summaryrefslogtreecommitdiff
path: root/gold/symtab.cc
blob: 091144a75ca5ae135c9ff674d823c0503122fd04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
// symtab.cc -- the gold symbol table

#include "gold.h"

#include <cassert>
#include <stdint.h>
#include <string>
#include <utility>

#include "object.h"
#include "output.h"
#include "target.h"
#include "symtab.h"

namespace gold
{

// Class Symbol.

// Initialize fields in Symbol.  This initializes everything except u_
// and source_.

void
Symbol::init_fields(const char* name, const char* version,
		    elfcpp::STT type, elfcpp::STB binding,
		    elfcpp::STV visibility, unsigned char nonvis)
{
  this->name_ = name;
  this->version_ = version;
  this->got_offset_ = 0;
  this->type_ = type;
  this->binding_ = binding;
  this->visibility_ = visibility;
  this->nonvis_ = nonvis;
  this->is_target_special_ = false;
  this->is_def_ = false;
  this->is_forwarder_ = false;
  this->in_dyn_ = false;
  this->has_got_offset_ = false;
  this->has_warning_ = false;
}

// Initialize the fields in the base class Symbol for SYM in OBJECT.

template<int size, bool big_endian>
void
Symbol::init_base(const char* name, const char* version, Object* object,
		  const elfcpp::Sym<size, big_endian>& sym)
{
  this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
		    sym.get_st_visibility(), sym.get_st_nonvis());
  this->u_.from_object.object = object;
  // FIXME: Handle SHN_XINDEX.
  this->u_.from_object.shnum = sym.get_st_shndx();
  this->source_ = FROM_OBJECT;
  this->in_dyn_ = object->is_dynamic();
}

// Initialize the fields in the base class Symbol for a symbol defined
// in an Output_data.

void
Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
		  elfcpp::STB binding, elfcpp::STV visibility,
		  unsigned char nonvis, bool offset_is_from_end)
{
  this->init_fields(name, NULL, type, binding, visibility, nonvis);
  this->u_.in_output_data.output_data = od;
  this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
  this->source_ = IN_OUTPUT_DATA;
}

// Initialize the fields in the base class Symbol for a symbol defined
// in an Output_segment.

void
Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
		  elfcpp::STB binding, elfcpp::STV visibility,
		  unsigned char nonvis, Segment_offset_base offset_base)
{
  this->init_fields(name, NULL, type, binding, visibility, nonvis);
  this->u_.in_output_segment.output_segment = os;
  this->u_.in_output_segment.offset_base = offset_base;
  this->source_ = IN_OUTPUT_SEGMENT;
}

// Initialize the fields in the base class Symbol for a symbol defined
// as a constant.

void
Symbol::init_base(const char* name, elfcpp::STT type,
		  elfcpp::STB binding, elfcpp::STV visibility,
		  unsigned char nonvis)
{
  this->init_fields(name, NULL, type, binding, visibility, nonvis);
  this->source_ = CONSTANT;
}

// Initialize the fields in Sized_symbol for SYM in OBJECT.

template<int size>
template<bool big_endian>
void
Sized_symbol<size>::init(const char* name, const char* version, Object* object,
			 const elfcpp::Sym<size, big_endian>& sym)
{
  this->init_base(name, version, object, sym);
  this->value_ = sym.get_st_value();
  this->symsize_ = sym.get_st_size();
}

// Initialize the fields in Sized_symbol for a symbol defined in an
// Output_data.

template<int size>
void
Sized_symbol<size>::init(const char* name, Output_data* od,
			 Value_type value, Size_type symsize,
			 elfcpp::STT type, elfcpp::STB binding,
			 elfcpp::STV visibility, unsigned char nonvis,
			 bool offset_is_from_end)
{
  this->init_base(name, od, type, binding, visibility, nonvis,
		  offset_is_from_end);
  this->value_ = value;
  this->symsize_ = symsize;
}

// Initialize the fields in Sized_symbol for a symbol defined in an
// Output_segment.

template<int size>
void
Sized_symbol<size>::init(const char* name, Output_segment* os,
			 Value_type value, Size_type symsize,
			 elfcpp::STT type, elfcpp::STB binding,
			 elfcpp::STV visibility, unsigned char nonvis,
			 Segment_offset_base offset_base)
{
  this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
  this->value_ = value;
  this->symsize_ = symsize;
}

// Initialize the fields in Sized_symbol for a symbol defined as a
// constant.

template<int size>
void
Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
			 elfcpp::STT type, elfcpp::STB binding,
			 elfcpp::STV visibility, unsigned char nonvis)
{
  this->init_base(name, type, binding, visibility, nonvis);
  this->value_ = value;
  this->symsize_ = symsize;
}

// Class Symbol_table.

Symbol_table::Symbol_table()
  : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
    forwarders_(), commons_(), warnings_()
{
}

Symbol_table::~Symbol_table()
{
}

// The hash function.  The key is always canonicalized, so we use a
// simple combination of the pointers.

size_t
Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
{
  return (reinterpret_cast<size_t>(key.first)
	  ^ reinterpret_cast<size_t>(key.second));
}

// The symbol table key equality function.  This is only called with
// canonicalized name and version strings, so we can use pointer
// comparison.

bool
Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
					  const Symbol_table_key& k2) const
{
  return k1.first == k2.first && k1.second == k2.second;
}

// Make TO a symbol which forwards to FROM.  

void
Symbol_table::make_forwarder(Symbol* from, Symbol* to)
{
  assert(!from->is_forwarder() && !to->is_forwarder());
  this->forwarders_[from] = to;
  from->set_forwarder();
}

// Resolve the forwards from FROM, returning the real symbol.

Symbol*
Symbol_table::resolve_forwards(Symbol* from) const
{
  assert(from->is_forwarder());
  Unordered_map<Symbol*, Symbol*>::const_iterator p =
    this->forwarders_.find(from);
  assert(p != this->forwarders_.end());
  return p->second;
}

// Look up a symbol by name.

Symbol*
Symbol_table::lookup(const char* name, const char* version) const
{
  name = this->namepool_.find(name);
  if (name == NULL)
    return NULL;
  if (version != NULL)
    {
      version = this->namepool_.find(version);
      if (version == NULL)
	return NULL;
    }

  Symbol_table_key key(name, version);
  Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
  if (p == this->table_.end())
    return NULL;
  return p->second;
}

// Resolve a Symbol with another Symbol.  This is only used in the
// unusual case where there are references to both an unversioned
// symbol and a symbol with a version, and we then discover that that
// version is the default version.  Because this is unusual, we do
// this the slow way, by converting back to an ELF symbol.

template<int size, bool big_endian>
void
Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from
                      ACCEPT_SIZE_ENDIAN)
{
  unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
  elfcpp::Sym_write<size, big_endian> esym(buf);
  // We don't bother to set the st_name field.
  esym.put_st_value(from->value());
  esym.put_st_size(from->symsize());
  esym.put_st_info(from->binding(), from->type());
  esym.put_st_other(from->visibility(), from->nonvis());
  esym.put_st_shndx(from->shnum());
  Symbol_table::resolve(to, esym.sym(), from->object());
}

// Add one symbol from OBJECT to the symbol table.  NAME is symbol
// name and VERSION is the version; both are canonicalized.  DEF is
// whether this is the default version.

// If DEF is true, then this is the definition of a default version of
// a symbol.  That means that any lookup of NAME/NULL and any lookup
// of NAME/VERSION should always return the same symbol.  This is
// obvious for references, but in particular we want to do this for
// definitions: overriding NAME/NULL should also override
// NAME/VERSION.  If we don't do that, it would be very hard to
// override functions in a shared library which uses versioning.

// We implement this by simply making both entries in the hash table
// point to the same Symbol structure.  That is easy enough if this is
// the first time we see NAME/NULL or NAME/VERSION, but it is possible
// that we have seen both already, in which case they will both have
// independent entries in the symbol table.  We can't simply change
// the symbol table entry, because we have pointers to the entries
// attached to the object files.  So we mark the entry attached to the
// object file as a forwarder, and record it in the forwarders_ map.
// Note that entries in the hash table will never be marked as
// forwarders.

template<int size, bool big_endian>
Symbol*
Symbol_table::add_from_object(Object* object,
			      const char *name,
			      const char *version, bool def,
			      const elfcpp::Sym<size, big_endian>& sym)
{
  Symbol* const snull = NULL;
  std::pair<typename Symbol_table_type::iterator, bool> ins =
    this->table_.insert(std::make_pair(std::make_pair(name, version), snull));

  std::pair<typename Symbol_table_type::iterator, bool> insdef =
    std::make_pair(this->table_.end(), false);
  if (def)
    {
      const char* const vnull = NULL;
      insdef = this->table_.insert(std::make_pair(std::make_pair(name, vnull),
						  snull));
    }

  // ins.first: an iterator, which is a pointer to a pair.
  // ins.first->first: the key (a pair of name and version).
  // ins.first->second: the value (Symbol*).
  // ins.second: true if new entry was inserted, false if not.

  Sized_symbol<size>* ret;
  bool was_undefined;
  bool was_common;
  if (!ins.second)
    {
      // We already have an entry for NAME/VERSION.
      ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
                                                           SELECT_SIZE(size));
      assert(ret != NULL);

      was_undefined = ret->is_undefined();
      was_common = ret->is_common();

      Symbol_table::resolve(ret, sym, object);

      if (def)
	{
	  if (insdef.second)
	    {
	      // This is the first time we have seen NAME/NULL.  Make
	      // NAME/NULL point to NAME/VERSION.
	      insdef.first->second = ret;
	    }
	  else
	    {
	      // This is the unfortunate case where we already have
	      // entries for both NAME/VERSION and NAME/NULL.
	      const Sized_symbol<size>* sym2;
	      sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
		insdef.first->second
                SELECT_SIZE(size));
	      Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
		ret, sym2 SELECT_SIZE_ENDIAN(size, big_endian));
	      this->make_forwarder(insdef.first->second, ret);
	      insdef.first->second = ret;
	    }
	}
    }
  else
    {
      // This is the first time we have seen NAME/VERSION.
      assert(ins.first->second == NULL);

      was_undefined = false;
      was_common = false;

      if (def && !insdef.second)
	{
	  // We already have an entry for NAME/NULL.  Make
	  // NAME/VERSION point to it.
	  ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
              insdef.first->second
              SELECT_SIZE(size));
	  Symbol_table::resolve(ret, sym, object);
	  ins.first->second = ret;
	}
      else
	{
	  Sized_target<size, big_endian>* target =
	    object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
		SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
	  if (!target->has_make_symbol())
	    ret = new Sized_symbol<size>();
	  else
	    {
	      ret = target->make_symbol();
	      if (ret == NULL)
		{
		  // This means that we don't want a symbol table
		  // entry after all.
		  if (!def)
		    this->table_.erase(ins.first);
		  else
		    {
		      this->table_.erase(insdef.first);
		      // Inserting insdef invalidated ins.
		      this->table_.erase(std::make_pair(name, version));
		    }
		  return NULL;
		}
	    }

	  ret->init(name, version, object, sym);

	  ins.first->second = ret;
	  if (def)
	    {
	      // This is the first time we have seen NAME/NULL.  Point
	      // it at the new entry for NAME/VERSION.
	      assert(insdef.second);
	      insdef.first->second = ret;
	    }
	}
    }

  // Record every time we see a new undefined symbol, to speed up
  // archive groups.
  if (!was_undefined && ret->is_undefined())
    ++this->saw_undefined_;

  // Keep track of common symbols, to speed up common symbol
  // allocation.
  if (!was_common && ret->is_common())
    this->commons_.push_back(ret);

  return ret;
}

// Add all the symbols in a relocatable object to the hash table.

template<int size, bool big_endian>
void
Symbol_table::add_from_object(
    Relobj* object,
    const unsigned char* syms,
    size_t count,
    const char* sym_names,
    size_t sym_name_size,
    Symbol** sympointers)
{
  // We take the size from the first object we see.
  if (this->get_size() == 0)
    this->set_size(size);

  if (size != this->get_size() || size != object->target()->get_size())
    {
      fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
	      program_name, object->name().c_str());
      gold_exit(false);
    }

  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;

  const unsigned char* p = syms;
  for (size_t i = 0; i < count; ++i, p += sym_size)
    {
      elfcpp::Sym<size, big_endian> sym(p);
      elfcpp::Sym<size, big_endian>* psym = &sym;

      unsigned int st_name = psym->get_st_name();
      if (st_name >= sym_name_size)
	{
	  fprintf(stderr,
		  _("%s: %s: bad global symbol name offset %u at %lu\n"),
		  program_name, object->name().c_str(), st_name,
		  static_cast<unsigned long>(i));
	  gold_exit(false);
	}

      // A symbol defined in a section which we are not including must
      // be treated as an undefined symbol.
      unsigned char symbuf[sym_size];
      elfcpp::Sym<size, big_endian> sym2(symbuf);
      unsigned int st_shndx = psym->get_st_shndx();
      if (st_shndx != elfcpp::SHN_UNDEF
	  && st_shndx < elfcpp::SHN_LORESERVE
	  && !object->is_section_included(st_shndx))
	{
	  memcpy(symbuf, p, sym_size);
	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
	  sw.put_st_shndx(elfcpp::SHN_UNDEF);
	  psym = &sym2;
	}

      const char* name = sym_names + st_name;

      // In an object file, an '@' in the name separates the symbol
      // name from the version name.  If there are two '@' characters,
      // this is the default version.
      const char* ver = strchr(name, '@');

      Symbol* res;
      if (ver == NULL)
	{
	  name = this->namepool_.add(name);
	  res = this->add_from_object(object, name, NULL, false, *psym);
	}
      else
	{
	  name = this->namepool_.add(name, ver - name);
	  bool def = false;
	  ++ver;
	  if (*ver == '@')
	    {
	      def = true;
	      ++ver;
	    }
	  ver = this->namepool_.add(ver);
	  res = this->add_from_object(object, name, ver, def, *psym);
	}

      *sympointers++ = res;
    }
}

// Create and return a specially defined symbol.  If ONLY_IF_REF is
// true, then only create the symbol if there is a reference to it.

template<int size, bool big_endian>
Sized_symbol<size>*
Symbol_table::define_special_symbol(Target* target, const char* name,
				    bool only_if_ref
                                    ACCEPT_SIZE_ENDIAN)
{
  assert(this->size_ == size);

  Symbol* oldsym;
  Sized_symbol<size>* sym;

  if (only_if_ref)
    {
      oldsym = this->lookup(name, NULL);
      if (oldsym == NULL || !oldsym->is_undefined())
	return NULL;
      sym = NULL;

      // Canonicalize NAME.
      name = oldsym->name();
    }
  else
    {
      // Canonicalize NAME.
      name = this->namepool_.add(name);

      Symbol* const snull = NULL;
      const char* const vnull = NULL;
      std::pair<typename Symbol_table_type::iterator, bool> ins =
	this->table_.insert(std::make_pair(std::make_pair(name, vnull),
					   snull));

      if (!ins.second)
	{
	  // We already have a symbol table entry for NAME.
	  oldsym = ins.first->second;
	  assert(oldsym != NULL);
	  sym = NULL;
	}
      else
	{
	  // We haven't seen this symbol before.
	  assert(ins.first->second == NULL);

	  if (!target->has_make_symbol())
	    sym = new Sized_symbol<size>();
	  else
	    {
	      assert(target->get_size() == size);
	      assert(target->is_big_endian() ? big_endian : !big_endian);
	      typedef Sized_target<size, big_endian> My_target;
	      My_target* sized_target = static_cast<My_target*>(target);
	      sym = sized_target->make_symbol();
	      if (sym == NULL)
		return NULL;
	    }

	  ins.first->second = sym;
	  oldsym = NULL;
	}
    }

  if (oldsym != NULL)
    {
      assert(sym == NULL);

      sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
                                                           SELECT_SIZE(size));
      assert(sym->source() == Symbol::FROM_OBJECT);
      const int old_shnum = sym->shnum();
      if (old_shnum != elfcpp::SHN_UNDEF
	  && old_shnum != elfcpp::SHN_COMMON
	  && !sym->object()->is_dynamic())
	{
	  fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
		  program_name, name);
	  // FIXME: Report old location.  Record that we have seen an
	  // error.
	  return NULL;
	}

      // Our new definition is going to override the old reference.
    }

  return sym;
}

// Define a symbol based on an Output_data.

void
Symbol_table::define_in_output_data(Target* target, const char* name,
				    Output_data* od,
				    uint64_t value, uint64_t symsize,
				    elfcpp::STT type, elfcpp::STB binding,
				    elfcpp::STV visibility,
				    unsigned char nonvis,
				    bool offset_is_from_end,
				    bool only_if_ref)
{
  assert(target->get_size() == this->size_);
  if (this->size_ == 32)
    this->do_define_in_output_data<32>(target, name, od, value, symsize,
				       type, binding, visibility, nonvis,
				       offset_is_from_end, only_if_ref);
  else if (this->size_ == 64)
    this->do_define_in_output_data<64>(target, name, od, value, symsize,
				       type, binding, visibility, nonvis,
				       offset_is_from_end, only_if_ref);
  else
    abort();
}

// Define a symbol in an Output_data, sized version.

template<int size>
void
Symbol_table::do_define_in_output_data(
    Target* target,
    const char* name,
    Output_data* od,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
    elfcpp::STT type,
    elfcpp::STB binding,
    elfcpp::STV visibility,
    unsigned char nonvis,
    bool offset_is_from_end,
    bool only_if_ref)
{
  Sized_symbol<size>* sym;

  if (target->is_big_endian())
    sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
        target, name, only_if_ref
        SELECT_SIZE_ENDIAN(size, true));
  else
    sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
        target, name, only_if_ref
        SELECT_SIZE_ENDIAN(size, false));

  if (sym == NULL)
    return;

  sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
	    offset_is_from_end);
}

// Define a symbol based on an Output_segment.

void
Symbol_table::define_in_output_segment(Target* target, const char* name,
				       Output_segment* os,
				       uint64_t value, uint64_t symsize,
				       elfcpp::STT type, elfcpp::STB binding,
				       elfcpp::STV visibility,
				       unsigned char nonvis,
				       Symbol::Segment_offset_base offset_base,
				       bool only_if_ref)
{
  assert(target->get_size() == this->size_);
  if (this->size_ == 32)
    this->do_define_in_output_segment<32>(target, name, os, value, symsize,
					  type, binding, visibility, nonvis,
					  offset_base, only_if_ref);
  else if (this->size_ == 64)
    this->do_define_in_output_segment<64>(target, name, os, value, symsize,
					  type, binding, visibility, nonvis,
					  offset_base, only_if_ref);
  else
    abort();
}

// Define a symbol in an Output_segment, sized version.

template<int size>
void
Symbol_table::do_define_in_output_segment(
    Target* target,
    const char* name,
    Output_segment* os,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
    elfcpp::STT type,
    elfcpp::STB binding,
    elfcpp::STV visibility,
    unsigned char nonvis,
    Symbol::Segment_offset_base offset_base,
    bool only_if_ref)
{
  Sized_symbol<size>* sym;

  if (target->is_big_endian())
    sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
        target, name, only_if_ref
        SELECT_SIZE_ENDIAN(size, true));
  else
    sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
        target, name, only_if_ref
        SELECT_SIZE_ENDIAN(size, false));

  if (sym == NULL)
    return;

  sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
	    offset_base);
}

// Define a special symbol with a constant value.  It is a multiple
// definition error if this symbol is already defined.

void
Symbol_table::define_as_constant(Target* target, const char* name,
				 uint64_t value, uint64_t symsize,
				 elfcpp::STT type, elfcpp::STB binding,
				 elfcpp::STV visibility, unsigned char nonvis,
				 bool only_if_ref)
{
  assert(target->get_size() == this->size_);
  if (this->size_ == 32)
    this->do_define_as_constant<32>(target, name, value, symsize,
				    type, binding, visibility, nonvis,
				    only_if_ref);
  else if (this->size_ == 64)
    this->do_define_as_constant<64>(target, name, value, symsize,
				    type, binding, visibility, nonvis,
				    only_if_ref);
  else
    abort();
}

// Define a symbol as a constant, sized version.

template<int size>
void
Symbol_table::do_define_as_constant(
    Target* target,
    const char* name,
    typename elfcpp::Elf_types<size>::Elf_Addr value,
    typename elfcpp::Elf_types<size>::Elf_WXword symsize,
    elfcpp::STT type,
    elfcpp::STB binding,
    elfcpp::STV visibility,
    unsigned char nonvis,
    bool only_if_ref)
{
  Sized_symbol<size>* sym;

  if (target->is_big_endian())
    sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
        target, name, only_if_ref
        SELECT_SIZE_ENDIAN(size, true));
  else
    sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
        target, name, only_if_ref
        SELECT_SIZE_ENDIAN(size, false));

  if (sym == NULL)
    return;

  sym->init(name, value, symsize, type, binding, visibility, nonvis);
}

// Define a set of symbols in output sections.

void
Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
			     const Define_symbol_in_section* p)
{
  for (int i = 0; i < count; ++i, ++p)
    {
      Output_section* os = layout->find_output_section(p->output_section);
      if (os != NULL)
	this->define_in_output_data(target, p->name, os, p->value, p->size,
				    p->type, p->binding, p->visibility,
				    p->nonvis, p->offset_is_from_end,
				    p->only_if_ref);
      else
	this->define_as_constant(target, p->name, 0, p->size, p->type,
				 p->binding, p->visibility, p->nonvis,
				 p->only_if_ref);
    }
}

// Define a set of symbols in output segments.

void
Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
			     const Define_symbol_in_segment* p)
{
  for (int i = 0; i < count; ++i, ++p)
    {
      Output_segment* os = layout->find_output_segment(p->segment_type,
						       p->segment_flags_set,
						       p->segment_flags_clear);
      if (os != NULL)
	this->define_in_output_segment(target, p->name, os, p->value, p->size,
				       p->type, p->binding, p->visibility,
				       p->nonvis, p->offset_base,
				       p->only_if_ref);
      else
	this->define_as_constant(target, p->name, 0, p->size, p->type,
				 p->binding, p->visibility, p->nonvis,
				 p->only_if_ref);
    }
}

// Set the final values for all the symbols.  Record the file offset
// OFF.  Add their names to POOL.  Return the new file offset.

off_t
Symbol_table::finalize(off_t off, Stringpool* pool)
{
  off_t ret;

  if (this->size_ == 32)
    ret = this->sized_finalize<32>(off, pool);
  else if (this->size_ == 64)
    ret = this->sized_finalize<64>(off, pool);
  else
    abort();

  // Now that we have the final symbol table, we can reliably note
  // which symbols should get warnings.
  this->warnings_.note_warnings(this);

  return ret;
}

// Set the final value for all the symbols.  This is called after
// Layout::finalize, so all the output sections have their final
// address.

template<int size>
off_t
Symbol_table::sized_finalize(off_t off, Stringpool* pool)
{
  off = align_address(off, size >> 3);
  this->offset_ = off;

  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  Symbol_table_type::iterator p = this->table_.begin();
  size_t count = 0;
  while (p != this->table_.end())
    {
      Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);

      // FIXME: Here we need to decide which symbols should go into
      // the output file.

      typename Sized_symbol<size>::Value_type value;

      switch (sym->source())
	{
	case Symbol::FROM_OBJECT:
	  {
	    unsigned int shnum = sym->shnum();

	    // FIXME: We need some target specific support here.
	    if (shnum >= elfcpp::SHN_LORESERVE
		&& shnum != elfcpp::SHN_ABS)
	      {
		fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
			program_name, sym->name(), shnum);
		gold_exit(false);
	      }

	    Object* symobj = sym->object();
	    if (symobj->is_dynamic())
	      {
		value = 0;
		shnum = elfcpp::SHN_UNDEF;
	      }
	    else if (shnum == elfcpp::SHN_UNDEF)
	      value = 0;
	    else if (shnum == elfcpp::SHN_ABS)
	      value = sym->value();
	    else
	      {
		Relobj* relobj = static_cast<Relobj*>(symobj);
		off_t secoff;
		Output_section* os = relobj->output_section(shnum, &secoff);

		if (os == NULL)
		  {
		    // We should be able to erase this symbol from the
		    // symbol table, but at least with gcc 4.0.2
		    // std::unordered_map::erase doesn't appear to return
		    // the new iterator.
		    // p = this->table_.erase(p);
		    ++p;
		    continue;
		  }

		value = sym->value() + os->address() + secoff;
	      }
	  }
	  break;

	case Symbol::IN_OUTPUT_DATA:
	  {
	    Output_data* od = sym->output_data();
	    value = sym->value() + od->address();
	    if (sym->offset_is_from_end())
	      value += od->data_size();
	  }
	  break;

	case Symbol::IN_OUTPUT_SEGMENT:
	  {
	    Output_segment* os = sym->output_segment();
	    value = sym->value() + os->vaddr();
	    switch (sym->offset_base())
	      {
	      case Symbol::SEGMENT_START:
		break;
	      case Symbol::SEGMENT_END:
		value += os->memsz();
		break;
	      case Symbol::SEGMENT_BSS:
		value += os->filesz();
		break;
	      default:
		abort();
	      }
	  }
	  break;

	case Symbol::CONSTANT:
	  value = sym->value();
	  break;

	default:
	  abort();
	}

      sym->set_value(value);
      pool->add(sym->name());
      ++count;
      off += sym_size;
      ++p;
    }

  this->output_count_ = count;

  return off;
}

// Write out the global symbols.

void
Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
			    Output_file* of) const
{
  if (this->size_ == 32)
    {
      if (target->is_big_endian())
	this->sized_write_globals<32, true>(target, sympool, of);
      else
	this->sized_write_globals<32, false>(target, sympool, of);
    }
  else if (this->size_ == 64)
    {
      if (target->is_big_endian())
	this->sized_write_globals<64, true>(target, sympool, of);
      else
	this->sized_write_globals<64, false>(target, sympool, of);
    }
  else
    abort();
}

// Write out the global symbols.

template<int size, bool big_endian>
void
Symbol_table::sized_write_globals(const Target*,
				  const Stringpool* sympool,
				  Output_file* of) const
{
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  unsigned char* psyms = of->get_output_view(this->offset_,
					     this->output_count_ * sym_size);
  unsigned char* ps = psyms;
  for (Symbol_table_type::const_iterator p = this->table_.begin();
       p != this->table_.end();
       ++p)
    {
      Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);

      unsigned int shndx;
      switch (sym->source())
	{
	case Symbol::FROM_OBJECT:
	  {
	    unsigned int shnum = sym->shnum();

	    // FIXME: We need some target specific support here.
	    if (shnum >= elfcpp::SHN_LORESERVE
		&& shnum != elfcpp::SHN_ABS)
	      {
		fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
			program_name, sym->name(), sym->shnum());
		gold_exit(false);
	      }

	    Object* symobj = sym->object();
	    if (symobj->is_dynamic())
	      {
		// FIXME.
		shndx = elfcpp::SHN_UNDEF;
	      }
	    else if (shnum == elfcpp::SHN_UNDEF || shnum == elfcpp::SHN_ABS)
	      shndx = shnum;
	    else
	      {
		Relobj* relobj = static_cast<Relobj*>(symobj);
		off_t secoff;
		Output_section* os = relobj->output_section(shnum, &secoff);
		if (os == NULL)
		  continue;

		shndx = os->out_shndx();
	      }
	  }
	  break;

	case Symbol::IN_OUTPUT_DATA:
	  shndx = sym->output_data()->out_shndx();
	  break;

	case Symbol::IN_OUTPUT_SEGMENT:
	  shndx = elfcpp::SHN_ABS;
	  break;

	case Symbol::CONSTANT:
	  shndx = elfcpp::SHN_ABS;
	  break;

	default:
	  abort();
	}

      elfcpp::Sym_write<size, big_endian> osym(ps);
      osym.put_st_name(sympool->get_offset(sym->name()));
      osym.put_st_value(sym->value());
      osym.put_st_size(sym->symsize());
      osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
      osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
					     sym->nonvis()));
      osym.put_st_shndx(shndx);

      ps += sym_size;
    }

  of->write_output_view(this->offset_, this->output_count_ * sym_size, psyms);
}

// Warnings functions.

// Add a new warning.

void
Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
		      unsigned int shndx)
{
  name = symtab->canonicalize_name(name);
  this->warnings_[name].set(obj, shndx);
}

// Look through the warnings and mark the symbols for which we should
// warn.  This is called during Layout::finalize when we know the
// sources for all the symbols.

void
Warnings::note_warnings(Symbol_table* symtab)
{
  for (Warning_table::iterator p = this->warnings_.begin();
       p != this->warnings_.end();
       ++p)
    {
      Symbol* sym = symtab->lookup(p->first, NULL);
      if (sym != NULL
	  && sym->source() == Symbol::FROM_OBJECT
	  && sym->object() == p->second.object)
	{
	  sym->set_has_warning();

	  // Read the section contents to get the warning text.  It
	  // would be nicer if we only did this if we have to actually
	  // issue a warning.  Unfortunately, warnings are issued as
	  // we relocate sections.  That means that we can not lock
	  // the object then, as we might try to issue the same
	  // warning multiple times simultaneously.
	  const unsigned char* c;
	  off_t len;
	  c = p->second.object->section_contents(p->second.shndx, &len);
	  p->second.set_text(reinterpret_cast<const char*>(c), len);
	}
    }
}

// Issue a warning.  This is called when we see a relocation against a
// symbol for which has a warning.

void
Warnings::issue_warning(Symbol* sym, const std::string& location) const
{
  assert(sym->has_warning());
  Warning_table::const_iterator p = this->warnings_.find(sym->name());
  assert(p != this->warnings_.end());
  fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
	  p->second.text.c_str());
}

// Instantiate the templates we need.  We could use the configure
// script to restrict this to only the ones needed for implemented
// targets.

template
void
Symbol_table::add_from_object<32, true>(
    Relobj* object,
    const unsigned char* syms,
    size_t count,
    const char* sym_names,
    size_t sym_name_size,
    Symbol** sympointers);

template
void
Symbol_table::add_from_object<32, false>(
    Relobj* object,
    const unsigned char* syms,
    size_t count,
    const char* sym_names,
    size_t sym_name_size,
    Symbol** sympointers);

template
void
Symbol_table::add_from_object<64, true>(
    Relobj* object,
    const unsigned char* syms,
    size_t count,
    const char* sym_names,
    size_t sym_name_size,
    Symbol** sympointers);

template
void
Symbol_table::add_from_object<64, false>(
    Relobj* object,
    const unsigned char* syms,
    size_t count,
    const char* sym_names,
    size_t sym_name_size,
    Symbol** sympointers);

} // End namespace gold.