summaryrefslogtreecommitdiff
path: root/gdb/python/py-disasm.c
blob: 85d936ee4a55fffbbf79f655acab34aedceff568 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
/* Python interface to instruction disassembly.

   Copyright (C) 2021-2023 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "python-internal.h"
#include "language.h"
#include "dis-asm.h"
#include "arch-utils.h"
#include "charset.h"
#include "disasm.h"
#include "progspace.h"

/* Implement gdb.disassembler.DisassembleInfo type.  An object of this type
   represents a single disassembler request from GDB.  */

struct disasm_info_object
{
  PyObject_HEAD

  /* The architecture in which we are disassembling.  */
  struct gdbarch *gdbarch;

  /* The program_space in which we are disassembling.  */
  struct program_space *program_space;

  /* Address of the instruction to disassemble.  */
  bfd_vma address;

  /* The disassemble_info passed from core GDB, this contains the
     callbacks necessary to read the instruction from core GDB, and to
     print the disassembled instruction.  */
  disassemble_info *gdb_info;

  /* If copies of this object are created then they are chained together
     via this NEXT pointer, this allows all the copies to be invalidated at
     the same time as the parent object.  */
  struct disasm_info_object *next;
};

extern PyTypeObject disasm_info_object_type
    CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("disasm_info_object");

/* Implement gdb.disassembler.DisassembleAddressPart type.  An object of
   this type represents a small part of a disassembled instruction; a part
   that is an address that should be printed using a call to GDB's
   internal print_address function.  */

struct disasm_addr_part_object
{
  PyObject_HEAD

  /* The address to be formatted.  */
  bfd_vma address;

  /* A gdbarch.  This is only needed in the case where the user asks for
     the DisassemblerAddressPart to be converted to a string.  When we
     return this part to GDB within a DisassemblerResult then GDB will use
     the gdbarch from the initial disassembly request.  */
  struct gdbarch *gdbarch;
};

extern PyTypeObject disasm_addr_part_object_type
    CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("disasm_addr_part_object");

/* Implement gdb.disassembler.DisassembleTextPart type.  An object of
   this type represents a small part of a disassembled instruction; a part
   that is a piece of test along with an associated style.  */

struct disasm_text_part_object
{
  PyObject_HEAD

  /* The string that is this part.  */
  std::string *string;

  /* The style to use when displaying this part.  */
  enum disassembler_style style;
};

extern PyTypeObject disasm_text_part_object_type
    CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("disasm_text_part_object");

extern PyTypeObject disasm_part_object_type
    CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("PyObject");

/* Implement gdb.disassembler.DisassemblerResult type, an object that holds
   the result of calling the disassembler.  This is mostly the length of
   the disassembled instruction (in bytes), and the string representing the
   disassembled instruction.  */

struct disasm_result_object
{
  PyObject_HEAD

  /* The length of the disassembled instruction in bytes.  */
  int length;

  /* A vector containing all the parts of the disassembled instruction.
     Each part will be a DisassemblerPart sub-class.  */
  std::vector<gdbpy_ref<>> *parts;
};

extern PyTypeObject disasm_result_object_type
    CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF ("disasm_result_object");

/* When this is false we fast path out of gdbpy_print_insn, which should
   keep the performance impact of the Python disassembler down.  This is
   set to true from Python by calling gdb.disassembler._set_enabled() when
   the user registers a disassembler.  */

static bool python_print_insn_enabled = false;

/* A sub-class of gdb_disassembler that holds a pointer to a Python
   DisassembleInfo object.  A pointer to an instance of this class is
   placed in the application_data field of the disassemble_info that is
   used when we call gdbarch_print_insn.  */

struct gdbpy_disassembler : public gdb_disassemble_info
{
  /* Constructor.  */
  gdbpy_disassembler (disasm_info_object *obj, PyObject *memory_source);

  /* Get the DisassembleInfo object pointer.  */
  disasm_info_object *
  py_disasm_info () const
  {
    return m_disasm_info_object;
  }

  /* Callbacks used by disassemble_info.  */
  static void memory_error_func (int status, bfd_vma memaddr,
				 struct disassemble_info *info) noexcept;
  static void print_address_func (bfd_vma addr,
				  struct disassemble_info *info) noexcept;
  static int read_memory_func (bfd_vma memaddr, gdb_byte *buff,
			       unsigned int len,
			       struct disassemble_info *info) noexcept;

  /* Callback used as the disassemble_info's fprintf_func callback.  The
     DIS_INFO pointer is a pointer to a gdbpy_disassembler object.  */
  static int fprintf_func (void *dis_info, const char *format, ...) noexcept
    ATTRIBUTE_PRINTF(2,3);

  /* Callback used as the disassemble_info's fprintf_styled_func callback.
     The DIS_INFO pointer is a pointer to a gdbpy_disassembler.  */
  static int fprintf_styled_func (void *dis_info,
				  enum disassembler_style style,
				  const char *format, ...) noexcept
    ATTRIBUTE_PRINTF(3,4);

  /* Helper used by fprintf_func and fprintf_styled_func.  This function
     creates a new DisassemblerTextPart and adds it to the disassembler's
     parts list.  The actual disassembler is accessed through DIS_INFO,
     which is a pointer to the gdbpy_disassembler object.  */
  static int vfprintf_styled_func (void *dis_info,
				   enum disassembler_style style,
				   const char *format, va_list args) noexcept
    ATTRIBUTE_PRINTF(3,0);

  /* Return a reference to an optional that contains the address at which a
     memory error occurred.  The optional will only have a value if a
     memory error actually occurred.  */
  const gdb::optional<CORE_ADDR> &memory_error_address () const
  { return m_memory_error_address; }

  /* Return the content of the disassembler as a string.  The contents are
     moved out of the disassembler, so after this call the disassembler
     contents have been reset back to empty.  */
  std::vector<gdbpy_ref<>> release ()
  {
    return std::move (m_parts);
  }

  /* If there is a Python exception stored in this disassembler then
     restore it (i.e. set the PyErr_* state), clear the exception within
     this disassembler, and return true.  There must be no current
     exception set (i.e. !PyErr_Occurred()) when this function is called,
     as any such exception might get lost.

     Otherwise, there is no exception stored in this disassembler, return
     false.  */
  bool restore_exception ()
  {
    gdb_assert (!PyErr_Occurred ());
    if (m_stored_exception.has_value ())
      {
	gdbpy_err_fetch ex = std::move (*m_stored_exception);
	m_stored_exception.reset ();
	ex.restore ();
	return true;
      }

    return false;
  }

private:

  /* The list of all the parts that make up this disassembled instruction.
     This is populated as a result of the callbacks from libopcodes as the
     instruction is disassembled.  */
  std::vector<gdbpy_ref<>> m_parts;

  /* The DisassembleInfo object we are disassembling for.  */
  disasm_info_object *m_disasm_info_object;

  /* When the user indicates that a memory error has occurred then the
     address of the memory error is stored in here.  */
  gdb::optional<CORE_ADDR> m_memory_error_address;

  /* When the user calls the builtin_disassemble function, if they pass a
     memory source object then a pointer to the object is placed in here,
     otherwise, this field is nullptr.  */
  PyObject *m_memory_source;

  /* Move the exception EX into this disassembler object.  */
  void store_exception (gdbpy_err_fetch &&ex)
  {
    /* The only calls to store_exception are from read_memory_func, which
       will return early if there's already an exception stored.  */
    gdb_assert (!m_stored_exception.has_value ());
    m_stored_exception.emplace (std::move (ex));
  }

  /* Return true if there is an exception stored in this disassembler.  */
  bool has_stored_exception () const
  {
    return m_stored_exception.has_value ();
  }

  /* Store a single exception.  This is used to pass Python exceptions back
     from ::memory_read to disasmpy_builtin_disassemble.  */
  gdb::optional<gdbpy_err_fetch> m_stored_exception;
};

/* Return true if OBJ is still valid, otherwise, return false.  A valid OBJ
   will have a non-nullptr gdb_info field.  */

static bool
disasm_info_object_is_valid (disasm_info_object *obj)
{
  return obj->gdb_info != nullptr;
}

/* Fill in OBJ with all the other arguments.  */

static void
disasm_info_fill (disasm_info_object *obj, struct gdbarch *gdbarch,
		  program_space *progspace, bfd_vma address,
		  disassemble_info *di, disasm_info_object *next)
{
  obj->gdbarch = gdbarch;
  obj->program_space = progspace;
  obj->address = address;
  obj->gdb_info = di;
  obj->next = next;
}

/* Implement DisassembleInfo.__init__.  Takes a single argument that must
   be another DisassembleInfo object and copies the contents from the
   argument into this new object.  */

static int
disasm_info_init (PyObject *self, PyObject *args, PyObject *kwargs)
{
  static const char *keywords[] = { "info", NULL };
  PyObject *info_obj;
  if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "O!", keywords,
					&disasm_info_object_type,
					&info_obj))
    return -1;

  disasm_info_object *other = (disasm_info_object *) info_obj;
  disasm_info_object *info = (disasm_info_object *) self;
  disasm_info_fill (info, other->gdbarch, other->program_space,
		    other->address, other->gdb_info, other->next);
  other->next = info;

  /* As the OTHER object now holds a pointer to INFO we inc the ref count
     on INFO.  This stops INFO being deleted until OTHER has gone away.  */
  Py_INCREF ((PyObject *) info);
  return 0;
}

/* The tp_dealloc callback for the DisassembleInfo type.  */

static void
disasm_info_dealloc (PyObject *self)
{
  disasm_info_object *obj = (disasm_info_object *) self;

  /* We no longer care about the object our NEXT pointer points at, so we
     can decrement its reference count.  This macro handles the case when
     NEXT is nullptr.  */
  Py_XDECREF ((PyObject *) obj->next);

  /* Now core deallocation behaviour.  */
  Py_TYPE (self)->tp_free (self);
}

/* Implement __repr__ for the DisassembleInfo type.  */

static PyObject *
disasmpy_info_repr (PyObject *self)
{
  disasm_info_object *obj = (disasm_info_object *) self;

  const char *arch_name
    = (gdbarch_bfd_arch_info (obj->gdbarch))->printable_name;
  return PyUnicode_FromFormat ("<%s address=%s architecture=%s>",
			       Py_TYPE (obj)->tp_name,
			       core_addr_to_string_nz (obj->address),
			       arch_name);
}

/* Implement DisassembleInfo.is_valid(), really just a wrapper around the
   disasm_info_object_is_valid function above.  */

static PyObject *
disasmpy_info_is_valid (PyObject *self, PyObject *args)
{
  disasm_info_object *disasm_obj = (disasm_info_object *) self;

  if (disasm_info_object_is_valid (disasm_obj))
    Py_RETURN_TRUE;

  Py_RETURN_FALSE;
}

/* Set the Python exception to be a gdb.MemoryError object, with ADDRESS
   as its payload.  */

static void
disasmpy_set_memory_error_for_address (CORE_ADDR address)
{
  PyObject *address_obj = gdb_py_object_from_longest (address).release ();
  PyErr_SetObject (gdbpy_gdb_memory_error, address_obj);
}

/* Create a new DisassemblerTextPart and return a gdbpy_ref wrapper for
   the new object.  STR is the string content of the part and STYLE is the
   style to be used when GDB displays this part.  */

static gdbpy_ref<>
make_disasm_text_part (std::string &&str, enum disassembler_style style)
{
  PyTypeObject *type = &disasm_text_part_object_type;
  disasm_text_part_object *text_part
    = (disasm_text_part_object *) type->tp_alloc (type, 0);
  text_part->string = new std::string (str);
  text_part->style = style;

  return gdbpy_ref<> ((PyObject *) text_part);
}

/* Create a new DisassemblerAddressPart and return a gdbpy_ref wrapper for
   the new object.  GDBARCH is the architecture used when formatting the
   address, and ADDRESS is the numerical address to be displayed.  */

static gdbpy_ref<>
make_disasm_addr_part (struct gdbarch *gdbarch, CORE_ADDR address)
{
  PyTypeObject *type = &disasm_addr_part_object_type;
  disasm_addr_part_object *addr_part
    = (disasm_addr_part_object *) type->tp_alloc (type, 0);
  addr_part->address = address;
  addr_part->gdbarch = gdbarch;

  return gdbpy_ref<> ((PyObject *) addr_part);
}

/* Ensure that a gdb.disassembler.DisassembleInfo is valid.  */

#define DISASMPY_DISASM_INFO_REQUIRE_VALID(Info)			\
  do {									\
    if (!disasm_info_object_is_valid (Info))				\
      {									\
	PyErr_SetString (PyExc_RuntimeError,				\
			 _("DisassembleInfo is no longer valid."));	\
	return nullptr;							\
      }									\
  } while (0)

/* Implement DisassembleInfo.text_part method.  Creates and returns a new
   DisassemblerTextPart object.  */

static PyObject *
disasmpy_info_make_text_part (PyObject *self, PyObject *args,
			      PyObject *kwargs)
{
  disasm_info_object *obj = (disasm_info_object *) self;
  DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);

  static const char *keywords[] = { "style", "string", NULL };
  int style_num;
  const char *string;
  if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "is", keywords,
					&style_num, &string))
    return nullptr;

  if (style_num < 0 || style_num > ((int) dis_style_comment_start))
    {
      PyErr_SetString (PyExc_ValueError,
		       _("Invalid disassembler style."));
      return nullptr;
    }

  if (strlen (string) == 0)
    {
      PyErr_SetString (PyExc_ValueError,
		       _("String must not be empty."));
      return nullptr;
    }

  gdbpy_ref<> text_part
    = make_disasm_text_part (std::string (string),
			     (enum disassembler_style) style_num);
  return text_part.release ();
}

/* Implement DisassembleInfo.address_part method.  Creates and returns a
   new DisassemblerAddressPart object.  */

static PyObject *
disasmpy_info_make_address_part (PyObject *self, PyObject *args,
				 PyObject *kwargs)
{
  disasm_info_object *obj = (disasm_info_object *) self;
  DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);

  static const char *keywords[] = { "address", NULL };
  CORE_ADDR address;
  PyObject *address_object;
  if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "O", keywords,
					&address_object))
    return nullptr;

  if (get_addr_from_python (address_object, &address) < 0)
    return nullptr;

  return make_disasm_addr_part (obj->gdbarch, address).release ();
}

/* Return a string representation of TEXT_PART.  The returned string does
   not include any styling.  */

static std::string
disasmpy_part_to_string (const disasm_text_part_object *text_part)
{
  gdb_assert (text_part->string != nullptr);
  return *(text_part->string);
}

/* Return a string representation of ADDR_PART.  The returned string does
   not include any styling.  */

static std::string
disasmpy_part_to_string (const disasm_addr_part_object *addr_part)
{
  string_file buf;
  print_address (addr_part->gdbarch, addr_part->address, &buf);
  return buf.release ();
}

/* PARTS is a vector of Python objects, each is a sub-class of
   DisassemblerPart.  Create a string by concatenating the string
   representation of each part, and return this new string.

   Converting an address part requires that we call back into GDB core,
   which could throw an exception.  As such, calls to this function should
   be wrapped with a try/catch.  */

static std::string
disasmpy_parts_list_to_string (const std::vector<gdbpy_ref<>> &parts)
{
  std::string str;
  for (auto p : parts)
    {
      if (Py_TYPE (p.get ()) == &disasm_text_part_object_type)
	{
	  disasm_text_part_object *text_part
	    = (disasm_text_part_object *) p.get ();
	  str += disasmpy_part_to_string (text_part);
	}
      else
	{
	  gdb_assert (Py_TYPE (p.get ()) == &disasm_addr_part_object_type);

	  disasm_addr_part_object *addr_part
	    = (disasm_addr_part_object *) p.get ();
	  str += disasmpy_part_to_string (addr_part);
	}
    }

  return str;
}

/* Initialise OBJ, a DisassemblerResult object with LENGTH and PARTS.
   OBJ might already have been initialised, in which case any existing
   content should be discarded before the new PARTS are moved in.  */

static void
disasmpy_init_disassembler_result (disasm_result_object *obj, int length,
				   std::vector<gdbpy_ref<>> &&parts)
{
  if (obj->parts == nullptr)
    obj->parts = new std::vector<gdbpy_ref<>>;
  else
    obj->parts->clear ();

  obj->length = length;
  *(obj->parts) = std::move (parts);
}

/* Implement gdb.disassembler.builtin_disassemble().  Calls back into GDB's
   builtin disassembler.  The first argument is a DisassembleInfo object
   describing what to disassemble.  The second argument is optional and
   provides a mechanism to modify the memory contents that the builtin
   disassembler will actually disassemble.

   Returns an instance of gdb.disassembler.DisassemblerResult, an object
   that wraps a disassembled instruction, or it raises a
   gdb.MemoryError.  */

static PyObject *
disasmpy_builtin_disassemble (PyObject *self, PyObject *args, PyObject *kw)
{
  PyObject *info_obj, *memory_source_obj = nullptr;
  static const char *keywords[] = { "info", "memory_source", nullptr };
  if (!gdb_PyArg_ParseTupleAndKeywords (args, kw, "O!|O", keywords,
					&disasm_info_object_type, &info_obj,
					&memory_source_obj))
    return nullptr;

  disasm_info_object *disasm_info = (disasm_info_object *) info_obj;
  DISASMPY_DISASM_INFO_REQUIRE_VALID (disasm_info);

  /* Where the result will be written.  */
  gdbpy_disassembler disassembler (disasm_info, memory_source_obj);

  /* Now actually perform the disassembly.  LENGTH is set to the length of
     the disassembled instruction, or -1 if there was a memory-error
     encountered while disassembling.  See below more more details on
     handling of -1 return value.  */
  int length = gdbarch_print_insn (disasm_info->gdbarch, disasm_info->address,
				   disassembler.disasm_info ());

  /* It is possible that, while calling a user overridden memory read
     function, a Python exception was raised that couldn't be
     translated into a standard memory-error.  In this case the first such
     exception is stored in the disassembler and restored here.  */
  if (disassembler.restore_exception ())
    return nullptr;

  if (length == -1)
    {

      /* In an ideal world, every disassembler should always call the
	 memory error function before returning a status of -1 as the only
	 error a disassembler should encounter is a failure to read
	 memory.  Unfortunately, there are some disassemblers who don't
	 follow this rule, and will return -1 without calling the memory
	 error function.

	 To make the Python API simpler, we just classify everything as a
	 memory error, but the message has to be modified for the case
	 where the disassembler didn't call the memory error function.  */
      if (disassembler.memory_error_address ().has_value ())
	{
	  CORE_ADDR addr = *disassembler.memory_error_address ();
	  disasmpy_set_memory_error_for_address (addr);
	}
      else
	{
	  auto content = disassembler.release ();
	  std::string str;

	  try
	    {
	      str = disasmpy_parts_list_to_string (content);
	    }
	  catch (const gdb_exception &except)
	    {
	      GDB_PY_HANDLE_EXCEPTION (except);
	    }
	  if (!str.empty ())
	    PyErr_SetString (gdbpy_gdberror_exc, str.c_str ());
	  else
	    PyErr_SetString (gdbpy_gdberror_exc,
			     _("Unknown disassembly error."));
	}
      return nullptr;
    }

  /* Instructions are either non-zero in length, or we got an error,
     indicated by a length of -1, which we handled above.  */
  gdb_assert (length > 0);

  /* We should not have seen a memory error in this case.  */
  gdb_assert (!disassembler.memory_error_address ().has_value ());

  /* Create a DisassemblerResult containing the results.  */
  PyTypeObject *type = &disasm_result_object_type;
  gdbpy_ref<disasm_result_object> res
    ((disasm_result_object *) type->tp_alloc (type, 0));
  auto content = disassembler.release ();
  disasmpy_init_disassembler_result (res.get (), length, std::move (content));
  return reinterpret_cast<PyObject *> (res.release ());
}

/* Implement gdb._set_enabled function.  Takes a boolean parameter, and
   sets whether GDB should enter the Python disassembler code or not.

   This is called from within the Python code when a new disassembler is
   registered.  When no disassemblers are registered the global C++ flag
   is set to false, and GDB never even enters the Python environment to
   check for a disassembler.

   When the user registers a new Python disassembler, the global C++ flag
   is set to true, and now GDB will enter the Python environment to check
   if there's a disassembler registered for the current architecture.  */

static PyObject *
disasmpy_set_enabled (PyObject *self, PyObject *args, PyObject *kw)
{
  PyObject *newstate;
  static const char *keywords[] = { "state", nullptr };
  if (!gdb_PyArg_ParseTupleAndKeywords (args, kw, "O", keywords,
					&newstate))
    return nullptr;

  if (!PyBool_Check (newstate))
    {
      PyErr_SetString (PyExc_TypeError,
		       _("The value passed to `_set_enabled' must be a boolean."));
      return nullptr;
    }

  python_print_insn_enabled = PyObject_IsTrue (newstate);
  Py_RETURN_NONE;
}

/* Implement DisassembleInfo.read_memory(LENGTH, OFFSET).  Read LENGTH
   bytes at OFFSET from the start of the instruction currently being
   disassembled, and return a memory buffer containing the bytes.

   OFFSET defaults to zero if it is not provided.  LENGTH is required.  If
   the read fails then this will raise a gdb.MemoryError exception.  */

static PyObject *
disasmpy_info_read_memory (PyObject *self, PyObject *args, PyObject *kw)
{
  disasm_info_object *obj = (disasm_info_object *) self;
  DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);

  LONGEST length, offset = 0;
  gdb::unique_xmalloc_ptr<gdb_byte> buffer;
  static const char *keywords[] = { "length", "offset", nullptr };

  if (!gdb_PyArg_ParseTupleAndKeywords (args, kw, "L|L", keywords,
					&length, &offset))
    return nullptr;

  /* The apparent address from which we are reading memory.  Note that in
     some cases GDB actually disassembles instructions from a buffer, so
     we might not actually be reading this information directly from the
     inferior memory.  This is all hidden behind the read_memory_func API
     within the disassemble_info structure.  */
  CORE_ADDR address = obj->address + offset;

  /* Setup a buffer to hold the result.  */
  buffer.reset ((gdb_byte *) xmalloc (length));

  /* Read content into BUFFER.  If the read fails then raise a memory
     error, otherwise, convert BUFFER to a Python memory buffer, and return
     it to the user.  */
  disassemble_info *info = obj->gdb_info;
  if (info->read_memory_func ((bfd_vma) address, buffer.get (),
			      (unsigned int) length, info) != 0)
    {
      disasmpy_set_memory_error_for_address (address);
      return nullptr;
    }
  return gdbpy_buffer_to_membuf (std::move (buffer), address, length);
}

/* Implement DisassembleInfo.address attribute, return the address at which
   GDB would like an instruction disassembled.  */

static PyObject *
disasmpy_info_address (PyObject *self, void *closure)
{
  disasm_info_object *obj = (disasm_info_object *) self;
  DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
  return gdb_py_object_from_longest (obj->address).release ();
}

/* Implement DisassembleInfo.architecture attribute.  Return the
   gdb.Architecture in which we are disassembling.  */

static PyObject *
disasmpy_info_architecture (PyObject *self, void *closure)
{
  disasm_info_object *obj = (disasm_info_object *) self;
  DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
  return gdbarch_to_arch_object (obj->gdbarch);
}

/* Implement DisassembleInfo.progspace attribute.  Return the
   gdb.Progspace in which we are disassembling.  */

static PyObject *
disasmpy_info_progspace (PyObject *self, void *closure)
{
  disasm_info_object *obj = (disasm_info_object *) self;
  DISASMPY_DISASM_INFO_REQUIRE_VALID (obj);
  return pspace_to_pspace_object (obj->program_space).release ();
}

/* Helper function called when the libopcodes disassembler produces some
   output.  FORMAT and ARGS are used to create a string which GDB will
   display using STYLE.  The string is either added as a new
   DisassemblerTextPart to the list of parts being built in the current
   gdbpy_disassembler object (accessed through DIS_INFO).  Or, if the last
   part in the gdbpy_disassembler is a text part in the same STYLE, then
   the new string is appended to the previous part.

   The merging behaviour make the Python API a little more user friendly,
   some disassemblers produce their output character at a time, there's no
   particular reason for this, it's just how they are implemented.  By
   merging parts with the same style we make it easier for the user to
   analyse the disassembler output.  */

int
gdbpy_disassembler::vfprintf_styled_func (void *dis_info,
					  enum disassembler_style style,
					  const char *format,
					  va_list args) noexcept
{
  gdb_disassemble_info *di = (gdb_disassemble_info *) dis_info;
  gdbpy_disassembler *dis
    = gdb::checked_static_cast<gdbpy_disassembler *> (di);

  if (!dis->m_parts.empty ()
      && Py_TYPE (dis->m_parts.back ().get ()) == &disasm_text_part_object_type
      && (((disasm_text_part_object *) dis->m_parts.back ().get ())->style
	  == style))
    {
      std::string *string
	= ((disasm_text_part_object *) dis->m_parts.back ().get ())->string;
      string_vappendf (*string, format, args);
    }
  else
    {
      std::string str = string_vprintf (format, args);
      if (str.size () > 0)
	{
	  gdbpy_ref<> text_part
	    = make_disasm_text_part (std::move (str), style);
	  dis->m_parts.emplace_back (std::move (text_part));
	}
    }

  /* Something non -ve.  */
  return 0;
}

/* Disassembler callback for architectures where libopcodes doesn't
   created styled output.  In these cases we format all the output using
   the (default) text style.  */

int
gdbpy_disassembler::fprintf_func (void *dis_info,
				  const char *format, ...) noexcept
{
  va_list args;
  va_start (args, format);
  vfprintf_styled_func (dis_info, dis_style_text, format, args);
  va_end (args);

  /* Something non -ve.  */
  return 0;
}

/* Disassembler callback for architectures where libopcodes does create
   styled output.  Just creates a new text part with the given STYLE.  */

int
gdbpy_disassembler::fprintf_styled_func (void *dis_info,
					 enum disassembler_style style,
					 const char *format, ...) noexcept
{
  va_list args;
  va_start (args, format);
  vfprintf_styled_func (dis_info, style, format, args);
  va_end (args);

  /* Something non -ve.  */
  return 0;
}

/* This implements the disassemble_info read_memory_func callback and is
   called from the libopcodes disassembler when the disassembler wants to
   read memory.

   From the INFO argument we can find the gdbpy_disassembler object for
   which we are disassembling, and from that object we can find the
   DisassembleInfo for the current disassembly call.

   This function reads the instruction bytes by calling the read_memory
   method on the DisassembleInfo object.  This method might have been
   overridden by user code.

   Read LEN bytes from MEMADDR and place them into BUFF.  Return 0 on
   success (in which case BUFF has been filled), or -1 on error, in which
   case the contents of BUFF are undefined.  */

int
gdbpy_disassembler::read_memory_func (bfd_vma memaddr, gdb_byte *buff,
				      unsigned int len,
				      struct disassemble_info *info) noexcept
{
  gdbpy_disassembler *dis
    = static_cast<gdbpy_disassembler *> (info->application_data);
  disasm_info_object *obj = dis->py_disasm_info ();

  /* If a previous read attempt resulted in an exception, then we don't
     allow any further reads to succeed.  We only do this check for the
     read_memory_func as this is the only one the user can hook into,
     thus, this check prevents us calling back into user code if a
     previous call has already thrown an error.  */
  if (dis->has_stored_exception ())
    return -1;

  /* The DisassembleInfo.read_memory method expects an offset from the
     address stored within the DisassembleInfo object; calculate that
     offset here.  */
  LONGEST offset = (LONGEST) memaddr - (LONGEST) obj->address;

  /* Now call the DisassembleInfo.read_memory method.  This might have been
     overridden by the user.  */
  gdbpy_ref<> result_obj (PyObject_CallMethod ((PyObject *) obj,
					       "read_memory",
					       "KL", len, offset));

  /* Handle any exceptions.  */
  if (result_obj == nullptr)
    {
      /* If we got a gdb.MemoryError then we ignore this and just report
	 that the read failed to the caller.  The caller is then
	 responsible for calling the memory_error_func if it wants to.
	 Remember, the disassembler might just be probing to see if these
	 bytes can be read, if we automatically call the memory error
	 function, we can end up registering an error prematurely.  */
      if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
	{
	  PyErr_Clear ();
	  return -1;
	}

      /* For any other exception type we capture the value of the Python
	 exception and throw it, this will then be caught in
	 disasmpy_builtin_disassemble, at which point the exception will be
	 restored.  */
      dis->store_exception (gdbpy_err_fetch ());
      return -1;
    }

  /* Convert the result to a buffer.  */
  Py_buffer py_buff;
  if (!PyObject_CheckBuffer (result_obj.get ())
      || PyObject_GetBuffer (result_obj.get(), &py_buff, PyBUF_CONTIG_RO) < 0)
    {
      PyErr_Format (PyExc_TypeError,
		    _("Result from read_memory is not a buffer"));
      dis->store_exception (gdbpy_err_fetch ());
      return -1;
    }

  /* Wrap PY_BUFF so that it is cleaned up correctly at the end of this
     scope.  */
  Py_buffer_up buffer_up (&py_buff);

  /* Validate that the buffer is the correct length.  */
  if (py_buff.len != len)
    {
      PyErr_Format (PyExc_ValueError,
		    _("Buffer returned from read_memory is sized %d instead of the expected %d"),
		    py_buff.len, len);
      dis->store_exception (gdbpy_err_fetch ());
      return -1;
    }

  /* Copy the data out of the Python buffer and return success.  */
  const gdb_byte *buffer = (const gdb_byte *) py_buff.buf;
  memcpy (buff, buffer, len);
  return 0;
}

/* Implement __str__ for the DisassemblerResult type.  */

static PyObject *
disasmpy_result_str (PyObject *self)
{
  disasm_result_object *obj = (disasm_result_object *) self;

  /* These conditions are all enforced when the DisassemblerResult object
     is created.  */
  gdb_assert (obj->parts != nullptr);
  gdb_assert (obj->parts->size () > 0);
  gdb_assert (obj->length > 0);

  std::string str;

  try
    {
      str = disasmpy_parts_list_to_string (*obj->parts);
    }
  catch (const gdb_exception &except)
    {
      GDB_PY_HANDLE_EXCEPTION (except);
    }

  return PyUnicode_Decode (str.c_str (), str.size (),
			   host_charset (), nullptr);
}

/* Implement DisassemblerResult.length attribute, return the length of the
   disassembled instruction.  */

static PyObject *
disasmpy_result_length (PyObject *self, void *closure)
{
  disasm_result_object *obj = (disasm_result_object *) self;
  return gdb_py_object_from_longest (obj->length).release ();
}

/* Implement DisassemblerResult.string attribute, return the content string
   of the disassembled instruction.  */

static PyObject *
disasmpy_result_string (PyObject *self, void *closure)
{
  return disasmpy_result_str (self);
}

/* Implement DisassemblerResult.parts method.  Returns a list of all the
   parts that make up this result.  There should always be at least one
   part, so the returned list should never be empty.  */

static PyObject *
disasmpy_result_parts (PyObject *self, void *closure)
{
  disasm_result_object *obj = (disasm_result_object *) self;

  /* These conditions are all enforced when the DisassemblerResult object
     is created.  */
  gdb_assert (obj->parts != nullptr);
  gdb_assert (obj->parts->size () > 0);
  gdb_assert (obj->length > 0);

  gdbpy_ref<> result_list (PyList_New (obj->parts->size ()));
  if (result_list == nullptr)
    return nullptr;
  Py_ssize_t idx = 0;
  for (auto p : *obj->parts)
    {
      gdbpy_ref<> item = gdbpy_ref<>::new_reference (p.get ());
      PyList_SET_ITEM (result_list.get (), idx, item.release ());
      ++idx;
    }

  /* This should follow naturally from the obj->parts list being
     non-empty.  */
  gdb_assert (PyList_Size (result_list.get()) > 0);

  return result_list.release ();
}

/* Implement DisassemblerResult.__init__.  Takes two arguments, an
   integer, the length in bytes of the disassembled instruction, and a
   string, the disassembled content of the instruction.  */

static int
disasmpy_result_init (PyObject *self, PyObject *args, PyObject *kwargs)
{
  static const char *keywords[] = { "length", "string", "parts", NULL };
  int length;
  const char *string = nullptr;
  PyObject *parts_list = nullptr;
  if (!gdb_PyArg_ParseTupleAndKeywords (args, kwargs, "i|zO", keywords,
					&length, &string, &parts_list))
    return -1;

  if (length <= 0)
    {
      PyErr_SetString (PyExc_ValueError,
		       _("Length must be greater than 0."));
      return -1;
    }

  if (parts_list == Py_None)
    parts_list = nullptr;

  if (string != nullptr && parts_list != nullptr)
    {
      PyErr_Format (PyExc_ValueError,
		    _("Cannot use 'string' and 'parts' when creating %s."),
		    Py_TYPE (self)->tp_name);
      return -1;
    }

  if (string != nullptr)
    {
      if (strlen (string) == 0)
	{
	  PyErr_SetString (PyExc_ValueError,
			   _("String must not be empty."));
	  return -1;
	}

      disasm_result_object *obj = (disasm_result_object *) self;
      std::vector<gdbpy_ref<>> content;
      gdbpy_ref<> text_part
	= make_disasm_text_part (std::string (string), dis_style_text);
      content.emplace_back (text_part.release ());
      disasmpy_init_disassembler_result (obj, length, std::move (content));
    }
  else
    {
      if (!PySequence_Check (parts_list))
	{
	  PyErr_SetString (PyExc_TypeError,
			   _("'parts' argument is not a sequence"));
	  return -1;
	}

      Py_ssize_t parts_count = PySequence_Size (parts_list);
      if (parts_count <= 0)
	{
	  PyErr_SetString (PyExc_ValueError,
			   _("'parts' list must not be empty."));
	  return -1;
	}

      disasm_result_object *obj = (disasm_result_object *) self;
      std::vector<gdbpy_ref<>> content (parts_count);

      struct gdbarch *gdbarch = nullptr;
      for (Py_ssize_t i = 0; i < parts_count; ++i)
	{
	  gdbpy_ref<> part (PySequence_GetItem (parts_list, i));

	  if (part == nullptr)
	    return -1;

	  if (Py_TYPE (part.get ()) == &disasm_addr_part_object_type)
	    {
	      disasm_addr_part_object *addr_part
		= (disasm_addr_part_object *) part.get ();
	      gdb_assert (addr_part->gdbarch != nullptr);
	      if (gdbarch == nullptr)
		gdbarch = addr_part->gdbarch;
	      else if (addr_part->gdbarch != gdbarch)
		{
		  PyErr_SetString (PyExc_ValueError,
				   _("Inconsistent gdb.Architectures used "
				     "in 'parts' sequence."));
		  return -1;
		}
	    }

	  content[i] = std::move (part);
	}

      disasmpy_init_disassembler_result (obj, length, std::move (content));
    }

  return 0;

}

/* Implement __repr__ for the DisassemblerResult type.  */

static PyObject *
disasmpy_result_repr (PyObject *self)
{
  disasm_result_object *obj = (disasm_result_object *) self;

  gdb_assert (obj->parts != nullptr);

  return PyUnicode_FromFormat ("<%s length=%d string=\"%U\">",
			       Py_TYPE (obj)->tp_name,
			       obj->length,
			       disasmpy_result_str (self));
}

/* Implement memory_error_func callback for disassemble_info.  Extract the
   underlying DisassembleInfo Python object, and set a memory error on
   it.  */

void
gdbpy_disassembler::memory_error_func (int status, bfd_vma memaddr,
				       struct disassemble_info *info) noexcept
{
  gdbpy_disassembler *dis
    = static_cast<gdbpy_disassembler *> (info->application_data);
  dis->m_memory_error_address.emplace (memaddr);
}

/* Wrapper of print_address.  */

void
gdbpy_disassembler::print_address_func (bfd_vma addr,
					struct disassemble_info *info) noexcept
{
  gdbpy_disassembler *dis
    = static_cast<gdbpy_disassembler *> (info->application_data);

  gdbpy_ref<> addr_part
    = make_disasm_addr_part (dis->arch (), addr);
  dis->m_parts.emplace_back (std::move (addr_part));
}

/* constructor.  */

gdbpy_disassembler::gdbpy_disassembler (disasm_info_object *obj,
					PyObject *memory_source)
  : gdb_disassemble_info (obj->gdbarch,
			  read_memory_func,
			  memory_error_func,
			  print_address_func,
			  fprintf_func,
			  fprintf_styled_func),
    m_disasm_info_object (obj),
    m_memory_source (memory_source)
{ /* Nothing.  */ }

/* A wrapper around a reference to a Python DisassembleInfo object, which
   ensures that the object is marked as invalid when we leave the enclosing
   scope.

   Each DisassembleInfo is created in gdbpy_print_insn, and is done with by
   the time that function returns.  However, there's nothing to stop a user
   caching a reference to the DisassembleInfo, and thus keeping the object
   around.

   We therefore have the notion of a DisassembleInfo becoming invalid, this
   happens when gdbpy_print_insn returns.  This class is responsible for
   marking the DisassembleInfo as invalid in its destructor.  */

struct scoped_disasm_info_object
{
  /* Constructor.  */
  scoped_disasm_info_object (struct gdbarch *gdbarch, CORE_ADDR memaddr,
			     disassemble_info *info)
    : m_disasm_info (allocate_disasm_info_object ())
  {
    disasm_info_fill (m_disasm_info.get (), gdbarch, current_program_space,
		      memaddr, info, nullptr);
  }

  /* Upon destruction mark m_diasm_info as invalid.  */
  ~scoped_disasm_info_object ()
  {
    /* Invalidate the original DisassembleInfo object as well as any copies
       that the user might have made.  */
    for (disasm_info_object *obj = m_disasm_info.get ();
	 obj != nullptr;
	 obj = obj->next)
      obj->gdb_info = nullptr;
  }

  /* Return a pointer to the underlying disasm_info_object instance.  */
  disasm_info_object *
  get () const
  {
    return m_disasm_info.get ();
  }

private:

  /* Wrapper around the call to PyObject_New, this wrapper function can be
     called from the constructor initialization list, while PyObject_New, a
     macro, can't.  */
  static disasm_info_object *
  allocate_disasm_info_object ()
  {
    return (disasm_info_object *) PyObject_New (disasm_info_object,
						&disasm_info_object_type);
  }

  /* A reference to a gdb.disassembler.DisassembleInfo object.  When this
     containing instance goes out of scope this reference is released,
     however, the user might be holding other references to the
     DisassembleInfo object in Python code, so the underlying object might
     not be deleted.  */
  gdbpy_ref<disasm_info_object> m_disasm_info;
};

/* See python-internal.h.  */

gdb::optional<int>
gdbpy_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
		  disassemble_info *info)
{
  /* Early exit case.  This must be done as early as possible, and
     definitely before we enter Python environment.  The
     python_print_insn_enabled flag is set (from Python) only when the user
     has installed one (or more) Python disassemblers.  So in the common
     case (no custom disassembler installed) this flag will be false,
     allowing for a quick return.  */
  if (!gdb_python_initialized || !python_print_insn_enabled)
    return {};

  gdbpy_enter enter_py (get_current_arch (), current_language);

  /* Import the gdb.disassembler module.  */
  gdbpy_ref<> gdb_python_disassembler_module
    (PyImport_ImportModule ("gdb.disassembler"));
  if (gdb_python_disassembler_module == nullptr)
    {
      gdbpy_print_stack ();
      return {};
    }

  /* Get the _print_insn attribute from the module, this should be the
     function we are going to call to actually perform the disassembly.  */
  gdbpy_ref<> hook
    (PyObject_GetAttrString (gdb_python_disassembler_module.get (),
			     "_print_insn"));
  if (hook == nullptr)
    {
      gdbpy_print_stack ();
      return {};
    }

  /* Create the new DisassembleInfo object we will pass into Python.  This
     object will be marked as invalid when we leave this scope.  */
  scoped_disasm_info_object scoped_disasm_info (gdbarch, memaddr, info);
  disasm_info_object *disasm_info = scoped_disasm_info.get ();

  /* Call into the registered disassembler to (possibly) perform the
     disassembly.  */
  PyObject *insn_disas_obj = (PyObject *) disasm_info;
  gdbpy_ref<> result (PyObject_CallFunctionObjArgs (hook.get (),
						    insn_disas_obj,
						    nullptr));

  if (result == nullptr)
    {
      /* The call into Python code resulted in an exception.  If this was a
	 gdb.MemoryError, then we can figure out an address and call the
	 disassemble_info::memory_error_func to report the error back to
	 core GDB.  Any other exception type we report back to core GDB as
	 an unknown error (return -1 without first calling the
	 memory_error_func callback).  */

      if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
	{
	  /* A gdb.MemoryError might have an address attribute which
	     contains the address at which the memory error occurred.  If
	     this is the case then use this address, otherwise, fallback to
	     just using the address of the instruction we were asked to
	     disassemble.  */
	  gdbpy_err_fetch err;
	  PyErr_Clear ();

	  CORE_ADDR addr;
	  if (err.value () != nullptr
	      && PyObject_HasAttrString (err.value ().get (), "address"))
	    {
	      PyObject *addr_obj
		= PyObject_GetAttrString (err.value ().get (), "address");
	      if (get_addr_from_python (addr_obj, &addr) < 0)
		addr = disasm_info->address;
	    }
	  else
	    addr = disasm_info->address;

	  info->memory_error_func (-1, addr, info);
	  return gdb::optional<int> (-1);
	}
      else if (PyErr_ExceptionMatches (gdbpy_gdberror_exc))
	{
	  gdbpy_err_fetch err;
	  gdb::unique_xmalloc_ptr<char> msg = err.to_string ();

	  info->fprintf_func (info->stream, "%s", msg.get ());
	  return gdb::optional<int> (-1);
	}
      else
	{
	  gdbpy_print_stack ();
	  return gdb::optional<int> (-1);
	}

    }
  else if (result == Py_None)
    {
      /* A return value of None indicates that the Python code could not,
	 or doesn't want to, disassemble this instruction.  Just return an
	 empty result and core GDB will try to disassemble this for us.  */
      return {};
    }

  /* Check the result is a DisassemblerResult (or a sub-class).  */
  if (!PyObject_IsInstance (result.get (),
			    (PyObject *) &disasm_result_object_type))
    {
      PyErr_SetString (PyExc_TypeError,
		       _("Result is not a DisassemblerResult."));
      gdbpy_print_stack ();
      return gdb::optional<int> (-1);
    }

  /* The result from the Python disassembler has the correct type.  Convert
     this back to the underlying C++ object and read the state directly
     from this object.  */
  struct disasm_result_object *result_obj
    = (struct disasm_result_object *) result.get ();

  /* Validate the length of the disassembled instruction.  */
  long length = result_obj->length;
  long max_insn_length = (gdbarch_max_insn_length_p (gdbarch) ?
			  gdbarch_max_insn_length (gdbarch) : INT_MAX);
  if (length <= 0)
    {
      PyErr_SetString
	(PyExc_ValueError,
	 _("Invalid length attribute: length must be greater than 0."));
      gdbpy_print_stack ();
      return gdb::optional<int> (-1);
    }
  if (length > max_insn_length)
    {
      PyErr_Format
	(PyExc_ValueError,
	 _("Invalid length attribute: length %d greater than architecture maximum of %d"),
	 length, max_insn_length);
      gdbpy_print_stack ();
      return gdb::optional<int> (-1);
    }

  /* It is impossible to create a DisassemblerResult object with an empty
     parts list.  We know that each part results in a non-empty string, so
     we know that the instruction disassembly will not be the empty
     string.  */
  gdb_assert (result_obj->parts->size () > 0);

  /* Now print out the parts that make up this instruction.  */
  for (auto &p : *result_obj->parts)
    {
      if (Py_TYPE (p.get ()) == &disasm_text_part_object_type)
	{
	  disasm_text_part_object *text_part
	    = (disasm_text_part_object *) p.get ();
	  gdb_assert (text_part->string != nullptr);
	  info->fprintf_styled_func (info->stream, text_part->style,
				     "%s", text_part->string->c_str ());
	}
      else
	{
	  gdb_assert (Py_TYPE (p.get ()) == &disasm_addr_part_object_type);
	  disasm_addr_part_object *addr_part
	    = (disasm_addr_part_object *) p.get ();
	  /* A DisassemblerAddressPart can only be created by calling a
	     method on DisassembleInfo, and the gdbarch is copied from the
	     DisassembleInfo into the DisassemblerAddressPart.  As the
	     DisassembleInfo has its gdbarch initialised from GDBARCH in
	     this scope, and this architecture can't be changed, then the
	     following assert should hold.  */
	  gdb_assert (addr_part->gdbarch == gdbarch);
	  info->print_address_func (addr_part->address, info);
	}
    }

  return gdb::optional<int> (length);
}

/* The tp_dealloc callback for the DisassemblerResult type.  Takes care of
   deallocating the content buffer.  */

static void
disasmpy_dealloc_result (PyObject *self)
{
  disasm_result_object *obj = (disasm_result_object *) self;
  delete obj->parts;
  Py_TYPE (self)->tp_free (self);
}

/* The tp_init callback for the DisassemblerPart type.  This just raises an
   exception, which prevents the user from creating objects of this type.
   Instead the user should create instances of a sub-class.  */

static int
disasmpy_part_init (PyObject *self, PyObject *args, PyObject *kwargs)
{
  PyErr_SetString (PyExc_RuntimeError,
		   _("Cannot create instances of DisassemblerPart."));
  return -1;
}

/* Return a string representing STYLE.  The returned string is used as a
   constant defined in the gdb.disassembler module.  */

static const char *
get_style_name (enum disassembler_style style)
{
  switch (style)
    {
    case dis_style_text: return "STYLE_TEXT";
    case dis_style_mnemonic: return "STYLE_MNEMONIC";
    case dis_style_sub_mnemonic: return "STYLE_SUB_MNEMONIC";
    case dis_style_assembler_directive: return "STYLE_ASSEMBLER_DIRECTIVE";
    case dis_style_register: return "STYLE_REGISTER";
    case dis_style_immediate: return "STYLE_IMMEDIATE";
    case dis_style_address: return "STYLE_ADDRESS";
    case dis_style_address_offset: return "STYLE_ADDRESS_OFFSET";
    case dis_style_symbol: return "STYLE_SYMBOL";
    case dis_style_comment_start: return "STYLE_COMMENT_START";
    }

  gdb_assert_not_reached ("unknown disassembler style");
}

/* Implement DisassemblerTextPart.__repr__ method.  */

static PyObject *
disasmpy_text_part_repr (PyObject *self)
{
  disasm_text_part_object *obj = (disasm_text_part_object *) self;

  gdb_assert (obj->string != nullptr);

  return PyUnicode_FromFormat ("<%s string='%s', style='%s'>",
			       Py_TYPE (obj)->tp_name,
			       obj->string->c_str (),
			       get_style_name (obj->style));
}

/* Implement DisassemblerTextPart.__str__ attribute.  */

static PyObject *
disasmpy_text_part_str (PyObject *self)
{
  disasm_text_part_object *obj = (disasm_text_part_object *) self;

  return PyUnicode_Decode (obj->string->c_str (), obj->string->size (),
			   host_charset (), nullptr);
}

/* Implement DisassemblerTextPart.string attribute.  */

static PyObject *
disasmpy_text_part_string (PyObject *self, void *closure)
{
  return disasmpy_text_part_str (self);
}

/* Implement DisassemblerTextPart.style attribute.   */

static PyObject *
disasmpy_text_part_style (PyObject *self, void *closure)
{
  disasm_text_part_object *obj = (disasm_text_part_object *) self;

  LONGEST style_val = (LONGEST) obj->style;
  return gdb_py_object_from_longest (style_val).release ();
}

/* Implement DisassemblerAddressPart.__repr__ method.  */

static PyObject *
disasmpy_addr_part_repr (PyObject *self)
{
  disasm_addr_part_object *obj = (disasm_addr_part_object *) self;

  return PyUnicode_FromFormat ("<%s address='%s'>",
			       Py_TYPE (obj)->tp_name,
			       core_addr_to_string_nz (obj->address));
}

/* Implement DisassemblerAddressPart.__str__ attribute.  */

static PyObject *
disasmpy_addr_part_str (PyObject *self)
{
  disasm_addr_part_object *obj = (disasm_addr_part_object *) self;

  std::string str;
  try
    {
      string_file buf;
      print_address (obj->gdbarch, obj->address, &buf);
      str = buf.release ();
    }
  catch (const gdb_exception &except)
    {
      GDB_PY_HANDLE_EXCEPTION (except);
    }

  return PyUnicode_Decode (str.c_str (), str.size (),
			   host_charset (), nullptr);
}

/* Implement DisassemblerAddressPart.string attribute.  */

static PyObject *
disasmpy_addr_part_string (PyObject *self, void *closure)
{
  return disasmpy_addr_part_str (self);
}

/* Implement DisassemblerAddressPart.address attribute.  */

static PyObject *
disasmpy_addr_part_address (PyObject *self, void *closure)
{
  disasm_addr_part_object *obj = (disasm_addr_part_object *) self;

  return gdb_py_object_from_longest (obj->address).release ();
}

/* The get/set attributes of the gdb.disassembler.DisassembleInfo type.  */

static gdb_PyGetSetDef disasm_info_object_getset[] = {
  { "address", disasmpy_info_address, nullptr,
    "Start address of the instruction to disassemble.", nullptr },
  { "architecture", disasmpy_info_architecture, nullptr,
    "Architecture to disassemble in", nullptr },
  { "progspace", disasmpy_info_progspace, nullptr,
    "Program space to disassemble in", nullptr },
  { nullptr }   /* Sentinel */
};

/* The methods of the gdb.disassembler.DisassembleInfo type.  */

static PyMethodDef disasm_info_object_methods[] = {
  { "read_memory", (PyCFunction) disasmpy_info_read_memory,
    METH_VARARGS | METH_KEYWORDS,
    "read_memory (LEN, OFFSET = 0) -> Octets[]\n\
Read LEN octets for the instruction to disassemble." },
  { "is_valid", disasmpy_info_is_valid, METH_NOARGS,
    "is_valid () -> Boolean.\n\
Return true if this DisassembleInfo is valid, false if not." },
  { "text_part", (PyCFunction) disasmpy_info_make_text_part,
    METH_VARARGS | METH_KEYWORDS,
    "text_part (STRING, STYLE) -> DisassemblerTextPart\n\
Create a new text part, with contents STRING styled with STYLE." },
  { "address_part", (PyCFunction) disasmpy_info_make_address_part,
    METH_VARARGS | METH_KEYWORDS,
    "address_part (ADDRESS) -> DisassemblerAddressPart\n\
Create a new address part representing ADDRESS." },
  {nullptr}  /* Sentinel */
};

/* The get/set attributes of the gdb.disassembler.DisassemblerResult type.  */

static gdb_PyGetSetDef disasm_result_object_getset[] = {
  { "length", disasmpy_result_length, nullptr,
    "Length of the disassembled instruction.", nullptr },
  { "string", disasmpy_result_string, nullptr,
    "String representing the disassembled instruction.", nullptr },
  { "parts", disasmpy_result_parts, nullptr,
    "List of all the separate disassembly parts", nullptr },
  { nullptr }   /* Sentinel */
};

/* The get/set attributes of the gdb.disassembler.DisassemblerTextPart type.  */

static gdb_PyGetSetDef disasmpy_text_part_getset[] = {
  { "string", disasmpy_text_part_string, nullptr,
    "String representing a text part.", nullptr },
  { "style", disasmpy_text_part_style, nullptr,
    "The style of this text part.", nullptr },
  { nullptr }   /* Sentinel */
};

/* The get/set attributes of the gdb.disassembler.DisassemblerAddressPart type.  */

static gdb_PyGetSetDef disasmpy_addr_part_getset[] = {
  { "string", disasmpy_addr_part_string, nullptr,
    "String representing an address part.", nullptr },
  { "address", disasmpy_addr_part_address, nullptr,
    "The address of this address part.", nullptr },
  { nullptr }   /* Sentinel */
};

/* These are the methods we add into the _gdb.disassembler module, which
   are then imported into the gdb.disassembler module.  These are global
   functions that support performing disassembly.  */

PyMethodDef python_disassembler_methods[] =
{
  { "builtin_disassemble", (PyCFunction) disasmpy_builtin_disassemble,
    METH_VARARGS | METH_KEYWORDS,
    "builtin_disassemble (INFO, MEMORY_SOURCE = None) -> None\n\
Disassemble using GDB's builtin disassembler.  INFO is an instance of\n\
gdb.disassembler.DisassembleInfo.  The MEMORY_SOURCE, if not None, should\n\
be an object with the read_memory method." },
  { "_set_enabled", (PyCFunction) disasmpy_set_enabled,
    METH_VARARGS | METH_KEYWORDS,
    "_set_enabled (STATE) -> None\n\
Set whether GDB should call into the Python _print_insn code or not." },
  {nullptr, nullptr, 0, nullptr}
};

/* Structure to define the _gdb.disassembler module.  */

static struct PyModuleDef python_disassembler_module_def =
{
  PyModuleDef_HEAD_INIT,
  "_gdb.disassembler",
  nullptr,
  -1,
  python_disassembler_methods,
  nullptr,
  nullptr,
  nullptr,
  nullptr
};

/* Called to initialize the Python structures in this file.  */

static int CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION
gdbpy_initialize_disasm ()
{
  /* Create the _gdb.disassembler module, and add it to the _gdb module.  */

  PyObject *gdb_disassembler_module;
  gdb_disassembler_module = PyModule_Create (&python_disassembler_module_def);
  if (gdb_disassembler_module == nullptr)
    return -1;
  PyModule_AddObject(gdb_module, "disassembler", gdb_disassembler_module);

  /* This is needed so that 'import _gdb.disassembler' will work.  */
  PyObject *dict = PyImport_GetModuleDict ();
  PyDict_SetItemString (dict, "_gdb.disassembler", gdb_disassembler_module);

  for (int i = 0; i <= (int) dis_style_comment_start; ++i)
    {
      const char *style_name = get_style_name ((enum disassembler_style) i);
      if (PyModule_AddIntConstant (gdb_disassembler_module, style_name, i) < 0)
	return -1;
    }

  disasm_info_object_type.tp_new = PyType_GenericNew;
  if (PyType_Ready (&disasm_info_object_type) < 0)
    return -1;

  if (gdb_pymodule_addobject (gdb_disassembler_module, "DisassembleInfo",
			      (PyObject *) &disasm_info_object_type) < 0)
    return -1;

  disasm_result_object_type.tp_new = PyType_GenericNew;
  if (PyType_Ready (&disasm_result_object_type) < 0)
    return -1;

  if (gdb_pymodule_addobject (gdb_disassembler_module, "DisassemblerResult",
			      (PyObject *) &disasm_result_object_type) < 0)
    return -1;

  disasm_part_object_type.tp_new = PyType_GenericNew;
  if (PyType_Ready (&disasm_part_object_type) < 0)
    return -1;

  if (gdb_pymodule_addobject (gdb_disassembler_module, "DisassemblerPart",
			      (PyObject *) &disasm_part_object_type) < 0)
    return -1;

  disasm_addr_part_object_type.tp_new = PyType_GenericNew;
  if (PyType_Ready (&disasm_addr_part_object_type) < 0)
    return -1;

  if (gdb_pymodule_addobject (gdb_disassembler_module,
			      "DisassemblerAddressPart",
			      (PyObject *) &disasm_addr_part_object_type) < 0)
    return -1;

  disasm_text_part_object_type.tp_new = PyType_GenericNew;
  if (PyType_Ready (&disasm_text_part_object_type) < 0)
    return -1;

  if (gdb_pymodule_addobject (gdb_disassembler_module,
			      "DisassemblerTextPart",
			      (PyObject *) &disasm_text_part_object_type) < 0)
    return -1;

  return 0;
}

GDBPY_INITIALIZE_FILE (gdbpy_initialize_disasm);



/* Describe the gdb.disassembler.DisassembleInfo type.  */

PyTypeObject disasm_info_object_type = {
  PyVarObject_HEAD_INIT (nullptr, 0)
  "gdb.disassembler.DisassembleInfo",		/*tp_name*/
  sizeof (disasm_info_object),			/*tp_basicsize*/
  0,						/*tp_itemsize*/
  disasm_info_dealloc,				/*tp_dealloc*/
  0,						/*tp_print*/
  0,						/*tp_getattr*/
  0,						/*tp_setattr*/
  0,						/*tp_compare*/
  disasmpy_info_repr,				/*tp_repr*/
  0,						/*tp_as_number*/
  0,						/*tp_as_sequence*/
  0,						/*tp_as_mapping*/
  0,						/*tp_hash */
  0,						/*tp_call*/
  0,						/*tp_str*/
  0,						/*tp_getattro*/
  0,						/*tp_setattro*/
  0,						/*tp_as_buffer*/
  Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,	/*tp_flags*/
  "GDB instruction disassembler object",	/* tp_doc */
  0,						/* tp_traverse */
  0,						/* tp_clear */
  0,						/* tp_richcompare */
  0,						/* tp_weaklistoffset */
  0,						/* tp_iter */
  0,						/* tp_iternext */
  disasm_info_object_methods,			/* tp_methods */
  0,						/* tp_members */
  disasm_info_object_getset,			/* tp_getset */
  0,						/* tp_base */
  0,						/* tp_dict */
  0,						/* tp_descr_get */
  0,						/* tp_descr_set */
  0,						/* tp_dictoffset */
  disasm_info_init,				/* tp_init */
  0,						/* tp_alloc */
};

/* Describe the gdb.disassembler.DisassemblerResult type.  */

PyTypeObject disasm_result_object_type = {
  PyVarObject_HEAD_INIT (nullptr, 0)
  "gdb.disassembler.DisassemblerResult",	/*tp_name*/
  sizeof (disasm_result_object),		/*tp_basicsize*/
  0,						/*tp_itemsize*/
  disasmpy_dealloc_result,			/*tp_dealloc*/
  0,						/*tp_print*/
  0,						/*tp_getattr*/
  0,						/*tp_setattr*/
  0,						/*tp_compare*/
  disasmpy_result_repr,				/*tp_repr*/
  0,						/*tp_as_number*/
  0,						/*tp_as_sequence*/
  0,						/*tp_as_mapping*/
  0,						/*tp_hash */
  0,						/*tp_call*/
  disasmpy_result_str,				/*tp_str*/
  0,						/*tp_getattro*/
  0,						/*tp_setattro*/
  0,						/*tp_as_buffer*/
  Py_TPFLAGS_DEFAULT,				/*tp_flags*/
  "GDB object, representing a disassembler result",	/* tp_doc */
  0,						/* tp_traverse */
  0,						/* tp_clear */
  0,						/* tp_richcompare */
  0,						/* tp_weaklistoffset */
  0,						/* tp_iter */
  0,						/* tp_iternext */
  0,						/* tp_methods */
  0,						/* tp_members */
  disasm_result_object_getset,			/* tp_getset */
  0,						/* tp_base */
  0,						/* tp_dict */
  0,						/* tp_descr_get */
  0,						/* tp_descr_set */
  0,						/* tp_dictoffset */
  disasmpy_result_init,				/* tp_init */
  0,						/* tp_alloc */
};

/* Describe the gdb.disassembler.DisassemblerPart type.  This type exists
   only as an abstract base-class for the various part sub-types.  The
   init method for this type throws an error.  As such we don't both to
   provide a tp_repr method for this parent class.  */

PyTypeObject disasm_part_object_type = {
  PyVarObject_HEAD_INIT (nullptr, 0)
  "gdb.disassembler.DisassemblerPart",		/*tp_name*/
  sizeof (PyObject),				/*tp_basicsize*/
  0,						/*tp_itemsize*/
  0,						/*tp_dealloc*/
  0,						/*tp_print*/
  0,						/*tp_getattr*/
  0,						/*tp_setattr*/
  0,						/*tp_compare*/
  0,						/*tp_repr*/
  0,						/*tp_as_number*/
  0,						/*tp_as_sequence*/
  0,						/*tp_as_mapping*/
  0,						/*tp_hash */
  0,						/*tp_call*/
  0,						/*tp_str*/
  0,						/*tp_getattro*/
  0,						/*tp_setattro*/
  0,						/*tp_as_buffer*/
  Py_TPFLAGS_DEFAULT,				/*tp_flags*/
  "GDB object, representing part of a disassembled instruction",  /* tp_doc */
  0,						/* tp_traverse */
  0,						/* tp_clear */
  0,						/* tp_richcompare */
  0,						/* tp_weaklistoffset */
  0,						/* tp_iter */
  0,						/* tp_iternext */
  0,						/* tp_methods */
  0,						/* tp_members */
  0,						/* tp_getset */
  0,						/* tp_base */
  0,						/* tp_dict */
  0,						/* tp_descr_get */
  0,						/* tp_descr_set */
  0,						/* tp_dictoffset */
  disasmpy_part_init,				/* tp_init */
  0,						/* tp_alloc */
};

/* Describe the gdb.disassembler.DisassemblerTextPart type.  */

PyTypeObject disasm_text_part_object_type = {
  PyVarObject_HEAD_INIT (nullptr, 0)
  "gdb.disassembler.DisassemblerTextPart",	/*tp_name*/
  sizeof (disasm_text_part_object_type),	/*tp_basicsize*/
  0,						/*tp_itemsize*/
  0,						/*tp_dealloc*/
  0,						/*tp_print*/
  0,						/*tp_getattr*/
  0,						/*tp_setattr*/
  0,						/*tp_compare*/
  disasmpy_text_part_repr,			/*tp_repr*/
  0,						/*tp_as_number*/
  0,						/*tp_as_sequence*/
  0,						/*tp_as_mapping*/
  0,						/*tp_hash */
  0,						/*tp_call*/
  disasmpy_text_part_str,			/*tp_str*/
  0,						/*tp_getattro*/
  0,						/*tp_setattro*/
  0,						/*tp_as_buffer*/
  Py_TPFLAGS_DEFAULT,				/*tp_flags*/
  "GDB object, representing a text part of an instruction",  /* tp_doc */
  0,						/* tp_traverse */
  0,						/* tp_clear */
  0,						/* tp_richcompare */
  0,						/* tp_weaklistoffset */
  0,						/* tp_iter */
  0,						/* tp_iternext */
  0,						/* tp_methods */
  0,						/* tp_members */
  disasmpy_text_part_getset,			/* tp_getset */
  &disasm_part_object_type,			/* tp_base */
  0,						/* tp_dict */
  0,						/* tp_descr_get */
  0,						/* tp_descr_set */
  0,						/* tp_dictoffset */
  0,						/* tp_init */
  0,						/* tp_alloc */
};

/* Describe the gdb.disassembler.DisassemblerAddressPart type.  */

PyTypeObject disasm_addr_part_object_type = {
  PyVarObject_HEAD_INIT (nullptr, 0)
  "gdb.disassembler.DisassemblerAddressPart",	/*tp_name*/
  sizeof (disasm_addr_part_object),		/*tp_basicsize*/
  0,						/*tp_itemsize*/
  0,						/*tp_dealloc*/
  0,						/*tp_print*/
  0,						/*tp_getattr*/
  0,						/*tp_setattr*/
  0,						/*tp_compare*/
  disasmpy_addr_part_repr,			/*tp_repr*/
  0,						/*tp_as_number*/
  0,						/*tp_as_sequence*/
  0,						/*tp_as_mapping*/
  0,						/*tp_hash */
  0,						/*tp_call*/
  disasmpy_addr_part_str,			/*tp_str*/
  0,						/*tp_getattro*/
  0,						/*tp_setattro*/
  0,						/*tp_as_buffer*/
  Py_TPFLAGS_DEFAULT,				/*tp_flags*/
  "GDB object, representing an address part of an instruction",  /* tp_doc */
  0,						/* tp_traverse */
  0,						/* tp_clear */
  0,						/* tp_richcompare */
  0,						/* tp_weaklistoffset */
  0,						/* tp_iter */
  0,						/* tp_iternext */
  0,						/* tp_methods */
  0,						/* tp_members */
  disasmpy_addr_part_getset,						/* tp_getset */
  &disasm_part_object_type,			/* tp_base */
  0,						/* tp_dict */
  0,						/* tp_descr_get */
  0,						/* tp_descr_set */
  0,						/* tp_dictoffset */
  0,						/* tp_init */
  0,						/* tp_alloc */
};