summaryrefslogtreecommitdiff
path: root/libctf/ctf-hash.c
blob: f67ac1b5010dd9299937256495c4b530f0f477df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/* Interface to hashtable implementations.
   Copyright (C) 2006-2023 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <string.h>
#include "libiberty.h"
#include "hashtab.h"

/* We have three hashtable implementations:

   - ctf_hash_* is an interface to a fixed-size hash from const char * ->
     ctf_id_t with number of elements specified at creation time, that should
     support addition of items but need not support removal.

   - ctf_dynhash_* is an interface to a dynamically-expanding hash with
     unknown size that should support addition of large numbers of items, and
     removal as well, and is used only at type-insertion time and during
     linking.

   - ctf_dynset_* is an interface to a dynamically-expanding hash that contains
     only keys: no values.

   These can be implemented by the same underlying hashmap if you wish.  */

/* The helem is used for general key/value mappings in both the ctf_hash and
   ctf_dynhash: the owner may not have space allocated for it, and will be
   garbage (not NULL!) in that case.  */

typedef struct ctf_helem
{
  void *key;			 /* Either a pointer, or a coerced ctf_id_t.  */
  void *value;			 /* The value (possibly a coerced int).  */
  ctf_dynhash_t *owner;          /* The hash that owns us.  */
} ctf_helem_t;

/* Equally, the key_free and value_free may not exist.  */

struct ctf_dynhash
{
  struct htab *htab;
  ctf_hash_free_fun key_free;
  ctf_hash_free_fun value_free;
};

/* Hash and eq functions for the dynhash and hash. */

unsigned int
ctf_hash_integer (const void *ptr)
{
  ctf_helem_t *hep = (ctf_helem_t *) ptr;

  return htab_hash_pointer (hep->key);
}

int
ctf_hash_eq_integer (const void *a, const void *b)
{
  ctf_helem_t *hep_a = (ctf_helem_t *) a;
  ctf_helem_t *hep_b = (ctf_helem_t *) b;

  return htab_eq_pointer (hep_a->key, hep_b->key);
}

unsigned int
ctf_hash_string (const void *ptr)
{
  ctf_helem_t *hep = (ctf_helem_t *) ptr;

  return htab_hash_string (hep->key);
}

int
ctf_hash_eq_string (const void *a, const void *b)
{
  ctf_helem_t *hep_a = (ctf_helem_t *) a;
  ctf_helem_t *hep_b = (ctf_helem_t *) b;

  return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
}

/* Hash a type_key.  */
unsigned int
ctf_hash_type_key (const void *ptr)
{
  ctf_helem_t *hep = (ctf_helem_t *) ptr;
  ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key;

  return htab_hash_pointer (k->cltk_fp) + 59
    * htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx);
}

int
ctf_hash_eq_type_key (const void *a, const void *b)
{
  ctf_helem_t *hep_a = (ctf_helem_t *) a;
  ctf_helem_t *hep_b = (ctf_helem_t *) b;
  ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key;
  ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key;

  return (key_a->cltk_fp == key_b->cltk_fp)
    && (key_a->cltk_idx == key_b->cltk_idx);
}

/* Hash a type_id_key.  */
unsigned int
ctf_hash_type_id_key (const void *ptr)
{
  ctf_helem_t *hep = (ctf_helem_t *) ptr;
  ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key;

  return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num)
    + 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type);
}

int
ctf_hash_eq_type_id_key (const void *a, const void *b)
{
  ctf_helem_t *hep_a = (ctf_helem_t *) a;
  ctf_helem_t *hep_b = (ctf_helem_t *) b;
  ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key;
  ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key;

  return (key_a->ctii_input_num == key_b->ctii_input_num)
    && (key_a->ctii_type == key_b->ctii_type);
}

/* The dynhash, used for hashes whose size is not known at creation time. */

/* Free a single ctf_helem with arbitrary key/value functions.  */

static void
ctf_dynhash_item_free (void *item)
{
  ctf_helem_t *helem = item;

  if (helem->owner->key_free && helem->key)
    helem->owner->key_free (helem->key);
  if (helem->owner->value_free && helem->value)
    helem->owner->value_free (helem->value);
  free (helem);
}

ctf_dynhash_t *
ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
                    ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
{
  ctf_dynhash_t *dynhash;
  htab_del del = ctf_dynhash_item_free;

  if (key_free || value_free)
    dynhash = malloc (sizeof (ctf_dynhash_t));
  else
    dynhash = malloc (offsetof (ctf_dynhash_t, key_free));
  if (!dynhash)
    return NULL;

  if (key_free == NULL && value_free == NULL)
    del = free;

  /* 7 is arbitrary and untested for now.  */
  if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
					  del, xcalloc, free)) == NULL)
    {
      free (dynhash);
      return NULL;
    }

  if (key_free || value_free)
    {
      dynhash->key_free = key_free;
      dynhash->value_free = value_free;
    }

  return dynhash;
}

static ctf_helem_t **
ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
{
  ctf_helem_t tmp = { .key = (void *) key };
  return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
}

static ctf_helem_t *
ctf_hashtab_insert (struct htab *htab, void *key, void *value,
		    ctf_hash_free_fun key_free,
		    ctf_hash_free_fun value_free)
{
  ctf_helem_t **slot;

  slot = ctf_hashtab_lookup (htab, key, INSERT);

  if (!slot)
    {
      errno = ENOMEM;
      return NULL;
    }

  if (!*slot)
    {
      /* Only spend space on the owner if we're going to use it: if there is a
	 key or value freeing function.  */
      if (key_free || value_free)
	*slot = malloc (sizeof (ctf_helem_t));
      else
	*slot = malloc (offsetof (ctf_helem_t, owner));
      if (!*slot)
	return NULL;
      (*slot)->key = key;
    }
  else
    {
      if (key_free)
	  key_free (key);
      if (value_free)
	  value_free ((*slot)->value);
    }
  (*slot)->value = value;
  return *slot;
}

int
ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
{
  ctf_helem_t *slot;
  ctf_hash_free_fun key_free = NULL, value_free = NULL;

  if (hp->htab->del_f == ctf_dynhash_item_free)
    {
      key_free = hp->key_free;
      value_free = hp->value_free;
    }
  slot = ctf_hashtab_insert (hp->htab, key, value,
			     key_free, value_free);

  if (!slot)
    return errno;

  /* Keep track of the owner, so that the del function can get at the key_free
     and value_free functions.  Only do this if one of those functions is set:
     if not, the owner is not even present in the helem.  */

  if (key_free || value_free)
    slot->owner = hp;

  return 0;
}

void
ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
{
  ctf_helem_t hep = { (void *) key, NULL, NULL };
  htab_remove_elt (hp->htab, &hep);
}

void
ctf_dynhash_empty (ctf_dynhash_t *hp)
{
  htab_empty (hp->htab);
}

size_t
ctf_dynhash_elements (ctf_dynhash_t *hp)
{
  return htab_elements (hp->htab);
}

void *
ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
{
  ctf_helem_t **slot;

  slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);

  if (slot)
    return (*slot)->value;

  return NULL;
}

/* TRUE/FALSE return.  */
int
ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key,
		       const void **orig_key, void **value)
{
  ctf_helem_t **slot;

  slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);

  if (slot)
    {
      if (orig_key)
	*orig_key = (*slot)->key;
      if (value)
	*value = (*slot)->value;
      return 1;
    }
  return 0;
}

typedef struct ctf_traverse_cb_arg
{
  ctf_hash_iter_f fun;
  void *arg;
} ctf_traverse_cb_arg_t;

static int
ctf_hashtab_traverse (void **slot, void *arg_)
{
  ctf_helem_t *helem = *((ctf_helem_t **) slot);
  ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;

  arg->fun (helem->key, helem->value, arg->arg);
  return 1;
}

void
ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
{
  ctf_traverse_cb_arg_t arg = { fun, arg_ };
  htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
}

typedef struct ctf_traverse_find_cb_arg
{
  ctf_hash_iter_find_f fun;
  void *arg;
  void *found_key;
} ctf_traverse_find_cb_arg_t;

static int
ctf_hashtab_traverse_find (void **slot, void *arg_)
{
  ctf_helem_t *helem = *((ctf_helem_t **) slot);
  ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_;

  if (arg->fun (helem->key, helem->value, arg->arg))
    {
      arg->found_key = helem->key;
      return 0;
    }
  return 1;
}

void *
ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_)
{
  ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL };
  htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg);
  return arg.found_key;
}

typedef struct ctf_traverse_remove_cb_arg
{
  struct htab *htab;
  ctf_hash_iter_remove_f fun;
  void *arg;
} ctf_traverse_remove_cb_arg_t;

static int
ctf_hashtab_traverse_remove (void **slot, void *arg_)
{
  ctf_helem_t *helem = *((ctf_helem_t **) slot);
  ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;

  if (arg->fun (helem->key, helem->value, arg->arg))
    htab_clear_slot (arg->htab, slot);
  return 1;
}

void
ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
                         void *arg_)
{
  ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
  htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
}

/* Traverse a dynhash in arbitrary order, in _next iterator form.

   Mutating the dynhash while iterating is not supported (just as it isn't for
   htab_traverse).

   Note: unusually, this returns zero on success and a *positive* value on
   error, because it does not take an fp, taking an error pointer would be
   incredibly clunky, and nearly all error-handling ends up stuffing the result
   of this into some sort of errno or ctf_errno, which is invariably
   positive.  So doing this simplifies essentially all callers.  */
int
ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value)
{
  ctf_next_t *i = *it;
  ctf_helem_t *slot;

  if (!i)
    {
      size_t size = htab_size (h->htab);

      /* If the table has too many entries to fit in an ssize_t, just give up.
	 This might be spurious, but if any type-related hashtable has ever been
	 nearly as large as that then something very odd is going on.  */
      if (((ssize_t) size) < 0)
	return EDOM;

      if ((i = ctf_next_create ()) == NULL)
	return ENOMEM;

      i->u.ctn_hash_slot = h->htab->entries;
      i->cu.ctn_h = h;
      i->ctn_n = 0;
      i->ctn_size = (ssize_t) size;
      i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next;
      *it = i;
    }

  if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun)
    return ECTF_NEXT_WRONGFUN;

  if (h != i->cu.ctn_h)
    return ECTF_NEXT_WRONGFP;

  if ((ssize_t) i->ctn_n == i->ctn_size)
    goto hash_end;

  while ((ssize_t) i->ctn_n < i->ctn_size
	 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
	     || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
    {
      i->u.ctn_hash_slot++;
      i->ctn_n++;
    }

  if ((ssize_t) i->ctn_n == i->ctn_size)
    goto hash_end;

  slot = *i->u.ctn_hash_slot;

  if (key)
    *key = slot->key;
  if (value)
    *value = slot->value;

  i->u.ctn_hash_slot++;
  i->ctn_n++;

  return 0;

 hash_end:
  ctf_next_destroy (i);
  *it = NULL;
  return ECTF_NEXT_END;
}

int
ctf_dynhash_sort_by_name (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
			  void *unused _libctf_unused_)
{
  return strcmp ((char *) one->hkv_key, (char *) two->hkv_key);
}

/* Traverse a sorted dynhash, in _next iterator form.

   See ctf_dynhash_next for notes on error returns, etc.

   Sort keys before iterating over them using the SORT_FUN and SORT_ARG.

   If SORT_FUN is null, thunks to ctf_dynhash_next.  */
int
ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key,
			 void **value, ctf_hash_sort_f sort_fun, void *sort_arg)
{
  ctf_next_t *i = *it;

  if (sort_fun == NULL)
    return ctf_dynhash_next (h, it, key, value);

  if (!i)
    {
      size_t els = ctf_dynhash_elements (h);
      ctf_next_t *accum_i = NULL;
      void *key, *value;
      int err;
      ctf_next_hkv_t *walk;

      if (((ssize_t) els) < 0)
	return EDOM;

      if ((i = ctf_next_create ()) == NULL)
	return ENOMEM;

      if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
	{
	  ctf_next_destroy (i);
	  return ENOMEM;
	}
      walk = i->u.ctn_sorted_hkv;

      i->cu.ctn_h = h;

      while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0)
	{
	  walk->hkv_key = key;
	  walk->hkv_value = value;
	  walk++;
	}
      if (err != ECTF_NEXT_END)
	{
	  ctf_next_destroy (i);
	  return err;
	}

      if (sort_fun)
	  ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t),
		       (int (*) (const void *, const void *, void *)) sort_fun,
		       sort_arg);
      i->ctn_n = 0;
      i->ctn_size = (ssize_t) els;
      i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted;
      *it = i;
    }

  if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun)
    return ECTF_NEXT_WRONGFUN;

  if (h != i->cu.ctn_h)
    return ECTF_NEXT_WRONGFP;

  if ((ssize_t) i->ctn_n == i->ctn_size)
    {
      ctf_next_destroy (i);
      *it = NULL;
      return ECTF_NEXT_END;
    }

  if (key)
    *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key;
  if (value)
    *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value;
  i->ctn_n++;
  return 0;
}

void
ctf_dynhash_destroy (ctf_dynhash_t *hp)
{
  if (hp != NULL)
    htab_delete (hp->htab);
  free (hp);
}

/* The dynset, used for sets of keys with no value.  The implementation of this
   can be much simpler, because without a value the slot can simply be the
   stored key, which means we don't need to store the freeing functions and the
   dynset itself is just a htab.  */

ctf_dynset_t *
ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun,
		   ctf_hash_free_fun key_free)
{
  /* 7 is arbitrary and untested for now.  */
  return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
					     key_free, xcalloc, free);
}

/* The dynset has one complexity: the underlying implementation reserves two
   values for internal hash table implementation details (empty versus deleted
   entries).  These values are otherwise very useful for pointers cast to ints,
   so transform the ctf_dynset_inserted value to allow for it.  (This
   introduces an ambiguity in that one can no longer store these two values in
   the dynset, but if we pick high enough values this is very unlikely to be a
   problem.)

   We leak this implementation detail to the freeing functions on the grounds
   that any use of these functions is overwhelmingly likely to be in sets using
   real pointers, which will be unaffected.  */

#define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64)
#define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63)

static void *
key_to_internal (const void *key)
{
  if (key == HTAB_EMPTY_ENTRY)
    return DYNSET_EMPTY_ENTRY_REPLACEMENT;
  else if (key == HTAB_DELETED_ENTRY)
    return DYNSET_DELETED_ENTRY_REPLACEMENT;

  return (void *) key;
}

static void *
internal_to_key (const void *internal)
{
  if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT)
    return HTAB_EMPTY_ENTRY;
  else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT)
    return HTAB_DELETED_ENTRY;
  return (void *) internal;
}

int
ctf_dynset_insert (ctf_dynset_t *hp, void *key)
{
  struct htab *htab = (struct htab *) hp;
  void **slot;

  slot = htab_find_slot (htab, key, INSERT);

  if (!slot)
    {
      errno = ENOMEM;
      return -errno;
    }

  if (*slot)
    {
      if (htab->del_f)
	(*htab->del_f) (*slot);
    }

  *slot = key_to_internal (key);

  return 0;
}

void
ctf_dynset_remove (ctf_dynset_t *hp, const void *key)
{
  htab_remove_elt ((struct htab *) hp, key_to_internal (key));
}

void
ctf_dynset_destroy (ctf_dynset_t *hp)
{
  if (hp != NULL)
    htab_delete ((struct htab *) hp);
}

void *
ctf_dynset_lookup (ctf_dynset_t *hp, const void *key)
{
  void **slot = htab_find_slot ((struct htab *) hp,
				key_to_internal (key), NO_INSERT);

  if (slot)
    return internal_to_key (*slot);
  return NULL;
}

size_t
ctf_dynset_elements (ctf_dynset_t *hp)
{
  return htab_elements ((struct htab *) hp);
}

/* TRUE/FALSE return.  */
int
ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key)
{
  void **slot = htab_find_slot ((struct htab *) hp,
				key_to_internal (key), NO_INSERT);

  if (orig_key && slot)
    *orig_key = internal_to_key (*slot);
  return (slot != NULL);
}

/* Look up a completely random value from the set, if any exist.
   Keys with value zero cannot be distinguished from a nonexistent key.  */
void *
ctf_dynset_lookup_any (ctf_dynset_t *hp)
{
  struct htab *htab = (struct htab *) hp;
  void **slot = htab->entries;
  void **limit = slot + htab_size (htab);

  while (slot < limit
	 && (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY))
      slot++;

  if (slot < limit)
    return internal_to_key (*slot);
  return NULL;
}

/* Traverse a dynset in arbitrary order, in _next iterator form.

   Otherwise, just like ctf_dynhash_next.  */
int
ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key)
{
  struct htab *htab = (struct htab *) hp;
  ctf_next_t *i = *it;
  void *slot;

  if (!i)
    {
      size_t size = htab_size (htab);

      /* If the table has too many entries to fit in an ssize_t, just give up.
	 This might be spurious, but if any type-related hashtable has ever been
	 nearly as large as that then somthing very odd is going on.  */

      if (((ssize_t) size) < 0)
	return EDOM;

      if ((i = ctf_next_create ()) == NULL)
	return ENOMEM;

      i->u.ctn_hash_slot = htab->entries;
      i->cu.ctn_s = hp;
      i->ctn_n = 0;
      i->ctn_size = (ssize_t) size;
      i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next;
      *it = i;
    }

  if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun)
    return ECTF_NEXT_WRONGFUN;

  if (hp != i->cu.ctn_s)
    return ECTF_NEXT_WRONGFP;

  if ((ssize_t) i->ctn_n == i->ctn_size)
    goto set_end;

  while ((ssize_t) i->ctn_n < i->ctn_size
	 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY
	     || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY))
    {
      i->u.ctn_hash_slot++;
      i->ctn_n++;
    }

  if ((ssize_t) i->ctn_n == i->ctn_size)
    goto set_end;

  slot = *i->u.ctn_hash_slot;

  if (key)
    *key = internal_to_key (slot);

  i->u.ctn_hash_slot++;
  i->ctn_n++;

  return 0;

 set_end:
  ctf_next_destroy (i);
  *it = NULL;
  return ECTF_NEXT_END;
}

/* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
   removal.  This is a straight cast of a hashtab.  */

ctf_hash_t *
ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun,
		 ctf_hash_eq_fun eq_fun)
{
  return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun,
					   eq_fun, free, xcalloc, free);
}

uint32_t
ctf_hash_size (const ctf_hash_t *hp)
{
  return htab_elements ((struct htab *) hp);
}

int
ctf_hash_insert_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type,
		      uint32_t name)
{
  const char *str = ctf_strraw (fp, name);

  if (type == 0)
    return EINVAL;

  if (str == NULL
      && CTF_NAME_STID (name) == CTF_STRTAB_1
      && fp->ctf_syn_ext_strtab == NULL
      && fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
    return ECTF_STRTAB;

  if (str == NULL)
    return ECTF_BADNAME;

  if (str[0] == '\0')
    return 0;		   /* Just ignore empty strings on behalf of caller.  */

  if (ctf_hashtab_insert ((struct htab *) hp, (char *) str,
			  (void *) (ptrdiff_t) type, NULL, NULL) != NULL)
    return 0;
  return errno;
}

/* if the key is already in the hash, override the previous definition with
   this new official definition. If the key is not present, then call
   ctf_hash_insert_type and hash it in.  */
int
ctf_hash_define_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type,
                      uint32_t name)
{
  /* This matches the semantics of ctf_hash_insert_type in this
     implementation anyway.  */

  return ctf_hash_insert_type (hp, fp, type, name);
}

ctf_id_t
ctf_hash_lookup_type (ctf_hash_t *hp, ctf_dict_t *fp __attribute__ ((__unused__)),
		      const char *key)
{
  ctf_helem_t **slot;

  slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT);

  if (slot)
    return (ctf_id_t) (uintptr_t) ((*slot)->value);

  return 0;
}

void
ctf_hash_destroy (ctf_hash_t *hp)
{
  if (hp != NULL)
    htab_delete ((struct htab *) hp);
}