordsize)
-{
- return wordsize == 8 ? reg->sz64 : reg->sz32;
-}
-
-/* Return the name of register number N, or null if no such register exists
- in the current architecture. */
-
-static char *
-rs6000_register_name (int n)
-{
- struct gdbarch_tdep *tdep = TDEP;
- const struct reg *reg = tdep->regs + n;
-
- if (!regsize (reg, tdep->wordsize))
- return NULL;
- return reg->name;
-}
-
-/* Index within `registers' of the first byte of the space for
- register N. */
-
-static int
-rs6000_register_byte (int n)
-{
- return TDEP->regoff[n];
-}
-
-/* Return the number of bytes of storage in the actual machine representation
- for register N if that register is available, else return 0. */
-
-static int
-rs6000_register_raw_size (int n)
-{
- struct gdbarch_tdep *tdep = TDEP;
- const struct reg *reg = tdep->regs + n;
- return regsize (reg, tdep->wordsize);
-}
-
-/* Return the GDB type object for the "standard" data type
- of data in register N. */
-
-static struct type *
-rs6000_register_virtual_type (int n)
-{
- struct gdbarch_tdep *tdep = TDEP;
- const struct reg *reg = tdep->regs + n;
-
- if (reg->fpr)
- return builtin_type_double;
- else
- {
- int size = regsize (reg, tdep->wordsize);
- switch (size)
- {
- case 8:
- return builtin_type_int64;
- break;
- case 16:
- return builtin_type_vec128;
- break;
- default:
- return builtin_type_int32;
- break;
- }
- }
-}
-
-/* For the PowerPC, it appears that the debug info marks float parameters as
- floats regardless of whether the function is prototyped, but the actual
- values are always passed in as doubles. Tell gdb to always assume that
- floats are passed as doubles and then converted in the callee. */
-
-static int
-rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
-{
- return 1;
-}
-
-/* Return whether register N requires conversion when moving from raw format
- to virtual format.
-
- The register format for RS/6000 floating point registers is always
- double, we need a conversion if the memory format is float. */
-
-static int
-rs6000_register_convertible (int n)
-{
- const struct reg *reg = TDEP->regs + n;
- return reg->fpr;
-}
-
-/* Convert data from raw format for register N in buffer FROM
- to virtual format with type TYPE in buffer TO. */
-
-static void
-rs6000_register_convert_to_virtual (int n, struct type *type,
- char *from, char *to)
-{
- if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
- {
- double val = extract_floating (from, REGISTER_RAW_SIZE (n));
- store_floating (to, TYPE_LENGTH (type), val);
- }
- else
- memcpy (to, from, REGISTER_RAW_SIZE (n));
-}
-
-/* Convert data from virtual format with type TYPE in buffer FROM
- to raw format for register N in buffer TO. */
-
-static void
-rs6000_register_convert_to_raw (struct type *type, int n,
- char *from, char *to)
-{
- if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
- {
- double val = extract_floating (from, TYPE_LENGTH (type));
- store_floating (to, REGISTER_RAW_SIZE (n), val);
- }
- else
- memcpy (to, from, REGISTER_RAW_SIZE (n));
-}
-
-int
-altivec_register_p (int regno)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
- if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
- return 0;
- else
- return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
-}
-
-static void
-rs6000_do_altivec_registers (int regnum)
-{
- int i;
- char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
- char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
- struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-
- for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
- {
- /* If we want just one reg, check that this is the one we want. */
- if (regnum != -1 && i != regnum)
- continue;
-
- /* If the register name is empty, it is undefined for this
- processor, so don't display anything. */
- if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
- continue;
-
- fputs_filtered (REGISTER_NAME (i), gdb_stdout);
- print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
-
- /* Get the data in raw format. */
- if (read_relative_register_raw_bytes (i, raw_buffer))
- {
- printf_filtered ("*value not available*\n");
- continue;
- }
-
- /* Convert raw data to virtual format if necessary. */
- if (REGISTER_CONVERTIBLE (i))
- REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
- raw_buffer, virtual_buffer);
- else
- memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
-
- /* Print as integer in hex only. */
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
- gdb_stdout, 'x', 1, 0, Val_pretty_default);
- printf_filtered ("\n");
- }
-}
-
-static void
-rs6000_altivec_registers_info (char *addr_exp, int from_tty)
-{
- int regnum, numregs;
- register char *end;
-
- if (!target_has_registers)
- error ("The program has no registers now.");
- if (selected_frame == NULL)
- error ("No selected frame.");
-
- if (!addr_exp)
- {
- rs6000_do_altivec_registers (-1);
- return;
- }
-
- numregs = NUM_REGS + NUM_PSEUDO_REGS;
- do
- {
- if (addr_exp[0] == '$')
- addr_exp++;
- end = addr_exp;
- while (*end != '\0' && *end != ' ' && *end != '\t')
- ++end;
-
- regnum = target_map_name_to_register (addr_exp, end - addr_exp);
- if (regnum < 0)
- {
- regnum = numregs;
- if (*addr_exp >= '0' && *addr_exp <= '9')
- regnum = atoi (addr_exp); /* Take a number */
- if (regnum >= numregs) /* Bad name, or bad number */
- error ("%.*s: invalid register", end - addr_exp, addr_exp);
- }
-
- rs6000_do_altivec_registers (regnum);
-
- addr_exp = end;
- while (*addr_exp == ' ' || *addr_exp == '\t')
- ++addr_exp;
- }
- while (*addr_exp != '\0');
-}
-
-static void
-rs6000_do_registers_info (int regnum, int fpregs)
-{
- register int i;
- int numregs = NUM_REGS + NUM_PSEUDO_REGS;
- char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
- char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
-
- for (i = 0; i < numregs; i++)
- {
- /* Decide between printing all regs, nonfloat regs, or specific reg. */
- if (regnum == -1)
- {
- if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
- || (altivec_register_p (i) && !fpregs))
- continue;
- }
- else
- {
- if (i != regnum)
- continue;
- }
-
- /* If the register name is empty, it is undefined for this
- processor, so don't display anything. */
- if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
- continue;
-
- fputs_filtered (REGISTER_NAME (i), gdb_stdout);
- print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
-
- /* Get the data in raw format. */
- if (read_relative_register_raw_bytes (i, raw_buffer))
- {
- printf_filtered ("*value not available*\n");
- continue;
- }
-
- /* Convert raw data to virtual format if necessary. */
- if (REGISTER_CONVERTIBLE (i))
- REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
- raw_buffer, virtual_buffer);
- else
- memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
-
- /* If virtual format is floating, print it that way, and in raw hex. */
- if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
- {
- register int j;
-
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
- gdb_stdout, 0, 1, 0, Val_pretty_default);
-
- printf_filtered ("\t(raw 0x");
- for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
- {
- register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
- : REGISTER_RAW_SIZE (i) - 1 - j;
- printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
- }
- printf_filtered (")");
- }
- else
- {
- /* Print as integer in hex and in decimal. */
- if (!altivec_register_p (i))
- {
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
- gdb_stdout, 'x', 1, 0, Val_pretty_default);
- printf_filtered ("\t");
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
- gdb_stdout, 0, 1, 0, Val_pretty_default);
- }
- else
- /* Print as integer in hex only. */
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
- gdb_stdout, 'x', 1, 0, Val_pretty_default);
- }
- printf_filtered ("\n");
- }
-}
-
-/* Convert a dbx stab register number (from `r' declaration) to a gdb
- REGNUM. */
-static int
-rs6000_stab_reg_to_regnum (int num)
-{
- int regnum;
- switch (num)
- {
- case 64:
- regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
- break;
- case 65:
- regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
- break;
- case 66:
- regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
- break;
- case 76:
- regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
- break;
- default:
- regnum = num;
- break;
- }
- return regnum;
-}
-
-/* Store the address of the place in which to copy the structure the
- subroutine will return. This is called from call_function.
-
- In RS/6000, struct return addresses are passed as an extra parameter in r3.
- In function return, callee is not responsible of returning this address
- back. Since gdb needs to find it, we will store in a designated variable
- `rs6000_struct_return_address'. */
-
-static void
-rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
-{
- write_register (3, addr);
- rs6000_struct_return_address = addr;
-}
-
-/* Write into appropriate registers a function return value
- of type TYPE, given in virtual format. */
-
-static void
-rs6000_store_return_value (struct type *type, char *valbuf)
-{
- if (TYPE_CODE (type) == TYPE_CODE_FLT)
-
- /* Floating point values are returned starting from FPR1 and up.
- Say a double_double_double type could be returned in
- FPR1/FPR2/FPR3 triple. */
-
- write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
- TYPE_LENGTH (type));
- else
- /* Everything else is returned in GPR3 and up. */
- write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
- valbuf, TYPE_LENGTH (type));
-}
-
-/* Extract from an array REGBUF containing the (raw) register state
- the address in which a function should return its structure value,
- as a CORE_ADDR (or an expression that can be used as one). */
-
-static CORE_ADDR
-rs6000_extract_struct_value_address (char *regbuf)
-{
- return rs6000_struct_return_address;
-}
-
-/* Return whether PC is in a dummy function call.
-
- FIXME: This just checks for the end of the stack, which is broken
- for things like stepping through gcc nested function stubs. */
-
-static int
-rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
-{
- return sp < pc && pc < fp;
-}
-
-/* Hook called when a new child process is started. */
-
-void
-rs6000_create_inferior (int pid)
-{
- if (rs6000_set_host_arch_hook)
- rs6000_set_host_arch_hook (pid);
-}
-
-/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
-
- Usually a function pointer's representation is simply the address
- of the function. On the RS/6000 however, a function pointer is
- represented by a pointer to a TOC entry. This TOC entry contains
- three words, the first word is the address of the function, the
- second word is the TOC pointer (r2), and the third word is the
- static chain value. Throughout GDB it is currently assumed that a
- function pointer contains the address of the function, which is not
- easy to fix. In addition, the conversion of a function address to
- a function pointer would require allocation of a TOC entry in the
- inferior's memory space, with all its drawbacks. To be able to
- call C++ virtual methods in the inferior (which are called via
- function pointers), find_function_addr uses this function to get the
- function address from a function pointer. */
-
-/* Return real function address if ADDR (a function pointer) is in the data
- space and is therefore a special function pointer. */
-
-CORE_ADDR
-rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
-{
- struct obj_section *s;
-
- s = find_pc_section (addr);
- if (s && s->the_bfd_section->flags & SEC_CODE)
- return addr;
-
- /* ADDR is in the data space, so it's a special function pointer. */
- return read_memory_addr (addr, TDEP->wordsize);
-}
-
-
-/* Handling the various POWER/PowerPC variants. */
-
-
-/* The arrays here called registers_MUMBLE hold information about available
- registers.
-
- For each family of PPC variants, I've tried to isolate out the
- common registers and put them up front, so that as long as you get
- the general family right, GDB will correctly identify the registers
- common to that family. The common register sets are:
-
- For the 60x family: hid0 hid1 iabr dabr pir
-
- For the 505 and 860 family: eie eid nri
-
- For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
- tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
- pbu1 pbl2 pbu2
-
- Most of these register groups aren't anything formal. I arrived at
- them by looking at the registers that occurred in more than one
- processor. */
-
-/* Convenience macros for populating register arrays. */
-
-/* Within another macro, convert S to a string. */
-
-#define STR(s) #s
-
-/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
- and 64 bits on 64-bit systems. */
-#define R(name) { STR(name), 4, 8, 0 }
-
-/* Return a struct reg defining register NAME that's 32 bits on all
- systems. */
-#define R4(name) { STR(name), 4, 4, 0 }
-
-/* Return a struct reg defining register NAME that's 64 bits on all
- systems. */
-#define R8(name) { STR(name), 8, 8, 0 }
-
-/* Return a struct reg defining register NAME that's 128 bits on all
- systems. */
-#define R16(name) { STR(name), 16, 16, 0 }
-
-/* Return a struct reg defining floating-point register NAME. */
-#define F(name) { STR(name), 8, 8, 1 }
-
-/* Return a struct reg defining register NAME that's 32 bits on 32-bit
- systems and that doesn't exist on 64-bit systems. */
-#define R32(name) { STR(name), 4, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 64 bits on 64-bit
- systems and that doesn't exist on 32-bit systems. */
-#define R64(name) { STR(name), 0, 8, 0 }
-
-/* Return a struct reg placeholder for a register that doesn't exist. */
-#define R0 { 0, 0, 0, 0 }
-
-/* UISA registers common across all architectures, including POWER. */
-
-#define COMMON_UISA_REGS \
- /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
- /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
- /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
- /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
- /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
- /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
- /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
- /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
- /* 64 */ R(pc), R(ps)
-
-/* UISA-level SPRs for PowerPC. */
-#define PPC_UISA_SPRS \
- /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
-
-/* Segment registers, for PowerPC. */
-#define PPC_SEGMENT_REGS \
- /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
- /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
- /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
- /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
-
-/* OEA SPRs for PowerPC. */
-#define PPC_OEA_SPRS \
- /* 87 */ R4(pvr), \
- /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
- /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
- /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
- /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
- /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
- /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
- /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
- /* 116 */ R4(dec), R(dabr), R4(ear)
-
-/* AltiVec registers */
-#define PPC_ALTIVEC_REGS \
- /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
- /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
- /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
- /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
- /*151*/R4(vscr), R4(vrsave)
-
-/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
- user-level SPR's. */
-static const struct reg registers_power[] =
-{
- COMMON_UISA_REGS,
- /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
-};
-
-/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
- view of the PowerPC. */
-static const struct reg registers_powerpc[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_ALTIVEC_REGS
-};
-
-/* IBM PowerPC 403. */
-static const struct reg registers_403[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
- /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
- /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
- /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
- /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
- /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
-};
-
-/* IBM PowerPC 403GC. */
-static const struct reg registers_403GC[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
- /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
- /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
- /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
- /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
- /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
- /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
- /* 147 */ R(tbhu), R(tblu)
-};
-
-/* Motorola PowerPC 505. */
-static const struct reg registers_505[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(eie), R(eid), R(nri)
-};
-
-/* Motorola PowerPC 860 or 850. */
-static const struct reg registers_860[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
- /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
- /* 127 */ R(der), R(counta), R(countb), R(cmpe),
- /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
- /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
- /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
- /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
- /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
- /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
- /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
- /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
- /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
-};
-
-/* Motorola PowerPC 601. Note that the 601 has different register numbers
- for reading and writing RTCU and RTCL. However, how one reads and writes a
- register is the stub's problem. */
-static const struct reg registers_601[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
- /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
-};
-
-/* Motorola PowerPC 602. */
-static const struct reg registers_602[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(hid0), R(hid1), R(iabr), R0,
- /* 123 */ R0, R(tcr), R(ibr), R(esassr),
- /* 127 */ R(sebr), R(ser), R(sp), R(lt)
-};
-
-/* Motorola/IBM PowerPC 603 or 603e. */
-static const struct reg registers_603[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(hid0), R(hid1), R(iabr), R0,
- /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
- /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
-};
-
-/* Motorola PowerPC 604 or 604e. */
-static const struct reg registers_604[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
- /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
- /* 127 */ R(sia), R(sda)
-};
-
-/* Motorola/IBM PowerPC 750 or 740. */
-static const struct reg registers_750[] =
-{
- COMMON_UISA_REGS,
- PPC_UISA_SPRS,
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
- /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
- /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
- /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
- /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
- /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
-};
-
-
-/* Motorola PowerPC 7400. */
-static const struct reg registers_7400[] =
-{
- /* gpr0-gpr31, fpr0-fpr31 */
- COMMON_UISA_REGS,
- /* ctr, xre, lr, cr */
- PPC_UISA_SPRS,
- /* sr0-sr15 */
- PPC_SEGMENT_REGS,
- PPC_OEA_SPRS,
- /* vr0-vr31, vrsave, vscr */
- PPC_ALTIVEC_REGS
- /* FIXME? Add more registers? */
-};
-
-/* Information about a particular processor variant. */
-
-struct variant
- {
- /* Name of this variant. */
- char *name;
-
- /* English description of the variant. */
- char *description;
-
- /* bfd_arch_info.arch corresponding to variant. */
- enum bfd_architecture arch;
-
- /* bfd_arch_info.mach corresponding to variant. */
- unsigned long mach;
-
- /* Table of register names; registers[R] is the name of the register
- number R. */
- int nregs;
- const struct reg *regs;
- };
-
-#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
-
-
-/* Information in this table comes from the following web sites:
- IBM: http://www.chips.ibm.com:80/products/embedded/
- Motorola: http://www.mot.com/SPS/PowerPC/
-
- I'm sure I've got some of the variant descriptions not quite right.
- Please report any inaccuracies you find to GDB's maintainer.
-
- If you add entries to this table, please be sure to allow the new
- value as an argument to the --with-cpu flag, in configure.in. */
-
-static const struct variant variants[] =
-{
- {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
- bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
- {"power", "POWER user-level", bfd_arch_rs6000,
- bfd_mach_rs6k, num_registers (registers_power), registers_power},
- {"403", "IBM PowerPC 403", bfd_arch_powerpc,
- bfd_mach_ppc_403, num_registers (registers_403), registers_403},
- {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
- bfd_mach_ppc_601, num_registers (registers_601), registers_601},
- {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
- bfd_mach_ppc_602, num_registers (registers_602), registers_602},
- {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
- bfd_mach_ppc_603, num_registers (registers_603), registers_603},
- {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
- 604, num_registers (registers_604), registers_604},
- {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
- bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
- {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
- bfd_mach_ppc_505, num_registers (registers_505), registers_505},
- {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
- bfd_mach_ppc_860, num_registers (registers_860), registers_860},
- {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
- bfd_mach_ppc_750, num_registers (registers_750), registers_750},
- {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
- bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
-
- /* FIXME: I haven't checked the register sets of the following. */
- {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
- bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
- {"a35", "PowerPC A35", bfd_arch_powerpc,
- bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
- {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
- bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
- {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
- bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
- {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
- bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
-
- {0, 0, 0, 0}
-};
-
-#undef num_registers
-
-/* Look up the variant named NAME in the `variants' table. Return a
- pointer to the struct variant, or null if we couldn't find it. */
-
-static const struct variant *
-find_variant_by_name (char *name)
-{
- const struct variant *v;
-
- for (v = variants; v->name; v++)
- if (!strcmp (name, v->name))
- return v;
-
- return NULL;
-}
-
-/* Return the variant corresponding to architecture ARCH and machine number
- MACH. If no such variant exists, return null. */
-
-static const struct variant *
-find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
-{
- const struct variant *v;
-
- for (v = variants; v->name; v++)
- if (arch == v->arch && mach == v->mach)
- return v;
-
- return NULL;
-}
-
-
-
-
-static void
-process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
-{
- int *os_ident_ptr = obj;
- const char *name;
- unsigned int sectsize;
-
- name = bfd_get_section_name (abfd, sect);
- sectsize = bfd_section_size (abfd, sect);
- if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
- {
- unsigned int name_length, data_length, note_type;
- char *note = alloca (sectsize);
-
- bfd_get_section_contents (abfd, sect, note,
- (file_ptr) 0, (bfd_size_type) sectsize);
-
- name_length = bfd_h_get_32 (abfd, note);
- data_length = bfd_h_get_32 (abfd, note + 4);
- note_type = bfd_h_get_32 (abfd, note + 8);
-
- if (name_length == 4 && data_length == 16 && note_type == 1
- && strcmp (note + 12, "GNU") == 0)
- {
- int os_number = bfd_h_get_32 (abfd, note + 16);
-
- /* The case numbers are from abi-tags in glibc */
- switch (os_number)
- {
- case 0 :
- *os_ident_ptr = ELFOSABI_LINUX;
- break;
- case 1 :
- *os_ident_ptr = ELFOSABI_HURD;
- break;
- case 2 :
- *os_ident_ptr = ELFOSABI_SOLARIS;
- break;
- default :
- internal_error (__FILE__, __LINE__,
- "process_note_abi_sections: unknown OS number %d",
- os_number);
- break;
- }
- }
- }
-}
-
-/* Return one of the ELFOSABI_ constants for BFDs representing ELF
- executables. If it's not an ELF executable or if the OS/ABI couldn't
- be determined, simply return -1. */
-
-static int
-get_elfosabi (bfd *abfd)
-{
- int elfosabi = -1;
-
- if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
- {
- elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
-
- /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
- that we're on a SYSV system. However, GNU/Linux uses a note section
- to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
- have to check the note sections too. */
- if (elfosabi == 0)
- {
- bfd_map_over_sections (abfd,
- process_note_abi_tag_sections,
- &elfosabi);
- }
- }
-
- return elfosabi;
-}
-
-
-
-/* Initialize the current architecture based on INFO. If possible, re-use an
- architecture from ARCHES, which is a list of architectures already created
- during this debugging session.
-
- Called e.g. at program startup, when reading a core file, and when reading
- a binary file. */
-
-static struct gdbarch *
-rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
- struct gdbarch *gdbarch;
- struct gdbarch_tdep *tdep;
- int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
- struct reg *regs;
- const struct variant *v;
- enum bfd_architecture arch;
- unsigned long mach;
- bfd abfd;
- int osabi, sysv_abi;
-
- from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
- bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
-
- from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
- bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
-
- sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
-
- osabi = get_elfosabi (info.abfd);
-
- /* Check word size. If INFO is from a binary file, infer it from
- that, else choose a likely default. */
- if (from_xcoff_exec)
- {
- if (xcoff_data (info.abfd)->xcoff64)
- wordsize = 8;
- else
- wordsize = 4;
- }
- else if (from_elf_exec)
- {
- if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
- wordsize = 8;
- else
- wordsize = 4;
- }
- else
- {
- wordsize = 4;
- }
-
- /* Find a candidate among extant architectures. */
- for (arches = gdbarch_list_lookup_by_info (arches, &info);
- arches != NULL;
- arches = gdbarch_list_lookup_by_info (arches->next, &info))
- {
- /* Word size in the various PowerPC bfd_arch_info structs isn't
- meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
- separate word size check. */
- tdep = gdbarch_tdep (arches->gdbarch);
- if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
- return arches->gdbarch;
- }
-
- /* None found, create a new architecture from INFO, whose bfd_arch_info
- validity depends on the source:
- - executable useless
- - rs6000_host_arch() good
- - core file good
- - "set arch" trust blindly
- - GDB startup useless but harmless */
-
- if (!from_xcoff_exec)
- {
- arch = info.bfd_arch_info->arch;
- mach = info.bfd_arch_info->mach;
- }
- else
- {
- arch = bfd_arch_powerpc;
- mach = 0;
- bfd_default_set_arch_mach (&abfd, arch, mach);
- info.bfd_arch_info = bfd_get_arch_info (&abfd);
- }
- tdep = xmalloc (sizeof (struct gdbarch_tdep));
- tdep->wordsize = wordsize;
- tdep->osabi = osabi;
- gdbarch = gdbarch_alloc (&info, tdep);
- power = arch == bfd_arch_rs6000;
-
- /* Select instruction printer. */
- tm_print_insn = arch == power ? print_insn_rs6000 :
- info.byte_order == BFD_ENDIAN_BIG ? print_insn_big_powerpc :
- print_insn_little_powerpc;
-
- /* Choose variant. */
- v = find_variant_by_arch (arch, mach);
- if (!v)
- v = find_variant_by_name (power ? "power" : "powerpc");
- tdep->regs = v->regs;
-
- tdep->ppc_gp0_regnum = 0;
- tdep->ppc_gplast_regnum = 31;
- tdep->ppc_toc_regnum = 2;
- tdep->ppc_ps_regnum = 65;
- tdep->ppc_cr_regnum = 66;
- tdep->ppc_lr_regnum = 67;
- tdep->ppc_ctr_regnum = 68;
- tdep->ppc_xer_regnum = 69;
- if (v->mach == bfd_mach_ppc_601)
- tdep->ppc_mq_regnum = 124;
- else
- tdep->ppc_mq_regnum = 70;
-
- if (v->arch == bfd_arch_powerpc)
- switch (v->mach)
- {
- case bfd_mach_ppc:
- tdep->ppc_vr0_regnum = 71;
- tdep->ppc_vrsave_regnum = 104;
- break;
- case bfd_mach_ppc_7400:
- tdep->ppc_vr0_regnum = 119;
- tdep->ppc_vrsave_regnum = 153;
- break;
- default:
- tdep->ppc_vr0_regnum = -1;
- tdep->ppc_vrsave_regnum = -1;
- break;
- }
-
- /* Calculate byte offsets in raw register array. */
- tdep->regoff = xmalloc (v->nregs * sizeof (int));
- for (i = off = 0; i < v->nregs; i++)
- {
- tdep->regoff[i] = off;
- off += regsize (v->regs + i, wordsize);
- }
-
- set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
- set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
- set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
- set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
- set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
- set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
-
- set_gdbarch_num_regs (gdbarch, v->nregs);
- set_gdbarch_sp_regnum (gdbarch, 1);
- set_gdbarch_fp_regnum (gdbarch, 1);
- set_gdbarch_pc_regnum (gdbarch, 64);
- set_gdbarch_register_name (gdbarch, rs6000_register_name);
- set_gdbarch_register_size (gdbarch, wordsize);
- set_gdbarch_register_bytes (gdbarch, off);
- set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
- set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
- set_gdbarch_max_register_raw_size (gdbarch, 8);
- set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
- set_gdbarch_max_register_virtual_size (gdbarch, 8);
- set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
- set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
-
- set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
- set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
- set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
- set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
- set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
- set_gdbarch_char_signed (gdbarch, 0);
-
- set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
- set_gdbarch_call_dummy_length (gdbarch, 0);
- set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
- set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
- set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
- set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
- set_gdbarch_call_dummy_start_offset (gdbarch, 0);
- set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
- set_gdbarch_call_dummy_p (gdbarch, 1);
- set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
- set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
- set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
- set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
- set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
- set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
- set_gdbarch_believe_pcc_promotion (gdbarch, 1);
- set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
-
- set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
- set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
- set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
- set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
-
- set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
-
- if (sysv_abi)
- set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
- else
- set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
-
- set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
- set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
- set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
- set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
-
- set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
-
- set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
- set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
- set_gdbarch_decr_pc_after_break (gdbarch, 0);
- set_gdbarch_function_start_offset (gdbarch, 0);
- set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
-
- /* Not sure on this. FIXMEmgo */
- set_gdbarch_frame_args_skip (gdbarch, 8);
-
- set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
- if (osabi == ELFOSABI_LINUX)
- {
- set_gdbarch_frameless_function_invocation (gdbarch,
- ppc_linux_frameless_function_invocation);
- set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
- set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
-
- set_gdbarch_frame_init_saved_regs (gdbarch,
- ppc_linux_frame_init_saved_regs);
- set_gdbarch_init_extra_frame_info (gdbarch,
- ppc_linux_init_extra_frame_info);
-
- set_gdbarch_memory_remove_breakpoint (gdbarch,
- ppc_linux_memory_remove_breakpoint);
- set_solib_svr4_fetch_link_map_offsets
- (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
- }
- else
- {
- set_gdbarch_frameless_function_invocation (gdbarch,
- rs6000_frameless_function_invocation);
- set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
- set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
-
- set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
- set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
-
- /* Handle RS/6000 function pointers. */
- set_gdbarch_convert_from_func_ptr_addr (gdbarch,
- rs6000_convert_from_func_ptr_addr);
- }
- set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
- set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
- set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
-
- /* We can't tell how many args there are
- now that the C compiler delays popping them. */
- set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
-
- return gdbarch;
-}
-
-static struct cmd_list_element *info_powerpc_cmdlist = NULL;
-
-static void
-rs6000_info_powerpc_command (char *args, int from_tty)
-{
- help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
-}
-
-/* Initialization code. */
-
-void
-_initialize_rs6000_tdep (void)
-{
- register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
- register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
-
- /* Add root prefix command for "info powerpc" commands */
- add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
- "Various POWERPC info specific commands.",
- &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
-
- add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
- "Display the contents of the AltiVec registers.",
- &info_powerpc_cmdlist);
-
-}