summaryrefslogtreecommitdiff
path: root/bfd/elf32-xtensa.c
diff options
context:
space:
mode:
Diffstat (limited to 'bfd/elf32-xtensa.c')
-rw-r--r--bfd/elf32-xtensa.c10857
1 files changed, 10857 insertions, 0 deletions
diff --git a/bfd/elf32-xtensa.c b/bfd/elf32-xtensa.c
new file mode 100644
index 0000000..e32496a
--- /dev/null
+++ b/bfd/elf32-xtensa.c
@@ -0,0 +1,10857 @@
+/* Xtensa-specific support for 32-bit ELF.
+ Copyright (C) 2003-2014 Free Software Foundation, Inc.
+
+ This file is part of BFD, the Binary File Descriptor library.
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License as
+ published by the Free Software Foundation; either version 3 of the
+ License, or (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+#include "sysdep.h"
+#include "bfd.h"
+
+#include <stdarg.h>
+#include <strings.h>
+
+#include "bfdlink.h"
+#include "libbfd.h"
+#include "elf-bfd.h"
+#include "elf/xtensa.h"
+#include "xtensa-isa.h"
+#include "xtensa-config.h"
+
+#define XTENSA_NO_NOP_REMOVAL 0
+
+/* Local helper functions. */
+
+static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
+static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
+static bfd_reloc_status_type bfd_elf_xtensa_reloc
+ (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
+static bfd_boolean do_fix_for_relocatable_link
+ (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
+static void do_fix_for_final_link
+ (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
+
+/* Local functions to handle Xtensa configurability. */
+
+static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
+static bfd_boolean is_direct_call_opcode (xtensa_opcode);
+static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
+static xtensa_opcode get_const16_opcode (void);
+static xtensa_opcode get_l32r_opcode (void);
+static bfd_vma l32r_offset (bfd_vma, bfd_vma);
+static int get_relocation_opnd (xtensa_opcode, int);
+static int get_relocation_slot (int);
+static xtensa_opcode get_relocation_opcode
+ (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
+static bfd_boolean is_l32r_relocation
+ (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
+static bfd_boolean is_alt_relocation (int);
+static bfd_boolean is_operand_relocation (int);
+static bfd_size_type insn_decode_len
+ (bfd_byte *, bfd_size_type, bfd_size_type);
+static xtensa_opcode insn_decode_opcode
+ (bfd_byte *, bfd_size_type, bfd_size_type, int);
+static bfd_boolean check_branch_target_aligned
+ (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
+static bfd_boolean check_loop_aligned
+ (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
+static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
+static bfd_size_type get_asm_simplify_size
+ (bfd_byte *, bfd_size_type, bfd_size_type);
+
+/* Functions for link-time code simplifications. */
+
+static bfd_reloc_status_type elf_xtensa_do_asm_simplify
+ (bfd_byte *, bfd_vma, bfd_vma, char **);
+static bfd_reloc_status_type contract_asm_expansion
+ (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
+static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
+static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
+
+/* Access to internal relocations, section contents and symbols. */
+
+static Elf_Internal_Rela *retrieve_internal_relocs
+ (bfd *, asection *, bfd_boolean);
+static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
+static void release_internal_relocs (asection *, Elf_Internal_Rela *);
+static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
+static void pin_contents (asection *, bfd_byte *);
+static void release_contents (asection *, bfd_byte *);
+static Elf_Internal_Sym *retrieve_local_syms (bfd *);
+
+/* Miscellaneous utility functions. */
+
+static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
+static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
+static asection *get_elf_r_symndx_section (bfd *, unsigned long);
+static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
+ (bfd *, unsigned long);
+static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
+static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
+static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
+static bfd_boolean xtensa_is_property_section (asection *);
+static bfd_boolean xtensa_is_insntable_section (asection *);
+static bfd_boolean xtensa_is_littable_section (asection *);
+static bfd_boolean xtensa_is_proptable_section (asection *);
+static int internal_reloc_compare (const void *, const void *);
+static int internal_reloc_matches (const void *, const void *);
+static asection *xtensa_get_property_section (asection *, const char *);
+extern asection *xtensa_make_property_section (asection *, const char *);
+static flagword xtensa_get_property_predef_flags (asection *);
+
+/* Other functions called directly by the linker. */
+
+typedef void (*deps_callback_t)
+ (asection *, bfd_vma, asection *, bfd_vma, void *);
+extern bfd_boolean xtensa_callback_required_dependence
+ (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
+
+
+/* Globally visible flag for choosing size optimization of NOP removal
+ instead of branch-target-aware minimization for NOP removal.
+ When nonzero, narrow all instructions and remove all NOPs possible
+ around longcall expansions. */
+
+int elf32xtensa_size_opt;
+
+
+/* The "new_section_hook" is used to set up a per-section
+ "xtensa_relax_info" data structure with additional information used
+ during relaxation. */
+
+typedef struct xtensa_relax_info_struct xtensa_relax_info;
+
+
+/* The GNU tools do not easily allow extending interfaces to pass around
+ the pointer to the Xtensa ISA information, so instead we add a global
+ variable here (in BFD) that can be used by any of the tools that need
+ this information. */
+
+xtensa_isa xtensa_default_isa;
+
+
+/* When this is true, relocations may have been modified to refer to
+ symbols from other input files. The per-section list of "fix"
+ records needs to be checked when resolving relocations. */
+
+static bfd_boolean relaxing_section = FALSE;
+
+/* When this is true, during final links, literals that cannot be
+ coalesced and their relocations may be moved to other sections. */
+
+int elf32xtensa_no_literal_movement = 1;
+
+/* Rename one of the generic section flags to better document how it
+ is used here. */
+/* Whether relocations have been processed. */
+#define reloc_done sec_flg0
+
+static reloc_howto_type elf_howto_table[] =
+{
+ HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
+ FALSE, 0, 0, FALSE),
+ HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
+ bfd_elf_xtensa_reloc, "R_XTENSA_32",
+ TRUE, 0xffffffff, 0xffffffff, FALSE),
+
+ /* Replace a 32-bit value with a value from the runtime linker (only
+ used by linker-generated stub functions). The r_addend value is
+ special: 1 means to substitute a pointer to the runtime linker's
+ dynamic resolver function; 2 means to substitute the link map for
+ the shared object. */
+ HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
+ NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
+
+ HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
+ bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
+ FALSE, 0, 0xffffffff, FALSE),
+ HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
+ bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
+ FALSE, 0, 0xffffffff, FALSE),
+ HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
+ bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
+ FALSE, 0, 0xffffffff, FALSE),
+ HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
+ bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
+ FALSE, 0, 0xffffffff, FALSE),
+
+ EMPTY_HOWTO (7),
+
+ /* Old relocations for backward compatibility. */
+ HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
+
+ /* Assembly auto-expansion. */
+ HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
+ /* Relax assembly auto-expansion. */
+ HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
+
+ EMPTY_HOWTO (13),
+
+ HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
+ bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
+ FALSE, 0, 0xffffffff, TRUE),
+
+ /* GNU extension to record C++ vtable hierarchy. */
+ HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
+ NULL, "R_XTENSA_GNU_VTINHERIT",
+ FALSE, 0, 0, FALSE),
+ /* GNU extension to record C++ vtable member usage. */
+ HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
+ _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
+ FALSE, 0, 0, FALSE),
+
+ /* Relocations for supporting difference of symbols. */
+ HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
+ bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
+ HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
+ bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
+ HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
+ bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
+
+ /* General immediate operand relocations. */
+ HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
+
+ /* "Alternate" relocations. The meaning of these is opcode-specific. */
+ HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
+ HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
+
+ /* TLS relocations. */
+ HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
+ FALSE, 0, 0xffffffff, FALSE),
+ HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
+ FALSE, 0, 0xffffffff, FALSE),
+ HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
+ FALSE, 0, 0xffffffff, FALSE),
+ HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
+ FALSE, 0, 0xffffffff, FALSE),
+ HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
+ FALSE, 0, 0, FALSE),
+ HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
+ FALSE, 0, 0, FALSE),
+ HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
+ bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
+ FALSE, 0, 0, FALSE),
+};
+
+#if DEBUG_GEN_RELOC
+#define TRACE(str) \
+ fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
+#else
+#define TRACE(str)
+#endif
+
+static reloc_howto_type *
+elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
+ bfd_reloc_code_real_type code)
+{
+ switch (code)
+ {
+ case BFD_RELOC_NONE:
+ TRACE ("BFD_RELOC_NONE");
+ return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
+
+ case BFD_RELOC_32:
+ TRACE ("BFD_RELOC_32");
+ return &elf_howto_table[(unsigned) R_XTENSA_32 ];
+
+ case BFD_RELOC_32_PCREL:
+ TRACE ("BFD_RELOC_32_PCREL");
+ return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
+
+ case BFD_RELOC_XTENSA_DIFF8:
+ TRACE ("BFD_RELOC_XTENSA_DIFF8");
+ return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
+
+ case BFD_RELOC_XTENSA_DIFF16:
+ TRACE ("BFD_RELOC_XTENSA_DIFF16");
+ return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
+
+ case BFD_RELOC_XTENSA_DIFF32:
+ TRACE ("BFD_RELOC_XTENSA_DIFF32");
+ return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
+
+ case BFD_RELOC_XTENSA_RTLD:
+ TRACE ("BFD_RELOC_XTENSA_RTLD");
+ return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
+
+ case BFD_RELOC_XTENSA_GLOB_DAT:
+ TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
+ return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
+
+ case BFD_RELOC_XTENSA_JMP_SLOT:
+ TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
+ return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
+
+ case BFD_RELOC_XTENSA_RELATIVE:
+ TRACE ("BFD_RELOC_XTENSA_RELATIVE");
+ return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
+
+ case BFD_RELOC_XTENSA_PLT:
+ TRACE ("BFD_RELOC_XTENSA_PLT");
+ return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
+
+ case BFD_RELOC_XTENSA_OP0:
+ TRACE ("BFD_RELOC_XTENSA_OP0");
+ return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
+
+ case BFD_RELOC_XTENSA_OP1:
+ TRACE ("BFD_RELOC_XTENSA_OP1");
+ return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
+
+ case BFD_RELOC_XTENSA_OP2:
+ TRACE ("BFD_RELOC_XTENSA_OP2");
+ return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
+
+ case BFD_RELOC_XTENSA_ASM_EXPAND:
+ TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
+ return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
+
+ case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
+ TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
+ return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
+
+ case BFD_RELOC_VTABLE_INHERIT:
+ TRACE ("BFD_RELOC_VTABLE_INHERIT");
+ return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
+
+ case BFD_RELOC_VTABLE_ENTRY:
+ TRACE ("BFD_RELOC_VTABLE_ENTRY");
+ return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
+
+ case BFD_RELOC_XTENSA_TLSDESC_FN:
+ TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
+ return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
+
+ case BFD_RELOC_XTENSA_TLSDESC_ARG:
+ TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
+ return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
+
+ case BFD_RELOC_XTENSA_TLS_DTPOFF:
+ TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
+ return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
+
+ case BFD_RELOC_XTENSA_TLS_TPOFF:
+ TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
+ return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
+
+ case BFD_RELOC_XTENSA_TLS_FUNC:
+ TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
+ return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
+
+ case BFD_RELOC_XTENSA_TLS_ARG:
+ TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
+ return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
+
+ case BFD_RELOC_XTENSA_TLS_CALL:
+ TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
+ return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
+
+ default:
+ if (code >= BFD_RELOC_XTENSA_SLOT0_OP
+ && code <= BFD_RELOC_XTENSA_SLOT14_OP)
+ {
+ unsigned n = (R_XTENSA_SLOT0_OP +
+ (code - BFD_RELOC_XTENSA_SLOT0_OP));
+ return &elf_howto_table[n];
+ }
+
+ if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
+ && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
+ {
+ unsigned n = (R_XTENSA_SLOT0_ALT +
+ (code - BFD_RELOC_XTENSA_SLOT0_ALT));
+ return &elf_howto_table[n];
+ }
+
+ break;
+ }
+
+ TRACE ("Unknown");
+ return NULL;
+}
+
+static reloc_howto_type *
+elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
+ const char *r_name)
+{
+ unsigned int i;
+
+ for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
+ if (elf_howto_table[i].name != NULL
+ && strcasecmp (elf_howto_table[i].name, r_name) == 0)
+ return &elf_howto_table[i];
+
+ return NULL;
+}
+
+
+/* Given an ELF "rela" relocation, find the corresponding howto and record
+ it in the BFD internal arelent representation of the relocation. */
+
+static void
+elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
+ arelent *cache_ptr,
+ Elf_Internal_Rela *dst)
+{
+ unsigned int r_type = ELF32_R_TYPE (dst->r_info);
+
+ BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
+ cache_ptr->howto = &elf_howto_table[r_type];
+}
+
+
+/* Functions for the Xtensa ELF linker. */
+
+/* The name of the dynamic interpreter. This is put in the .interp
+ section. */
+
+#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
+
+/* The size in bytes of an entry in the procedure linkage table.
+ (This does _not_ include the space for the literals associated with
+ the PLT entry.) */
+
+#define PLT_ENTRY_SIZE 16
+
+/* For _really_ large PLTs, we may need to alternate between literals
+ and code to keep the literals within the 256K range of the L32R
+ instructions in the code. It's unlikely that anyone would ever need
+ such a big PLT, but an arbitrary limit on the PLT size would be bad.
+ Thus, we split the PLT into chunks. Since there's very little
+ overhead (2 extra literals) for each chunk, the chunk size is kept
+ small so that the code for handling multiple chunks get used and
+ tested regularly. With 254 entries, there are 1K of literals for
+ each chunk, and that seems like a nice round number. */
+
+#define PLT_ENTRIES_PER_CHUNK 254
+
+/* PLT entries are actually used as stub functions for lazy symbol
+ resolution. Once the symbol is resolved, the stub function is never
+ invoked. Note: the 32-byte frame size used here cannot be changed
+ without a corresponding change in the runtime linker. */
+
+static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
+{
+ 0x6c, 0x10, 0x04, /* entry sp, 32 */
+ 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
+ 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
+ 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
+ 0x0a, 0x80, 0x00, /* jx a8 */
+ 0 /* unused */
+};
+
+static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
+{
+ 0x36, 0x41, 0x00, /* entry sp, 32 */
+ 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
+ 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
+ 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
+ 0xa0, 0x08, 0x00, /* jx a8 */
+ 0 /* unused */
+};
+
+/* The size of the thread control block. */
+#define TCB_SIZE 8
+
+struct elf_xtensa_link_hash_entry
+{
+ struct elf_link_hash_entry elf;
+
+ bfd_signed_vma tlsfunc_refcount;
+
+#define GOT_UNKNOWN 0
+#define GOT_NORMAL 1
+#define GOT_TLS_GD 2 /* global or local dynamic */
+#define GOT_TLS_IE 4 /* initial or local exec */
+#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
+ unsigned char tls_type;
+};
+
+#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
+
+struct elf_xtensa_obj_tdata
+{
+ struct elf_obj_tdata root;
+
+ /* tls_type for each local got entry. */
+ char *local_got_tls_type;
+
+ bfd_signed_vma *local_tlsfunc_refcounts;
+};
+
+#define elf_xtensa_tdata(abfd) \
+ ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
+
+#define elf_xtensa_local_got_tls_type(abfd) \
+ (elf_xtensa_tdata (abfd)->local_got_tls_type)
+
+#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
+ (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
+
+#define is_xtensa_elf(bfd) \
+ (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
+ && elf_tdata (bfd) != NULL \
+ && elf_object_id (bfd) == XTENSA_ELF_DATA)
+
+static bfd_boolean
+elf_xtensa_mkobject (bfd *abfd)
+{
+ return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
+ XTENSA_ELF_DATA);
+}
+
+/* Xtensa ELF linker hash table. */
+
+struct elf_xtensa_link_hash_table
+{
+ struct elf_link_hash_table elf;
+
+ /* Short-cuts to get to dynamic linker sections. */
+ asection *sgot;
+ asection *sgotplt;
+ asection *srelgot;
+ asection *splt;
+ asection *srelplt;
+ asection *sgotloc;
+ asection *spltlittbl;
+
+ /* Total count of PLT relocations seen during check_relocs.
+ The actual PLT code must be split into multiple sections and all
+ the sections have to be created before size_dynamic_sections,
+ where we figure out the exact number of PLT entries that will be
+ needed. It is OK if this count is an overestimate, e.g., some
+ relocations may be removed by GC. */
+ int plt_reloc_count;
+
+ struct elf_xtensa_link_hash_entry *tlsbase;
+};
+
+/* Get the Xtensa ELF linker hash table from a link_info structure. */
+
+#define elf_xtensa_hash_table(p) \
+ (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
+ == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
+
+/* Create an entry in an Xtensa ELF linker hash table. */
+
+static struct bfd_hash_entry *
+elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
+ struct bfd_hash_table *table,
+ const char *string)
+{
+ /* Allocate the structure if it has not already been allocated by a
+ subclass. */
+ if (entry == NULL)
+ {
+ entry = bfd_hash_allocate (table,
+ sizeof (struct elf_xtensa_link_hash_entry));
+ if (entry == NULL)
+ return entry;
+ }
+
+ /* Call the allocation method of the superclass. */
+ entry = _bfd_elf_link_hash_newfunc (entry, table, string);
+ if (entry != NULL)
+ {
+ struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
+ eh->tlsfunc_refcount = 0;
+ eh->tls_type = GOT_UNKNOWN;
+ }
+
+ return entry;
+}
+
+/* Create an Xtensa ELF linker hash table. */
+
+static struct bfd_link_hash_table *
+elf_xtensa_link_hash_table_create (bfd *abfd)
+{
+ struct elf_link_hash_entry *tlsbase;
+ struct elf_xtensa_link_hash_table *ret;
+ bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
+
+ ret = bfd_zmalloc (amt);
+ if (ret == NULL)
+ return NULL;
+
+ if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
+ elf_xtensa_link_hash_newfunc,
+ sizeof (struct elf_xtensa_link_hash_entry),
+ XTENSA_ELF_DATA))
+ {
+ free (ret);
+ return NULL;
+ }
+
+ /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
+ for it later. */
+ tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
+ TRUE, FALSE, FALSE);
+ tlsbase->root.type = bfd_link_hash_new;
+ tlsbase->root.u.undef.abfd = NULL;
+ tlsbase->non_elf = 0;
+ ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
+ ret->tlsbase->tls_type = GOT_UNKNOWN;
+
+ return &ret->elf.root;
+}
+
+/* Copy the extra info we tack onto an elf_link_hash_entry. */
+
+static void
+elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *dir,
+ struct elf_link_hash_entry *ind)
+{
+ struct elf_xtensa_link_hash_entry *edir, *eind;
+
+ edir = elf_xtensa_hash_entry (dir);
+ eind = elf_xtensa_hash_entry (ind);
+
+ if (ind->root.type == bfd_link_hash_indirect)
+ {
+ edir->tlsfunc_refcount += eind->tlsfunc_refcount;
+ eind->tlsfunc_refcount = 0;
+
+ if (dir->got.refcount <= 0)
+ {
+ edir->tls_type = eind->tls_type;
+ eind->tls_type = GOT_UNKNOWN;
+ }
+ }
+
+ _bfd_elf_link_hash_copy_indirect (info, dir, ind);
+}
+
+static inline bfd_boolean
+elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
+ struct bfd_link_info *info)
+{
+ /* Check if we should do dynamic things to this symbol. The
+ "ignore_protected" argument need not be set, because Xtensa code
+ does not require special handling of STV_PROTECTED to make function
+ pointer comparisons work properly. The PLT addresses are never
+ used for function pointers. */
+
+ return _bfd_elf_dynamic_symbol_p (h, info, 0);
+}
+
+
+static int
+property_table_compare (const void *ap, const void *bp)
+{
+ const property_table_entry *a = (const property_table_entry *) ap;
+ const property_table_entry *b = (const property_table_entry *) bp;
+
+ if (a->address == b->address)
+ {
+ if (a->size != b->size)
+ return (a->size - b->size);
+
+ if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
+ return ((b->flags & XTENSA_PROP_ALIGN)
+ - (a->flags & XTENSA_PROP_ALIGN));
+
+ if ((a->flags & XTENSA_PROP_ALIGN)
+ && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
+ != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
+ return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
+ - GET_XTENSA_PROP_ALIGNMENT (b->flags));
+
+ if ((a->flags & XTENSA_PROP_UNREACHABLE)
+ != (b->flags & XTENSA_PROP_UNREACHABLE))
+ return ((b->flags & XTENSA_PROP_UNREACHABLE)
+ - (a->flags & XTENSA_PROP_UNREACHABLE));
+
+ return (a->flags - b->flags);
+ }
+
+ return (a->address - b->address);
+}
+
+
+static int
+property_table_matches (const void *ap, const void *bp)
+{
+ const property_table_entry *a = (const property_table_entry *) ap;
+ const property_table_entry *b = (const property_table_entry *) bp;
+
+ /* Check if one entry overlaps with the other. */
+ if ((b->address >= a->address && b->address < (a->address + a->size))
+ || (a->address >= b->address && a->address < (b->address + b->size)))
+ return 0;
+
+ return (a->address - b->address);
+}
+
+
+/* Get the literal table or property table entries for the given
+ section. Sets TABLE_P and returns the number of entries. On
+ error, returns a negative value. */
+
+static int
+xtensa_read_table_entries (bfd *abfd,
+ asection *section,
+ property_table_entry **table_p,
+ const char *sec_name,
+ bfd_boolean output_addr)
+{
+ asection *table_section;
+ bfd_size_type table_size = 0;
+ bfd_byte *table_data;
+ property_table_entry *blocks;
+ int blk, block_count;
+ bfd_size_type num_records;
+ Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
+ bfd_vma section_addr, off;
+ flagword predef_flags;
+ bfd_size_type table_entry_size, section_limit;
+
+ if (!section
+ || !(section->flags & SEC_ALLOC)
+ || (section->flags & SEC_DEBUGGING))
+ {
+ *table_p = NULL;
+ return 0;
+ }
+
+ table_section = xtensa_get_property_section (section, sec_name);
+ if (table_section)
+ table_size = table_section->size;
+
+ if (table_size == 0)
+ {
+ *table_p = NULL;
+ return 0;
+ }
+
+ predef_flags = xtensa_get_property_predef_flags (table_section);
+ table_entry_size = 12;
+ if (predef_flags)
+ table_entry_size -= 4;
+
+ num_records = table_size / table_entry_size;
+ table_data = retrieve_contents (abfd, table_section, TRUE);
+ blocks = (property_table_entry *)
+ bfd_malloc (num_records * sizeof (property_table_entry));
+ block_count = 0;
+
+ if (output_addr)
+ section_addr = section->output_section->vma + section->output_offset;
+ else
+ section_addr = section->vma;
+
+ internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
+ if (internal_relocs && !table_section->reloc_done)
+ {
+ qsort (internal_relocs, table_section->reloc_count,
+ sizeof (Elf_Internal_Rela), internal_reloc_compare);
+ irel = internal_relocs;
+ }
+ else
+ irel = NULL;
+
+ section_limit = bfd_get_section_limit (abfd, section);
+ rel_end = internal_relocs + table_section->reloc_count;
+
+ for (off = 0; off < table_size; off += table_entry_size)
+ {
+ bfd_vma address = bfd_get_32 (abfd, table_data + off);
+
+ /* Skip any relocations before the current offset. This should help
+ avoid confusion caused by unexpected relocations for the preceding
+ table entry. */
+ while (irel &&
+ (irel->r_offset < off
+ || (irel->r_offset == off
+ && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
+ {
+ irel += 1;
+ if (irel >= rel_end)
+ irel = 0;
+ }
+
+ if (irel && irel->r_offset == off)
+ {
+ bfd_vma sym_off;
+ unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
+ BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
+
+ if (get_elf_r_symndx_section (abfd, r_symndx) != section)
+ continue;
+
+ sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
+ BFD_ASSERT (sym_off == 0);
+ address += (section_addr + sym_off + irel->r_addend);
+ }
+ else
+ {
+ if (address < section_addr
+ || address >= section_addr + section_limit)
+ continue;
+ }
+
+ blocks[block_count].address = address;
+ blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
+ if (predef_flags)
+ blocks[block_count].flags = predef_flags;
+ else
+ blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
+ block_count++;
+ }
+
+ release_contents (table_section, table_data);
+ release_internal_relocs (table_section, internal_relocs);
+
+ if (block_count > 0)
+ {
+ /* Now sort them into address order for easy reference. */
+ qsort (blocks, block_count, sizeof (property_table_entry),
+ property_table_compare);
+
+ /* Check that the table contents are valid. Problems may occur,
+ for example, if an unrelocated object file is stripped. */
+ for (blk = 1; blk < block_count; blk++)
+ {
+ /* The only circumstance where two entries may legitimately
+ have the same address is when one of them is a zero-size
+ placeholder to mark a place where fill can be inserted.
+ The zero-size entry should come first. */
+ if (blocks[blk - 1].address == blocks[blk].address &&
+ blocks[blk - 1].size != 0)
+ {
+ (*_bfd_error_handler) (_("%B(%A): invalid property table"),
+ abfd, section);
+ bfd_set_error (bfd_error_bad_value);
+ free (blocks);
+ return -1;
+ }
+ }
+ }
+
+ *table_p = blocks;
+ return block_count;
+}
+
+
+static property_table_entry *
+elf_xtensa_find_property_entry (property_table_entry *property_table,
+ int property_table_size,
+ bfd_vma addr)
+{
+ property_table_entry entry;
+ property_table_entry *rv;
+
+ if (property_table_size == 0)
+ return NULL;
+
+ entry.address = addr;
+ entry.size = 1;
+ entry.flags = 0;
+
+ rv = bsearch (&entry, property_table, property_table_size,
+ sizeof (property_table_entry), property_table_matches);
+ return rv;
+}
+
+
+static bfd_boolean
+elf_xtensa_in_literal_pool (property_table_entry *lit_table,
+ int lit_table_size,
+ bfd_vma addr)
+{
+ if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
+ return TRUE;
+
+ return FALSE;
+}
+
+
+/* Look through the relocs for a section during the first phase, and
+ calculate needed space in the dynamic reloc sections. */
+
+static bfd_boolean
+elf_xtensa_check_relocs (bfd *abfd,
+ struct bfd_link_info *info,
+ asection *sec,
+ const Elf_Internal_Rela *relocs)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **sym_hashes;
+ const Elf_Internal_Rela *rel;
+ const Elf_Internal_Rela *rel_end;
+
+ if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
+ return TRUE;
+
+ BFD_ASSERT (is_xtensa_elf (abfd));
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ sym_hashes = elf_sym_hashes (abfd);
+
+ rel_end = relocs + sec->reloc_count;
+ for (rel = relocs; rel < rel_end; rel++)
+ {
+ unsigned int r_type;
+ unsigned long r_symndx;
+ struct elf_link_hash_entry *h = NULL;
+ struct elf_xtensa_link_hash_entry *eh;
+ int tls_type, old_tls_type;
+ bfd_boolean is_got = FALSE;
+ bfd_boolean is_plt = FALSE;
+ bfd_boolean is_tlsfunc = FALSE;
+
+ r_symndx = ELF32_R_SYM (rel->r_info);
+ r_type = ELF32_R_TYPE (rel->r_info);
+
+ if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
+ {
+ (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
+ abfd, r_symndx);
+ return FALSE;
+ }
+
+ if (r_symndx >= symtab_hdr->sh_info)
+ {
+ h = sym_hashes[r_symndx - symtab_hdr->sh_info];
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ /* PR15323, ref flags aren't set for references in the same
+ object. */
+ h->root.non_ir_ref = 1;
+ }
+ eh = elf_xtensa_hash_entry (h);
+
+ switch (r_type)
+ {
+ case R_XTENSA_TLSDESC_FN:
+ if (info->shared)
+ {
+ tls_type = GOT_TLS_GD;
+ is_got = TRUE;
+ is_tlsfunc = TRUE;
+ }
+ else
+ tls_type = GOT_TLS_IE;
+ break;
+
+ case R_XTENSA_TLSDESC_ARG:
+ if (info->shared)
+ {
+ tls_type = GOT_TLS_GD;
+ is_got = TRUE;
+ }
+ else
+ {
+ tls_type = GOT_TLS_IE;
+ if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
+ is_got = TRUE;
+ }
+ break;
+
+ case R_XTENSA_TLS_DTPOFF:
+ if (info->shared)
+ tls_type = GOT_TLS_GD;
+ else
+ tls_type = GOT_TLS_IE;
+ break;
+
+ case R_XTENSA_TLS_TPOFF:
+ tls_type = GOT_TLS_IE;
+ if (info->shared)
+ info->flags |= DF_STATIC_TLS;
+ if (info->shared || h)
+ is_got = TRUE;
+ break;
+
+ case R_XTENSA_32:
+ tls_type = GOT_NORMAL;
+ is_got = TRUE;
+ break;
+
+ case R_XTENSA_PLT:
+ tls_type = GOT_NORMAL;
+ is_plt = TRUE;
+ break;
+
+ case R_XTENSA_GNU_VTINHERIT:
+ /* This relocation describes the C++ object vtable hierarchy.
+ Reconstruct it for later use during GC. */
+ if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
+ return FALSE;
+ continue;
+
+ case R_XTENSA_GNU_VTENTRY:
+ /* This relocation describes which C++ vtable entries are actually
+ used. Record for later use during GC. */
+ BFD_ASSERT (h != NULL);
+ if (h != NULL
+ && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
+ return FALSE;
+ continue;
+
+ default:
+ /* Nothing to do for any other relocations. */
+ continue;
+ }
+
+ if (h)
+ {
+ if (is_plt)
+ {
+ if (h->plt.refcount <= 0)
+ {
+ h->needs_plt = 1;
+ h->plt.refcount = 1;
+ }
+ else
+ h->plt.refcount += 1;
+
+ /* Keep track of the total PLT relocation count even if we
+ don't yet know whether the dynamic sections will be
+ created. */
+ htab->plt_reloc_count += 1;
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ if (! add_extra_plt_sections (info, htab->plt_reloc_count))
+ return FALSE;
+ }
+ }
+ else if (is_got)
+ {
+ if (h->got.refcount <= 0)
+ h->got.refcount = 1;
+ else
+ h->got.refcount += 1;
+ }
+
+ if (is_tlsfunc)
+ eh->tlsfunc_refcount += 1;
+
+ old_tls_type = eh->tls_type;
+ }
+ else
+ {
+ /* Allocate storage the first time. */
+ if (elf_local_got_refcounts (abfd) == NULL)
+ {
+ bfd_size_type size = symtab_hdr->sh_info;
+ void *mem;
+
+ mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
+ if (mem == NULL)
+ return FALSE;
+ elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
+
+ mem = bfd_zalloc (abfd, size);
+ if (mem == NULL)
+ return FALSE;
+ elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
+
+ mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
+ if (mem == NULL)
+ return FALSE;
+ elf_xtensa_local_tlsfunc_refcounts (abfd)
+ = (bfd_signed_vma *) mem;
+ }
+
+ /* This is a global offset table entry for a local symbol. */
+ if (is_got || is_plt)
+ elf_local_got_refcounts (abfd) [r_symndx] += 1;
+
+ if (is_tlsfunc)
+ elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
+
+ old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
+ }
+
+ if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
+ tls_type |= old_tls_type;
+ /* If a TLS symbol is accessed using IE at least once,
+ there is no point to use a dynamic model for it. */
+ else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
+ && ((old_tls_type & GOT_TLS_GD) == 0
+ || (tls_type & GOT_TLS_IE) == 0))
+ {
+ if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
+ tls_type = old_tls_type;
+ else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
+ tls_type |= old_tls_type;
+ else
+ {
+ (*_bfd_error_handler)
+ (_("%B: `%s' accessed both as normal and thread local symbol"),
+ abfd,
+ h ? h->root.root.string : "<local>");
+ return FALSE;
+ }
+ }
+
+ if (old_tls_type != tls_type)
+ {
+ if (eh)
+ eh->tls_type = tls_type;
+ else
+ elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
+ }
+ }
+
+ return TRUE;
+}
+
+
+static void
+elf_xtensa_make_sym_local (struct bfd_link_info *info,
+ struct elf_link_hash_entry *h)
+{
+ if (info->shared)
+ {
+ if (h->plt.refcount > 0)
+ {
+ /* For shared objects, there's no need for PLT entries for local
+ symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
+ if (h->got.refcount < 0)
+ h->got.refcount = 0;
+ h->got.refcount += h->plt.refcount;
+ h->plt.refcount = 0;
+ }
+ }
+ else
+ {
+ /* Don't need any dynamic relocations at all. */
+ h->plt.refcount = 0;
+ h->got.refcount = 0;
+ }
+}
+
+
+static void
+elf_xtensa_hide_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *h,
+ bfd_boolean force_local)
+{
+ /* For a shared link, move the plt refcount to the got refcount to leave
+ space for RELATIVE relocs. */
+ elf_xtensa_make_sym_local (info, h);
+
+ _bfd_elf_link_hash_hide_symbol (info, h, force_local);
+}
+
+
+/* Return the section that should be marked against GC for a given
+ relocation. */
+
+static asection *
+elf_xtensa_gc_mark_hook (asection *sec,
+ struct bfd_link_info *info,
+ Elf_Internal_Rela *rel,
+ struct elf_link_hash_entry *h,
+ Elf_Internal_Sym *sym)
+{
+ /* Property sections are marked "KEEP" in the linker scripts, but they
+ should not cause other sections to be marked. (This approach relies
+ on elf_xtensa_discard_info to remove property table entries that
+ describe discarded sections. Alternatively, it might be more
+ efficient to avoid using "KEEP" in the linker scripts and instead use
+ the gc_mark_extra_sections hook to mark only the property sections
+ that describe marked sections. That alternative does not work well
+ with the current property table sections, which do not correspond
+ one-to-one with the sections they describe, but that should be fixed
+ someday.) */
+ if (xtensa_is_property_section (sec))
+ return NULL;
+
+ if (h != NULL)
+ switch (ELF32_R_TYPE (rel->r_info))
+ {
+ case R_XTENSA_GNU_VTINHERIT:
+ case R_XTENSA_GNU_VTENTRY:
+ return NULL;
+ }
+
+ return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
+}
+
+
+/* Update the GOT & PLT entry reference counts
+ for the section being removed. */
+
+static bfd_boolean
+elf_xtensa_gc_sweep_hook (bfd *abfd,
+ struct bfd_link_info *info,
+ asection *sec,
+ const Elf_Internal_Rela *relocs)
+{
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **sym_hashes;
+ const Elf_Internal_Rela *rel, *relend;
+ struct elf_xtensa_link_hash_table *htab;
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ if (info->relocatable)
+ return TRUE;
+
+ if ((sec->flags & SEC_ALLOC) == 0)
+ return TRUE;
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ sym_hashes = elf_sym_hashes (abfd);
+
+ relend = relocs + sec->reloc_count;
+ for (rel = relocs; rel < relend; rel++)
+ {
+ unsigned long r_symndx;
+ unsigned int r_type;
+ struct elf_link_hash_entry *h = NULL;
+ struct elf_xtensa_link_hash_entry *eh;
+ bfd_boolean is_got = FALSE;
+ bfd_boolean is_plt = FALSE;
+ bfd_boolean is_tlsfunc = FALSE;
+
+ r_symndx = ELF32_R_SYM (rel->r_info);
+ if (r_symndx >= symtab_hdr->sh_info)
+ {
+ h = sym_hashes[r_symndx - symtab_hdr->sh_info];
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ }
+ eh = elf_xtensa_hash_entry (h);
+
+ r_type = ELF32_R_TYPE (rel->r_info);
+ switch (r_type)
+ {
+ case R_XTENSA_TLSDESC_FN:
+ if (info->shared)
+ {
+ is_got = TRUE;
+ is_tlsfunc = TRUE;
+ }
+ break;
+
+ case R_XTENSA_TLSDESC_ARG:
+ if (info->shared)
+ is_got = TRUE;
+ else
+ {
+ if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
+ is_got = TRUE;
+ }
+ break;
+
+ case R_XTENSA_TLS_TPOFF:
+ if (info->shared || h)
+ is_got = TRUE;
+ break;
+
+ case R_XTENSA_32:
+ is_got = TRUE;
+ break;
+
+ case R_XTENSA_PLT:
+ is_plt = TRUE;
+ break;
+
+ default:
+ continue;
+ }
+
+ if (h)
+ {
+ if (is_plt)
+ {
+ if (h->plt.refcount > 0)
+ h->plt.refcount--;
+ }
+ else if (is_got)
+ {
+ if (h->got.refcount > 0)
+ h->got.refcount--;
+ }
+ if (is_tlsfunc)
+ {
+ if (eh->tlsfunc_refcount > 0)
+ eh->tlsfunc_refcount--;
+ }
+ }
+ else
+ {
+ if (is_got || is_plt)
+ {
+ bfd_signed_vma *got_refcount
+ = &elf_local_got_refcounts (abfd) [r_symndx];
+ if (*got_refcount > 0)
+ *got_refcount -= 1;
+ }
+ if (is_tlsfunc)
+ {
+ bfd_signed_vma *tlsfunc_refcount
+ = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
+ if (*tlsfunc_refcount > 0)
+ *tlsfunc_refcount -= 1;
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+
+/* Create all the dynamic sections. */
+
+static bfd_boolean
+elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ flagword flags, noalloc_flags;
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ /* First do all the standard stuff. */
+ if (! _bfd_elf_create_dynamic_sections (dynobj, info))
+ return FALSE;
+ htab->splt = bfd_get_linker_section (dynobj, ".plt");
+ htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
+ htab->sgot = bfd_get_linker_section (dynobj, ".got");
+ htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
+ htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
+
+ /* Create any extra PLT sections in case check_relocs has already
+ been called on all the non-dynamic input files. */
+ if (! add_extra_plt_sections (info, htab->plt_reloc_count))
+ return FALSE;
+
+ noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
+ | SEC_LINKER_CREATED | SEC_READONLY);
+ flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
+
+ /* Mark the ".got.plt" section READONLY. */
+ if (htab->sgotplt == NULL
+ || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
+ return FALSE;
+
+ /* Create ".got.loc" (literal tables for use by dynamic linker). */
+ htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
+ flags);
+ if (htab->sgotloc == NULL
+ || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
+ return FALSE;
+
+ /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
+ htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
+ noalloc_flags);
+ if (htab->spltlittbl == NULL
+ || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
+ return FALSE;
+
+ return TRUE;
+}
+
+
+static bfd_boolean
+add_extra_plt_sections (struct bfd_link_info *info, int count)
+{
+ bfd *dynobj = elf_hash_table (info)->dynobj;
+ int chunk;
+
+ /* Iterate over all chunks except 0 which uses the standard ".plt" and
+ ".got.plt" sections. */
+ for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
+ {
+ char *sname;
+ flagword flags;
+ asection *s;
+
+ /* Stop when we find a section has already been created. */
+ if (elf_xtensa_get_plt_section (info, chunk))
+ break;
+
+ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
+ | SEC_LINKER_CREATED | SEC_READONLY);
+
+ sname = (char *) bfd_malloc (10);
+ sprintf (sname, ".plt.%u", chunk);
+ s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
+ if (s == NULL
+ || ! bfd_set_section_alignment (dynobj, s, 2))
+ return FALSE;
+
+ sname = (char *) bfd_malloc (14);
+ sprintf (sname, ".got.plt.%u", chunk);
+ s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
+ if (s == NULL
+ || ! bfd_set_section_alignment (dynobj, s, 2))
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+
+/* Adjust a symbol defined by a dynamic object and referenced by a
+ regular object. The current definition is in some section of the
+ dynamic object, but we're not including those sections. We have to
+ change the definition to something the rest of the link can
+ understand. */
+
+static bfd_boolean
+elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ struct elf_link_hash_entry *h)
+{
+ /* If this is a weak symbol, and there is a real definition, the
+ processor independent code will have arranged for us to see the
+ real definition first, and we can just use the same value. */
+ if (h->u.weakdef)
+ {
+ BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
+ || h->u.weakdef->root.type == bfd_link_hash_defweak);
+ h->root.u.def.section = h->u.weakdef->root.u.def.section;
+ h->root.u.def.value = h->u.weakdef->root.u.def.value;
+ return TRUE;
+ }
+
+ /* This is a reference to a symbol defined by a dynamic object. The
+ reference must go through the GOT, so there's no need for COPY relocs,
+ .dynbss, etc. */
+
+ return TRUE;
+}
+
+
+static bfd_boolean
+elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
+{
+ struct bfd_link_info *info;
+ struct elf_xtensa_link_hash_table *htab;
+ struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
+
+ if (h->root.type == bfd_link_hash_indirect)
+ return TRUE;
+
+ info = (struct bfd_link_info *) arg;
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ /* If we saw any use of an IE model for this symbol, we can then optimize
+ away GOT entries for any TLSDESC_FN relocs. */
+ if ((eh->tls_type & GOT_TLS_IE) != 0)
+ {
+ BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
+ h->got.refcount -= eh->tlsfunc_refcount;
+ }
+
+ if (! elf_xtensa_dynamic_symbol_p (h, info))
+ elf_xtensa_make_sym_local (info, h);
+
+ if (h->plt.refcount > 0)
+ htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
+
+ if (h->got.refcount > 0)
+ htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
+
+ return TRUE;
+}
+
+
+static void
+elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ bfd *i;
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return;
+
+ for (i = info->input_bfds; i; i = i->link.next)
+ {
+ bfd_signed_vma *local_got_refcounts;
+ bfd_size_type j, cnt;
+ Elf_Internal_Shdr *symtab_hdr;
+
+ local_got_refcounts = elf_local_got_refcounts (i);
+ if (!local_got_refcounts)
+ continue;
+
+ symtab_hdr = &elf_tdata (i)->symtab_hdr;
+ cnt = symtab_hdr->sh_info;
+
+ for (j = 0; j < cnt; ++j)
+ {
+ /* If we saw any use of an IE model for this symbol, we can
+ then optimize away GOT entries for any TLSDESC_FN relocs. */
+ if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
+ {
+ bfd_signed_vma *tlsfunc_refcount
+ = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
+ BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
+ local_got_refcounts[j] -= *tlsfunc_refcount;
+ }
+
+ if (local_got_refcounts[j] > 0)
+ htab->srelgot->size += (local_got_refcounts[j]
+ * sizeof (Elf32_External_Rela));
+ }
+ }
+}
+
+
+/* Set the sizes of the dynamic sections. */
+
+static bfd_boolean
+elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
+ struct bfd_link_info *info)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ bfd *dynobj, *abfd;
+ asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
+ bfd_boolean relplt, relgot;
+ int plt_entries, plt_chunks, chunk;
+
+ plt_entries = 0;
+ plt_chunks = 0;
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ dynobj = elf_hash_table (info)->dynobj;
+ if (dynobj == NULL)
+ abort ();
+ srelgot = htab->srelgot;
+ srelplt = htab->srelplt;
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ BFD_ASSERT (htab->srelgot != NULL
+ && htab->srelplt != NULL
+ && htab->sgot != NULL
+ && htab->spltlittbl != NULL
+ && htab->sgotloc != NULL);
+
+ /* Set the contents of the .interp section to the interpreter. */
+ if (info->executable)
+ {
+ s = bfd_get_linker_section (dynobj, ".interp");
+ if (s == NULL)
+ abort ();
+ s->size = sizeof ELF_DYNAMIC_INTERPRETER;
+ s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
+ }
+
+ /* Allocate room for one word in ".got". */
+ htab->sgot->size = 4;
+
+ /* Allocate space in ".rela.got" for literals that reference global
+ symbols and space in ".rela.plt" for literals that have PLT
+ entries. */
+ elf_link_hash_traverse (elf_hash_table (info),
+ elf_xtensa_allocate_dynrelocs,
+ (void *) info);
+
+ /* If we are generating a shared object, we also need space in
+ ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
+ reference local symbols. */
+ if (info->shared)
+ elf_xtensa_allocate_local_got_size (info);
+
+ /* Allocate space in ".plt" to match the size of ".rela.plt". For
+ each PLT entry, we need the PLT code plus a 4-byte literal.
+ For each chunk of ".plt", we also need two more 4-byte
+ literals, two corresponding entries in ".rela.got", and an
+ 8-byte entry in ".xt.lit.plt". */
+ spltlittbl = htab->spltlittbl;
+ plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
+ plt_chunks =
+ (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
+
+ /* Iterate over all the PLT chunks, including any extra sections
+ created earlier because the initial count of PLT relocations
+ was an overestimate. */
+ for (chunk = 0;
+ (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
+ chunk++)
+ {
+ int chunk_entries;
+
+ sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
+ BFD_ASSERT (sgotplt != NULL);
+
+ if (chunk < plt_chunks - 1)
+ chunk_entries = PLT_ENTRIES_PER_CHUNK;
+ else if (chunk == plt_chunks - 1)
+ chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
+ else
+ chunk_entries = 0;
+
+ if (chunk_entries != 0)
+ {
+ sgotplt->size = 4 * (chunk_entries + 2);
+ splt->size = PLT_ENTRY_SIZE * chunk_entries;
+ srelgot->size += 2 * sizeof (Elf32_External_Rela);
+ spltlittbl->size += 8;
+ }
+ else
+ {
+ sgotplt->size = 0;
+ splt->size = 0;
+ }
+ }
+
+ /* Allocate space in ".got.loc" to match the total size of all the
+ literal tables. */
+ sgotloc = htab->sgotloc;
+ sgotloc->size = spltlittbl->size;
+ for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
+ {
+ if (abfd->flags & DYNAMIC)
+ continue;
+ for (s = abfd->sections; s != NULL; s = s->next)
+ {
+ if (! discarded_section (s)
+ && xtensa_is_littable_section (s)
+ && s != spltlittbl)
+ sgotloc->size += s->size;
+ }
+ }
+ }
+
+ /* Allocate memory for dynamic sections. */
+ relplt = FALSE;
+ relgot = FALSE;
+ for (s = dynobj->sections; s != NULL; s = s->next)
+ {
+ const char *name;
+
+ if ((s->flags & SEC_LINKER_CREATED) == 0)
+ continue;
+
+ /* It's OK to base decisions on the section name, because none
+ of the dynobj section names depend upon the input files. */
+ name = bfd_get_section_name (dynobj, s);
+
+ if (CONST_STRNEQ (name, ".rela"))
+ {
+ if (s->size != 0)
+ {
+ if (strcmp (name, ".rela.plt") == 0)
+ relplt = TRUE;
+ else if (strcmp (name, ".rela.got") == 0)
+ relgot = TRUE;
+
+ /* We use the reloc_count field as a counter if we need
+ to copy relocs into the output file. */
+ s->reloc_count = 0;
+ }
+ }
+ else if (! CONST_STRNEQ (name, ".plt.")
+ && ! CONST_STRNEQ (name, ".got.plt.")
+ && strcmp (name, ".got") != 0
+ && strcmp (name, ".plt") != 0
+ && strcmp (name, ".got.plt") != 0
+ && strcmp (name, ".xt.lit.plt") != 0
+ && strcmp (name, ".got.loc") != 0)
+ {
+ /* It's not one of our sections, so don't allocate space. */
+ continue;
+ }
+
+ if (s->size == 0)
+ {
+ /* If we don't need this section, strip it from the output
+ file. We must create the ".plt*" and ".got.plt*"
+ sections in create_dynamic_sections and/or check_relocs
+ based on a conservative estimate of the PLT relocation
+ count, because the sections must be created before the
+ linker maps input sections to output sections. The
+ linker does that before size_dynamic_sections, where we
+ compute the exact size of the PLT, so there may be more
+ of these sections than are actually needed. */
+ s->flags |= SEC_EXCLUDE;
+ }
+ else if ((s->flags & SEC_HAS_CONTENTS) != 0)
+ {
+ /* Allocate memory for the section contents. */
+ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
+ if (s->contents == NULL)
+ return FALSE;
+ }
+ }
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ /* Add the special XTENSA_RTLD relocations now. The offsets won't be
+ known until finish_dynamic_sections, but we need to get the relocs
+ in place before they are sorted. */
+ for (chunk = 0; chunk < plt_chunks; chunk++)
+ {
+ Elf_Internal_Rela irela;
+ bfd_byte *loc;
+
+ irela.r_offset = 0;
+ irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
+ irela.r_addend = 0;
+
+ loc = (srelgot->contents
+ + srelgot->reloc_count * sizeof (Elf32_External_Rela));
+ bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
+ bfd_elf32_swap_reloca_out (output_bfd, &irela,
+ loc + sizeof (Elf32_External_Rela));
+ srelgot->reloc_count += 2;
+ }
+
+ /* Add some entries to the .dynamic section. We fill in the
+ values later, in elf_xtensa_finish_dynamic_sections, but we
+ must add the entries now so that we get the correct size for
+ the .dynamic section. The DT_DEBUG entry is filled in by the
+ dynamic linker and used by the debugger. */
+#define add_dynamic_entry(TAG, VAL) \
+ _bfd_elf_add_dynamic_entry (info, TAG, VAL)
+
+ if (info->executable)
+ {
+ if (!add_dynamic_entry (DT_DEBUG, 0))
+ return FALSE;
+ }
+
+ if (relplt)
+ {
+ if (!add_dynamic_entry (DT_PLTRELSZ, 0)
+ || !add_dynamic_entry (DT_PLTREL, DT_RELA)
+ || !add_dynamic_entry (DT_JMPREL, 0))
+ return FALSE;
+ }
+
+ if (relgot)
+ {
+ if (!add_dynamic_entry (DT_RELA, 0)
+ || !add_dynamic_entry (DT_RELASZ, 0)
+ || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
+ return FALSE;
+ }
+
+ if (!add_dynamic_entry (DT_PLTGOT, 0)
+ || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
+ || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
+ return FALSE;
+ }
+#undef add_dynamic_entry
+
+ return TRUE;
+}
+
+static bfd_boolean
+elf_xtensa_always_size_sections (bfd *output_bfd,
+ struct bfd_link_info *info)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ asection *tls_sec;
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ tls_sec = htab->elf.tls_sec;
+
+ if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
+ {
+ struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
+ struct bfd_link_hash_entry *bh = &tlsbase->root;
+ const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
+
+ tlsbase->type = STT_TLS;
+ if (!(_bfd_generic_link_add_one_symbol
+ (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
+ tls_sec, 0, NULL, FALSE,
+ bed->collect, &bh)))
+ return FALSE;
+ tlsbase->def_regular = 1;
+ tlsbase->other = STV_HIDDEN;
+ (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
+ }
+
+ return TRUE;
+}
+
+
+/* Return the base VMA address which should be subtracted from real addresses
+ when resolving @dtpoff relocation.
+ This is PT_TLS segment p_vaddr. */
+
+static bfd_vma
+dtpoff_base (struct bfd_link_info *info)
+{
+ /* If tls_sec is NULL, we should have signalled an error already. */
+ if (elf_hash_table (info)->tls_sec == NULL)
+ return 0;
+ return elf_hash_table (info)->tls_sec->vma;
+}
+
+/* Return the relocation value for @tpoff relocation
+ if STT_TLS virtual address is ADDRESS. */
+
+static bfd_vma
+tpoff (struct bfd_link_info *info, bfd_vma address)
+{
+ struct elf_link_hash_table *htab = elf_hash_table (info);
+ bfd_vma base;
+
+ /* If tls_sec is NULL, we should have signalled an error already. */
+ if (htab->tls_sec == NULL)
+ return 0;
+ base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
+ return address - htab->tls_sec->vma + base;
+}
+
+/* Perform the specified relocation. The instruction at (contents + address)
+ is modified to set one operand to represent the value in "relocation". The
+ operand position is determined by the relocation type recorded in the
+ howto. */
+
+#define CALL_SEGMENT_BITS (30)
+#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
+
+static bfd_reloc_status_type
+elf_xtensa_do_reloc (reloc_howto_type *howto,
+ bfd *abfd,
+ asection *input_section,
+ bfd_vma relocation,
+ bfd_byte *contents,
+ bfd_vma address,
+ bfd_boolean is_weak_undef,
+ char **error_message)
+{
+ xtensa_format fmt;
+ xtensa_opcode opcode;
+ xtensa_isa isa = xtensa_default_isa;
+ static xtensa_insnbuf ibuff = NULL;
+ static xtensa_insnbuf sbuff = NULL;
+ bfd_vma self_address;
+ bfd_size_type input_size;
+ int opnd, slot;
+ uint32 newval;
+
+ if (!ibuff)
+ {
+ ibuff = xtensa_insnbuf_alloc (isa);
+ sbuff = xtensa_insnbuf_alloc (isa);
+ }
+
+ input_size = bfd_get_section_limit (abfd, input_section);
+
+ /* Calculate the PC address for this instruction. */
+ self_address = (input_section->output_section->vma
+ + input_section->output_offset
+ + address);
+
+ switch (howto->type)
+ {
+ case R_XTENSA_NONE:
+ case R_XTENSA_DIFF8:
+ case R_XTENSA_DIFF16:
+ case R_XTENSA_DIFF32:
+ case R_XTENSA_TLS_FUNC:
+ case R_XTENSA_TLS_ARG:
+ case R_XTENSA_TLS_CALL:
+ return bfd_reloc_ok;
+
+ case R_XTENSA_ASM_EXPAND:
+ if (!is_weak_undef)
+ {
+ /* Check for windowed CALL across a 1GB boundary. */
+ opcode = get_expanded_call_opcode (contents + address,
+ input_size - address, 0);
+ if (is_windowed_call_opcode (opcode))
+ {
+ if ((self_address >> CALL_SEGMENT_BITS)
+ != (relocation >> CALL_SEGMENT_BITS))
+ {
+ *error_message = "windowed longcall crosses 1GB boundary; "
+ "return may fail";
+ return bfd_reloc_dangerous;
+ }
+ }
+ }
+ return bfd_reloc_ok;
+
+ case R_XTENSA_ASM_SIMPLIFY:
+ {
+ /* Convert the L32R/CALLX to CALL. */
+ bfd_reloc_status_type retval =
+ elf_xtensa_do_asm_simplify (contents, address, input_size,
+ error_message);
+ if (retval != bfd_reloc_ok)
+ return bfd_reloc_dangerous;
+
+ /* The CALL needs to be relocated. Continue below for that part. */
+ address += 3;
+ self_address += 3;
+ howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
+ }
+ break;
+
+ case R_XTENSA_32:
+ {
+ bfd_vma x;
+ x = bfd_get_32 (abfd, contents + address);
+ x = x + relocation;
+ bfd_put_32 (abfd, x, contents + address);
+ }
+ return bfd_reloc_ok;
+
+ case R_XTENSA_32_PCREL:
+ bfd_put_32 (abfd, relocation - self_address, contents + address);
+ return bfd_reloc_ok;
+
+ case R_XTENSA_PLT:
+ case R_XTENSA_TLSDESC_FN:
+ case R_XTENSA_TLSDESC_ARG:
+ case R_XTENSA_TLS_DTPOFF:
+ case R_XTENSA_TLS_TPOFF:
+ bfd_put_32 (abfd, relocation, contents + address);
+ return bfd_reloc_ok;
+ }
+
+ /* Only instruction slot-specific relocations handled below.... */
+ slot = get_relocation_slot (howto->type);
+ if (slot == XTENSA_UNDEFINED)
+ {
+ *error_message = "unexpected relocation";
+ return bfd_reloc_dangerous;
+ }
+
+ /* Read the instruction into a buffer and decode the opcode. */
+ xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
+ input_size - address);
+ fmt = xtensa_format_decode (isa, ibuff);
+ if (fmt == XTENSA_UNDEFINED)
+ {
+ *error_message = "cannot decode instruction format";
+ return bfd_reloc_dangerous;
+ }
+
+ xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
+
+ opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
+ if (opcode == XTENSA_UNDEFINED)
+ {
+ *error_message = "cannot decode instruction opcode";
+ return bfd_reloc_dangerous;
+ }
+
+ /* Check for opcode-specific "alternate" relocations. */
+ if (is_alt_relocation (howto->type))
+ {
+ if (opcode == get_l32r_opcode ())
+ {
+ /* Handle the special-case of non-PC-relative L32R instructions. */
+ bfd *output_bfd = input_section->output_section->owner;
+ asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
+ if (!lit4_sec)
+ {
+ *error_message = "relocation references missing .lit4 section";
+ return bfd_reloc_dangerous;
+ }
+ self_address = ((lit4_sec->vma & ~0xfff)
+ + 0x40000 - 3); /* -3 to compensate for do_reloc */
+ newval = relocation;
+ opnd = 1;
+ }
+ else if (opcode == get_const16_opcode ())
+ {
+ /* ALT used for high 16 bits. */
+ newval = relocation >> 16;
+ opnd = 1;
+ }
+ else
+ {
+ /* No other "alternate" relocations currently defined. */
+ *error_message = "unexpected relocation";
+ return bfd_reloc_dangerous;
+ }
+ }
+ else /* Not an "alternate" relocation.... */
+ {
+ if (opcode == get_const16_opcode ())
+ {
+ newval = relocation & 0xffff;
+ opnd = 1;
+ }
+ else
+ {
+ /* ...normal PC-relative relocation.... */
+
+ /* Determine which operand is being relocated. */
+ opnd = get_relocation_opnd (opcode, howto->type);
+ if (opnd == XTENSA_UNDEFINED)
+ {
+ *error_message = "unexpected relocation";
+ return bfd_reloc_dangerous;
+ }
+
+ if (!howto->pc_relative)
+ {
+ *error_message = "expected PC-relative relocation";
+ return bfd_reloc_dangerous;
+ }
+
+ newval = relocation;
+ }
+ }
+
+ /* Apply the relocation. */
+ if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
+ || xtensa_operand_encode (isa, opcode, opnd, &newval)
+ || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
+ sbuff, newval))
+ {
+ const char *opname = xtensa_opcode_name (isa, opcode);
+ const char *msg;
+
+ msg = "cannot encode";
+ if (is_direct_call_opcode (opcode))
+ {
+ if ((relocation & 0x3) != 0)
+ msg = "misaligned call target";
+ else
+ msg = "call target out of range";
+ }
+ else if (opcode == get_l32r_opcode ())
+ {
+ if ((relocation & 0x3) != 0)
+ msg = "misaligned literal target";
+ else if (is_alt_relocation (howto->type))
+ msg = "literal target out of range (too many literals)";
+ else if (self_address > relocation)
+ msg = "literal target out of range (try using text-section-literals)";
+ else
+ msg = "literal placed after use";
+ }
+
+ *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
+ return bfd_reloc_dangerous;
+ }
+
+ /* Check for calls across 1GB boundaries. */
+ if (is_direct_call_opcode (opcode)
+ && is_windowed_call_opcode (opcode))
+ {
+ if ((self_address >> CALL_SEGMENT_BITS)
+ != (relocation >> CALL_SEGMENT_BITS))
+ {
+ *error_message =
+ "windowed call crosses 1GB boundary; return may fail";
+ return bfd_reloc_dangerous;
+ }
+ }
+
+ /* Write the modified instruction back out of the buffer. */
+ xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
+ xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
+ input_size - address);
+ return bfd_reloc_ok;
+}
+
+
+static char *
+vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
+{
+ /* To reduce the size of the memory leak,
+ we only use a single message buffer. */
+ static bfd_size_type alloc_size = 0;
+ static char *message = NULL;
+ bfd_size_type orig_len, len = 0;
+ bfd_boolean is_append;
+ va_list ap;
+
+ va_start (ap, arglen);
+
+ is_append = (origmsg == message);
+
+ orig_len = strlen (origmsg);
+ len = orig_len + strlen (fmt) + arglen + 20;
+ if (len > alloc_size)
+ {
+ message = (char *) bfd_realloc_or_free (message, len);
+ alloc_size = len;
+ }
+ if (message != NULL)
+ {
+ if (!is_append)
+ memcpy (message, origmsg, orig_len);
+ vsprintf (message + orig_len, fmt, ap);
+ }
+ va_end (ap);
+ return message;
+}
+
+
+/* This function is registered as the "special_function" in the
+ Xtensa howto for handling simplify operations.
+ bfd_perform_relocation / bfd_install_relocation use it to
+ perform (install) the specified relocation. Since this replaces the code
+ in bfd_perform_relocation, it is basically an Xtensa-specific,
+ stripped-down version of bfd_perform_relocation. */
+
+static bfd_reloc_status_type
+bfd_elf_xtensa_reloc (bfd *abfd,
+ arelent *reloc_entry,
+ asymbol *symbol,
+ void *data,
+ asection *input_section,
+ bfd *output_bfd,
+ char **error_message)
+{
+ bfd_vma relocation;
+ bfd_reloc_status_type flag;
+ bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
+ bfd_vma output_base = 0;
+ reloc_howto_type *howto = reloc_entry->howto;
+ asection *reloc_target_output_section;
+ bfd_boolean is_weak_undef;
+
+ if (!xtensa_default_isa)
+ xtensa_default_isa = xtensa_isa_init (0, 0);
+
+ /* ELF relocs are against symbols. If we are producing relocatable
+ output, and the reloc is against an external symbol, the resulting
+ reloc will also be against the same symbol. In such a case, we
+ don't want to change anything about the way the reloc is handled,
+ since it will all be done at final link time. This test is similar
+ to what bfd_elf_generic_reloc does except that it lets relocs with
+ howto->partial_inplace go through even if the addend is non-zero.
+ (The real problem is that partial_inplace is set for XTENSA_32
+ relocs to begin with, but that's a long story and there's little we
+ can do about it now....) */
+
+ if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
+ {
+ reloc_entry->address += input_section->output_offset;
+ return bfd_reloc_ok;
+ }
+
+ /* Is the address of the relocation really within the section? */
+ if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
+ return bfd_reloc_outofrange;
+
+ /* Work out which section the relocation is targeted at and the
+ initial relocation command value. */
+
+ /* Get symbol value. (Common symbols are special.) */
+ if (bfd_is_com_section (symbol->section))
+ relocation = 0;
+ else
+ relocation = symbol->value;
+
+ reloc_target_output_section = symbol->section->output_section;
+
+ /* Convert input-section-relative symbol value to absolute. */
+ if ((output_bfd && !howto->partial_inplace)
+ || reloc_target_output_section == NULL)
+ output_base = 0;
+ else
+ output_base = reloc_target_output_section->vma;
+
+ relocation += output_base + symbol->section->output_offset;
+
+ /* Add in supplied addend. */
+ relocation += reloc_entry->addend;
+
+ /* Here the variable relocation holds the final address of the
+ symbol we are relocating against, plus any addend. */
+ if (output_bfd)
+ {
+ if (!howto->partial_inplace)
+ {
+ /* This is a partial relocation, and we want to apply the relocation
+ to the reloc entry rather than the raw data. Everything except
+ relocations against section symbols has already been handled
+ above. */
+
+ BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
+ reloc_entry->addend = relocation;
+ reloc_entry->address += input_section->output_offset;
+ return bfd_reloc_ok;
+ }
+ else
+ {
+ reloc_entry->address += input_section->output_offset;
+ reloc_entry->addend = 0;
+ }
+ }
+
+ is_weak_undef = (bfd_is_und_section (symbol->section)
+ && (symbol->flags & BSF_WEAK) != 0);
+ flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
+ (bfd_byte *) data, (bfd_vma) octets,
+ is_weak_undef, error_message);
+
+ if (flag == bfd_reloc_dangerous)
+ {
+ /* Add the symbol name to the error message. */
+ if (! *error_message)
+ *error_message = "";
+ *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
+ strlen (symbol->name) + 17,
+ symbol->name,
+ (unsigned long) reloc_entry->addend);
+ }
+
+ return flag;
+}
+
+
+/* Set up an entry in the procedure linkage table. */
+
+static bfd_vma
+elf_xtensa_create_plt_entry (struct bfd_link_info *info,
+ bfd *output_bfd,
+ unsigned reloc_index)
+{
+ asection *splt, *sgotplt;
+ bfd_vma plt_base, got_base;
+ bfd_vma code_offset, lit_offset;
+ int chunk;
+
+ chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
+ splt = elf_xtensa_get_plt_section (info, chunk);
+ sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
+ BFD_ASSERT (splt != NULL && sgotplt != NULL);
+
+ plt_base = splt->output_section->vma + splt->output_offset;
+ got_base = sgotplt->output_section->vma + sgotplt->output_offset;
+
+ lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
+ code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
+
+ /* Fill in the literal entry. This is the offset of the dynamic
+ relocation entry. */
+ bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
+ sgotplt->contents + lit_offset);
+
+ /* Fill in the entry in the procedure linkage table. */
+ memcpy (splt->contents + code_offset,
+ (bfd_big_endian (output_bfd)
+ ? elf_xtensa_be_plt_entry
+ : elf_xtensa_le_plt_entry),
+ PLT_ENTRY_SIZE);
+ bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
+ plt_base + code_offset + 3),
+ splt->contents + code_offset + 4);
+ bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
+ plt_base + code_offset + 6),
+ splt->contents + code_offset + 7);
+ bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
+ plt_base + code_offset + 9),
+ splt->contents + code_offset + 10);
+
+ return plt_base + code_offset;
+}
+
+
+static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
+
+static bfd_boolean
+replace_tls_insn (Elf_Internal_Rela *rel,
+ bfd *abfd,
+ asection *input_section,
+ bfd_byte *contents,
+ bfd_boolean is_ld_model,
+ char **error_message)
+{
+ static xtensa_insnbuf ibuff = NULL;
+ static xtensa_insnbuf sbuff = NULL;
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format fmt;
+ xtensa_opcode old_op, new_op;
+ bfd_size_type input_size;
+ int r_type;
+ unsigned dest_reg, src_reg;
+
+ if (ibuff == NULL)
+ {
+ ibuff = xtensa_insnbuf_alloc (isa);
+ sbuff = xtensa_insnbuf_alloc (isa);
+ }
+
+ input_size = bfd_get_section_limit (abfd, input_section);
+
+ /* Read the instruction into a buffer and decode the opcode. */
+ xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
+ input_size - rel->r_offset);
+ fmt = xtensa_format_decode (isa, ibuff);
+ if (fmt == XTENSA_UNDEFINED)
+ {
+ *error_message = "cannot decode instruction format";
+ return FALSE;
+ }
+
+ BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
+ xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
+
+ old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
+ if (old_op == XTENSA_UNDEFINED)
+ {
+ *error_message = "cannot decode instruction opcode";
+ return FALSE;
+ }
+
+ r_type = ELF32_R_TYPE (rel->r_info);
+ switch (r_type)
+ {
+ case R_XTENSA_TLS_FUNC:
+ case R_XTENSA_TLS_ARG:
+ if (old_op != get_l32r_opcode ()
+ || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
+ sbuff, &dest_reg) != 0)
+ {
+ *error_message = "cannot extract L32R destination for TLS access";
+ return FALSE;
+ }
+ break;
+
+ case R_XTENSA_TLS_CALL:
+ if (! get_indirect_call_dest_reg (old_op, &dest_reg)
+ || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
+ sbuff, &src_reg) != 0)
+ {
+ *error_message = "cannot extract CALLXn operands for TLS access";
+ return FALSE;
+ }
+ break;
+
+ default:
+ abort ();
+ }
+
+ if (is_ld_model)
+ {
+ switch (r_type)
+ {
+ case R_XTENSA_TLS_FUNC:
+ case R_XTENSA_TLS_ARG:
+ /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
+ versions of Xtensa). */
+ new_op = xtensa_opcode_lookup (isa, "nop");
+ if (new_op == XTENSA_UNDEFINED)
+ {
+ new_op = xtensa_opcode_lookup (isa, "or");
+ if (new_op == XTENSA_UNDEFINED
+ || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
+ || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
+ sbuff, 1) != 0
+ || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
+ sbuff, 1) != 0
+ || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
+ sbuff, 1) != 0)
+ {
+ *error_message = "cannot encode OR for TLS access";
+ return FALSE;
+ }
+ }
+ else
+ {
+ if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
+ {
+ *error_message = "cannot encode NOP for TLS access";
+ return FALSE;
+ }
+ }
+ break;
+
+ case R_XTENSA_TLS_CALL:
+ /* Read THREADPTR into the CALLX's return value register. */
+ new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
+ if (new_op == XTENSA_UNDEFINED
+ || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
+ || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
+ sbuff, dest_reg + 2) != 0)
+ {
+ *error_message = "cannot encode RUR.THREADPTR for TLS access";
+ return FALSE;
+ }
+ break;
+ }
+ }
+ else
+ {
+ switch (r_type)
+ {
+ case R_XTENSA_TLS_FUNC:
+ new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
+ if (new_op == XTENSA_UNDEFINED
+ || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
+ || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
+ sbuff, dest_reg) != 0)
+ {
+ *error_message = "cannot encode RUR.THREADPTR for TLS access";
+ return FALSE;
+ }
+ break;
+
+ case R_XTENSA_TLS_ARG:
+ /* Nothing to do. Keep the original L32R instruction. */
+ return TRUE;
+
+ case R_XTENSA_TLS_CALL:
+ /* Add the CALLX's src register (holding the THREADPTR value)
+ to the first argument register (holding the offset) and put
+ the result in the CALLX's return value register. */
+ new_op = xtensa_opcode_lookup (isa, "add");
+ if (new_op == XTENSA_UNDEFINED
+ || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
+ || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
+ sbuff, dest_reg + 2) != 0
+ || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
+ sbuff, dest_reg + 2) != 0
+ || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
+ sbuff, src_reg) != 0)
+ {
+ *error_message = "cannot encode ADD for TLS access";
+ return FALSE;
+ }
+ break;
+ }
+ }
+
+ xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
+ xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
+ input_size - rel->r_offset);
+
+ return TRUE;
+}
+
+
+#define IS_XTENSA_TLS_RELOC(R_TYPE) \
+ ((R_TYPE) == R_XTENSA_TLSDESC_FN \
+ || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
+ || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
+ || (R_TYPE) == R_XTENSA_TLS_TPOFF \
+ || (R_TYPE) == R_XTENSA_TLS_FUNC \
+ || (R_TYPE) == R_XTENSA_TLS_ARG \
+ || (R_TYPE) == R_XTENSA_TLS_CALL)
+
+/* Relocate an Xtensa ELF section. This is invoked by the linker for
+ both relocatable and final links. */
+
+static bfd_boolean
+elf_xtensa_relocate_section (bfd *output_bfd,
+ struct bfd_link_info *info,
+ bfd *input_bfd,
+ asection *input_section,
+ bfd_byte *contents,
+ Elf_Internal_Rela *relocs,
+ Elf_Internal_Sym *local_syms,
+ asection **local_sections)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ Elf_Internal_Shdr *symtab_hdr;
+ Elf_Internal_Rela *rel;
+ Elf_Internal_Rela *relend;
+ struct elf_link_hash_entry **sym_hashes;
+ property_table_entry *lit_table = 0;
+ int ltblsize = 0;
+ char *local_got_tls_types;
+ char *error_message = NULL;
+ bfd_size_type input_size;
+ int tls_type;
+
+ if (!xtensa_default_isa)
+ xtensa_default_isa = xtensa_isa_init (0, 0);
+
+ BFD_ASSERT (is_xtensa_elf (input_bfd));
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ sym_hashes = elf_sym_hashes (input_bfd);
+ local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
+
+ if (elf_hash_table (info)->dynamic_sections_created)
+ {
+ ltblsize = xtensa_read_table_entries (input_bfd, input_section,
+ &lit_table, XTENSA_LIT_SEC_NAME,
+ TRUE);
+ if (ltblsize < 0)
+ return FALSE;
+ }
+
+ input_size = bfd_get_section_limit (input_bfd, input_section);
+
+ rel = relocs;
+ relend = relocs + input_section->reloc_count;
+ for (; rel < relend; rel++)
+ {
+ int r_type;
+ reloc_howto_type *howto;
+ unsigned long r_symndx;
+ struct elf_link_hash_entry *h;
+ Elf_Internal_Sym *sym;
+ char sym_type;
+ const char *name;
+ asection *sec;
+ bfd_vma relocation;
+ bfd_reloc_status_type r;
+ bfd_boolean is_weak_undef;
+ bfd_boolean unresolved_reloc;
+ bfd_boolean warned;
+ bfd_boolean dynamic_symbol;
+
+ r_type = ELF32_R_TYPE (rel->r_info);
+ if (r_type == (int) R_XTENSA_GNU_VTINHERIT
+ || r_type == (int) R_XTENSA_GNU_VTENTRY)
+ continue;
+
+ if (r_type < 0 || r_type >= (int) R_XTENSA_max)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ howto = &elf_howto_table[r_type];
+
+ r_symndx = ELF32_R_SYM (rel->r_info);
+
+ h = NULL;
+ sym = NULL;
+ sec = NULL;
+ is_weak_undef = FALSE;
+ unresolved_reloc = FALSE;
+ warned = FALSE;
+
+ if (howto->partial_inplace && !info->relocatable)
+ {
+ /* Because R_XTENSA_32 was made partial_inplace to fix some
+ problems with DWARF info in partial links, there may be
+ an addend stored in the contents. Take it out of there
+ and move it back into the addend field of the reloc. */
+ rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
+ bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
+ }
+
+ if (r_symndx < symtab_hdr->sh_info)
+ {
+ sym = local_syms + r_symndx;
+ sym_type = ELF32_ST_TYPE (sym->st_info);
+ sec = local_sections[r_symndx];
+ relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
+ }
+ else
+ {
+ bfd_boolean ignored;
+
+ RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
+ r_symndx, symtab_hdr, sym_hashes,
+ h, sec, relocation,
+ unresolved_reloc, warned, ignored);
+
+ if (relocation == 0
+ && !unresolved_reloc
+ && h->root.type == bfd_link_hash_undefweak)
+ is_weak_undef = TRUE;
+
+ sym_type = h->type;
+ }
+
+ if (sec != NULL && discarded_section (sec))
+ RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
+ rel, 1, relend, howto, 0, contents);
+
+ if (info->relocatable)
+ {
+ bfd_vma dest_addr;
+ asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
+
+ /* This is a relocatable link.
+ 1) If the reloc is against a section symbol, adjust
+ according to the output section.
+ 2) If there is a new target for this relocation,
+ the new target will be in the same output section.
+ We adjust the relocation by the output section
+ difference. */
+
+ if (relaxing_section)
+ {
+ /* Check if this references a section in another input file. */
+ if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
+ contents))
+ return FALSE;
+ }
+
+ dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
+ + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
+
+ if (r_type == R_XTENSA_ASM_SIMPLIFY)
+ {
+ error_message = NULL;
+ /* Convert ASM_SIMPLIFY into the simpler relocation
+ so that they never escape a relaxing link. */
+ r = contract_asm_expansion (contents, input_size, rel,
+ &error_message);
+ if (r != bfd_reloc_ok)
+ {
+ if (!((*info->callbacks->reloc_dangerous)
+ (info, error_message, input_bfd, input_section,
+ rel->r_offset)))
+ return FALSE;
+ }
+ r_type = ELF32_R_TYPE (rel->r_info);
+ }
+
+ /* This is a relocatable link, so we don't have to change
+ anything unless the reloc is against a section symbol,
+ in which case we have to adjust according to where the
+ section symbol winds up in the output section. */
+ if (r_symndx < symtab_hdr->sh_info)
+ {
+ sym = local_syms + r_symndx;
+ if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
+ {
+ sec = local_sections[r_symndx];
+ rel->r_addend += sec->output_offset + sym->st_value;
+ }
+ }
+
+ /* If there is an addend with a partial_inplace howto,
+ then move the addend to the contents. This is a hack
+ to work around problems with DWARF in relocatable links
+ with some previous version of BFD. Now we can't easily get
+ rid of the hack without breaking backward compatibility.... */
+ r = bfd_reloc_ok;
+ howto = &elf_howto_table[r_type];
+ if (howto->partial_inplace && rel->r_addend)
+ {
+ r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
+ rel->r_addend, contents,
+ rel->r_offset, FALSE,
+ &error_message);
+ rel->r_addend = 0;
+ }
+ else
+ {
+ /* Put the correct bits in the target instruction, even
+ though the relocation will still be present in the output
+ file. This makes disassembly clearer, as well as
+ allowing loadable kernel modules to work without needing
+ relocations on anything other than calls and l32r's. */
+
+ /* If it is not in the same section, there is nothing we can do. */
+ if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
+ sym_sec->output_section == input_section->output_section)
+ {
+ r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
+ dest_addr, contents,
+ rel->r_offset, FALSE,
+ &error_message);
+ }
+ }
+ if (r != bfd_reloc_ok)
+ {
+ if (!((*info->callbacks->reloc_dangerous)
+ (info, error_message, input_bfd, input_section,
+ rel->r_offset)))
+ return FALSE;
+ }
+
+ /* Done with work for relocatable link; continue with next reloc. */
+ continue;
+ }
+
+ /* This is a final link. */
+
+ if (relaxing_section)
+ {
+ /* Check if this references a section in another input file. */
+ do_fix_for_final_link (rel, input_bfd, input_section, contents,
+ &relocation);
+ }
+
+ /* Sanity check the address. */
+ if (rel->r_offset >= input_size
+ && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
+ input_bfd, input_section, rel->r_offset, input_size);
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+
+ if (h != NULL)
+ name = h->root.root.string;
+ else
+ {
+ name = (bfd_elf_string_from_elf_section
+ (input_bfd, symtab_hdr->sh_link, sym->st_name));
+ if (name == NULL || *name == '\0')
+ name = bfd_section_name (input_bfd, sec);
+ }
+
+ if (r_symndx != STN_UNDEF
+ && r_type != R_XTENSA_NONE
+ && (h == NULL
+ || h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
+ {
+ (*_bfd_error_handler)
+ ((sym_type == STT_TLS
+ ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
+ : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
+ input_bfd,
+ input_section,
+ (long) rel->r_offset,
+ howto->name,
+ name);
+ }
+
+ dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
+
+ tls_type = GOT_UNKNOWN;
+ if (h)
+ tls_type = elf_xtensa_hash_entry (h)->tls_type;
+ else if (local_got_tls_types)
+ tls_type = local_got_tls_types [r_symndx];
+
+ switch (r_type)
+ {
+ case R_XTENSA_32:
+ case R_XTENSA_PLT:
+ if (elf_hash_table (info)->dynamic_sections_created
+ && (input_section->flags & SEC_ALLOC) != 0
+ && (dynamic_symbol || info->shared))
+ {
+ Elf_Internal_Rela outrel;
+ bfd_byte *loc;
+ asection *srel;
+
+ if (dynamic_symbol && r_type == R_XTENSA_PLT)
+ srel = htab->srelplt;
+ else
+ srel = htab->srelgot;
+
+ BFD_ASSERT (srel != NULL);
+
+ outrel.r_offset =
+ _bfd_elf_section_offset (output_bfd, info,
+ input_section, rel->r_offset);
+
+ if ((outrel.r_offset | 1) == (bfd_vma) -1)
+ memset (&outrel, 0, sizeof outrel);
+ else
+ {
+ outrel.r_offset += (input_section->output_section->vma
+ + input_section->output_offset);
+
+ /* Complain if the relocation is in a read-only section
+ and not in a literal pool. */
+ if ((input_section->flags & SEC_READONLY) != 0
+ && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
+ outrel.r_offset))
+ {
+ error_message =
+ _("dynamic relocation in read-only section");
+ if (!((*info->callbacks->reloc_dangerous)
+ (info, error_message, input_bfd, input_section,
+ rel->r_offset)))
+ return FALSE;
+ }
+
+ if (dynamic_symbol)
+ {
+ outrel.r_addend = rel->r_addend;
+ rel->r_addend = 0;
+
+ if (r_type == R_XTENSA_32)
+ {
+ outrel.r_info =
+ ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
+ relocation = 0;
+ }
+ else /* r_type == R_XTENSA_PLT */
+ {
+ outrel.r_info =
+ ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
+
+ /* Create the PLT entry and set the initial
+ contents of the literal entry to the address of
+ the PLT entry. */
+ relocation =
+ elf_xtensa_create_plt_entry (info, output_bfd,
+ srel->reloc_count);
+ }
+ unresolved_reloc = FALSE;
+ }
+ else
+ {
+ /* Generate a RELATIVE relocation. */
+ outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
+ outrel.r_addend = 0;
+ }
+ }
+
+ loc = (srel->contents
+ + srel->reloc_count++ * sizeof (Elf32_External_Rela));
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
+ BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
+ <= srel->size);
+ }
+ else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
+ {
+ /* This should only happen for non-PIC code, which is not
+ supposed to be used on systems with dynamic linking.
+ Just ignore these relocations. */
+ continue;
+ }
+ break;
+
+ case R_XTENSA_TLS_TPOFF:
+ /* Switch to LE model for local symbols in an executable. */
+ if (! info->shared && ! dynamic_symbol)
+ {
+ relocation = tpoff (info, relocation);
+ break;
+ }
+ /* fall through */
+
+ case R_XTENSA_TLSDESC_FN:
+ case R_XTENSA_TLSDESC_ARG:
+ {
+ if (r_type == R_XTENSA_TLSDESC_FN)
+ {
+ if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
+ r_type = R_XTENSA_NONE;
+ }
+ else if (r_type == R_XTENSA_TLSDESC_ARG)
+ {
+ if (info->shared)
+ {
+ if ((tls_type & GOT_TLS_IE) != 0)
+ r_type = R_XTENSA_TLS_TPOFF;
+ }
+ else
+ {
+ r_type = R_XTENSA_TLS_TPOFF;
+ if (! dynamic_symbol)
+ {
+ relocation = tpoff (info, relocation);
+ break;
+ }
+ }
+ }
+
+ if (r_type == R_XTENSA_NONE)
+ /* Nothing to do here; skip to the next reloc. */
+ continue;
+
+ if (! elf_hash_table (info)->dynamic_sections_created)
+ {
+ error_message =
+ _("TLS relocation invalid without dynamic sections");
+ if (!((*info->callbacks->reloc_dangerous)
+ (info, error_message, input_bfd, input_section,
+ rel->r_offset)))
+ return FALSE;
+ }
+ else
+ {
+ Elf_Internal_Rela outrel;
+ bfd_byte *loc;
+ asection *srel = htab->srelgot;
+ int indx;
+
+ outrel.r_offset = (input_section->output_section->vma
+ + input_section->output_offset
+ + rel->r_offset);
+
+ /* Complain if the relocation is in a read-only section
+ and not in a literal pool. */
+ if ((input_section->flags & SEC_READONLY) != 0
+ && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
+ outrel.r_offset))
+ {
+ error_message =
+ _("dynamic relocation in read-only section");
+ if (!((*info->callbacks->reloc_dangerous)
+ (info, error_message, input_bfd, input_section,
+ rel->r_offset)))
+ return FALSE;
+ }
+
+ indx = h && h->dynindx != -1 ? h->dynindx : 0;
+ if (indx == 0)
+ outrel.r_addend = relocation - dtpoff_base (info);
+ else
+ outrel.r_addend = 0;
+ rel->r_addend = 0;
+
+ outrel.r_info = ELF32_R_INFO (indx, r_type);
+ relocation = 0;
+ unresolved_reloc = FALSE;
+
+ BFD_ASSERT (srel);
+ loc = (srel->contents
+ + srel->reloc_count++ * sizeof (Elf32_External_Rela));
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
+ BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
+ <= srel->size);
+ }
+ }
+ break;
+
+ case R_XTENSA_TLS_DTPOFF:
+ if (! info->shared)
+ /* Switch from LD model to LE model. */
+ relocation = tpoff (info, relocation);
+ else
+ relocation -= dtpoff_base (info);
+ break;
+
+ case R_XTENSA_TLS_FUNC:
+ case R_XTENSA_TLS_ARG:
+ case R_XTENSA_TLS_CALL:
+ /* Check if optimizing to IE or LE model. */
+ if ((tls_type & GOT_TLS_IE) != 0)
+ {
+ bfd_boolean is_ld_model =
+ (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
+ if (! replace_tls_insn (rel, input_bfd, input_section, contents,
+ is_ld_model, &error_message))
+ {
+ if (!((*info->callbacks->reloc_dangerous)
+ (info, error_message, input_bfd, input_section,
+ rel->r_offset)))
+ return FALSE;
+ }
+
+ if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
+ {
+ /* Skip subsequent relocations on the same instruction. */
+ while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
+ rel++;
+ }
+ }
+ continue;
+
+ default:
+ if (elf_hash_table (info)->dynamic_sections_created
+ && dynamic_symbol && (is_operand_relocation (r_type)
+ || r_type == R_XTENSA_32_PCREL))
+ {
+ error_message =
+ vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
+ strlen (name) + 2, name);
+ if (!((*info->callbacks->reloc_dangerous)
+ (info, error_message, input_bfd, input_section,
+ rel->r_offset)))
+ return FALSE;
+ continue;
+ }
+ break;
+ }
+
+ /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
+ because such sections are not SEC_ALLOC and thus ld.so will
+ not process them. */
+ if (unresolved_reloc
+ && !((input_section->flags & SEC_DEBUGGING) != 0
+ && h->def_dynamic)
+ && _bfd_elf_section_offset (output_bfd, info, input_section,
+ rel->r_offset) != (bfd_vma) -1)
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
+ input_bfd,
+ input_section,
+ (long) rel->r_offset,
+ howto->name,
+ name);
+ return FALSE;
+ }
+
+ /* TLS optimizations may have changed r_type; update "howto". */
+ howto = &elf_howto_table[r_type];
+
+ /* There's no point in calling bfd_perform_relocation here.
+ Just go directly to our "special function". */
+ r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
+ relocation + rel->r_addend,
+ contents, rel->r_offset, is_weak_undef,
+ &error_message);
+
+ if (r != bfd_reloc_ok && !warned)
+ {
+ BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
+ BFD_ASSERT (error_message != NULL);
+
+ if (rel->r_addend == 0)
+ error_message = vsprint_msg (error_message, ": %s",
+ strlen (name) + 2, name);
+ else
+ error_message = vsprint_msg (error_message, ": (%s+0x%x)",
+ strlen (name) + 22,
+ name, (int) rel->r_addend);
+
+ if (!((*info->callbacks->reloc_dangerous)
+ (info, error_message, input_bfd, input_section,
+ rel->r_offset)))
+ return FALSE;
+ }
+ }
+
+ if (lit_table)
+ free (lit_table);
+
+ input_section->reloc_done = TRUE;
+
+ return TRUE;
+}
+
+
+/* Finish up dynamic symbol handling. There's not much to do here since
+ the PLT and GOT entries are all set up by relocate_section. */
+
+static bfd_boolean
+elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
+ struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ struct elf_link_hash_entry *h,
+ Elf_Internal_Sym *sym)
+{
+ if (h->needs_plt && !h->def_regular)
+ {
+ /* Mark the symbol as undefined, rather than as defined in
+ the .plt section. Leave the value alone. */
+ sym->st_shndx = SHN_UNDEF;
+ /* If the symbol is weak, we do need to clear the value.
+ Otherwise, the PLT entry would provide a definition for
+ the symbol even if the symbol wasn't defined anywhere,
+ and so the symbol would never be NULL. */
+ if (!h->ref_regular_nonweak)
+ sym->st_value = 0;
+ }
+
+ /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
+ if (h == elf_hash_table (info)->hdynamic
+ || h == elf_hash_table (info)->hgot)
+ sym->st_shndx = SHN_ABS;
+
+ return TRUE;
+}
+
+
+/* Combine adjacent literal table entries in the output. Adjacent
+ entries within each input section may have been removed during
+ relaxation, but we repeat the process here, even though it's too late
+ to shrink the output section, because it's important to minimize the
+ number of literal table entries to reduce the start-up work for the
+ runtime linker. Returns the number of remaining table entries or -1
+ on error. */
+
+static int
+elf_xtensa_combine_prop_entries (bfd *output_bfd,
+ asection *sxtlit,
+ asection *sgotloc)
+{
+ bfd_byte *contents;
+ property_table_entry *table;
+ bfd_size_type section_size, sgotloc_size;
+ bfd_vma offset;
+ int n, m, num;
+
+ section_size = sxtlit->size;
+ BFD_ASSERT (section_size % 8 == 0);
+ num = section_size / 8;
+
+ sgotloc_size = sgotloc->size;
+ if (sgotloc_size != section_size)
+ {
+ (*_bfd_error_handler)
+ (_("internal inconsistency in size of .got.loc section"));
+ return -1;
+ }
+
+ table = bfd_malloc (num * sizeof (property_table_entry));
+ if (table == 0)
+ return -1;
+
+ /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
+ propagates to the output section, where it doesn't really apply and
+ where it breaks the following call to bfd_malloc_and_get_section. */
+ sxtlit->flags &= ~SEC_IN_MEMORY;
+
+ if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
+ {
+ if (contents != 0)
+ free (contents);
+ free (table);
+ return -1;
+ }
+
+ /* There should never be any relocations left at this point, so this
+ is quite a bit easier than what is done during relaxation. */
+
+ /* Copy the raw contents into a property table array and sort it. */
+ offset = 0;
+ for (n = 0; n < num; n++)
+ {
+ table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
+ table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
+ offset += 8;
+ }
+ qsort (table, num, sizeof (property_table_entry), property_table_compare);
+
+ for (n = 0; n < num; n++)
+ {
+ bfd_boolean remove_entry = FALSE;
+
+ if (table[n].size == 0)
+ remove_entry = TRUE;
+ else if (n > 0
+ && (table[n-1].address + table[n-1].size == table[n].address))
+ {
+ table[n-1].size += table[n].size;
+ remove_entry = TRUE;
+ }
+
+ if (remove_entry)
+ {
+ for (m = n; m < num - 1; m++)
+ {
+ table[m].address = table[m+1].address;
+ table[m].size = table[m+1].size;
+ }
+
+ n--;
+ num--;
+ }
+ }
+
+ /* Copy the data back to the raw contents. */
+ offset = 0;
+ for (n = 0; n < num; n++)
+ {
+ bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
+ bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
+ offset += 8;
+ }
+
+ /* Clear the removed bytes. */
+ if ((bfd_size_type) (num * 8) < section_size)
+ memset (&contents[num * 8], 0, section_size - num * 8);
+
+ if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
+ section_size))
+ return -1;
+
+ /* Copy the contents to ".got.loc". */
+ memcpy (sgotloc->contents, contents, section_size);
+
+ free (contents);
+ free (table);
+ return num;
+}
+
+
+/* Finish up the dynamic sections. */
+
+static bfd_boolean
+elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
+ struct bfd_link_info *info)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ bfd *dynobj;
+ asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
+ Elf32_External_Dyn *dyncon, *dynconend;
+ int num_xtlit_entries = 0;
+
+ if (! elf_hash_table (info)->dynamic_sections_created)
+ return TRUE;
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ dynobj = elf_hash_table (info)->dynobj;
+ sdyn = bfd_get_linker_section (dynobj, ".dynamic");
+ BFD_ASSERT (sdyn != NULL);
+
+ /* Set the first entry in the global offset table to the address of
+ the dynamic section. */
+ sgot = htab->sgot;
+ if (sgot)
+ {
+ BFD_ASSERT (sgot->size == 4);
+ if (sdyn == NULL)
+ bfd_put_32 (output_bfd, 0, sgot->contents);
+ else
+ bfd_put_32 (output_bfd,
+ sdyn->output_section->vma + sdyn->output_offset,
+ sgot->contents);
+ }
+
+ srelplt = htab->srelplt;
+ if (srelplt && srelplt->size != 0)
+ {
+ asection *sgotplt, *srelgot, *spltlittbl;
+ int chunk, plt_chunks, plt_entries;
+ Elf_Internal_Rela irela;
+ bfd_byte *loc;
+ unsigned rtld_reloc;
+
+ srelgot = htab->srelgot;
+ spltlittbl = htab->spltlittbl;
+ BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
+
+ /* Find the first XTENSA_RTLD relocation. Presumably the rest
+ of them follow immediately after.... */
+ for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
+ {
+ loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
+ if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
+ break;
+ }
+ BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
+
+ plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
+ plt_chunks =
+ (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
+
+ for (chunk = 0; chunk < plt_chunks; chunk++)
+ {
+ int chunk_entries = 0;
+
+ sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
+ BFD_ASSERT (sgotplt != NULL);
+
+ /* Emit special RTLD relocations for the first two entries in
+ each chunk of the .got.plt section. */
+
+ loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
+ BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
+ irela.r_offset = (sgotplt->output_section->vma
+ + sgotplt->output_offset);
+ irela.r_addend = 1; /* tell rtld to set value to resolver function */
+ bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
+ rtld_reloc += 1;
+ BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
+
+ /* Next literal immediately follows the first. */
+ loc += sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
+ BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
+ irela.r_offset = (sgotplt->output_section->vma
+ + sgotplt->output_offset + 4);
+ /* Tell rtld to set value to object's link map. */
+ irela.r_addend = 2;
+ bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
+ rtld_reloc += 1;
+ BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
+
+ /* Fill in the literal table. */
+ if (chunk < plt_chunks - 1)
+ chunk_entries = PLT_ENTRIES_PER_CHUNK;
+ else
+ chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
+
+ BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
+ bfd_put_32 (output_bfd,
+ sgotplt->output_section->vma + sgotplt->output_offset,
+ spltlittbl->contents + (chunk * 8) + 0);
+ bfd_put_32 (output_bfd,
+ 8 + (chunk_entries * 4),
+ spltlittbl->contents + (chunk * 8) + 4);
+ }
+
+ /* All the dynamic relocations have been emitted at this point.
+ Make sure the relocation sections are the correct size. */
+ if (srelgot->size != (sizeof (Elf32_External_Rela)
+ * srelgot->reloc_count)
+ || srelplt->size != (sizeof (Elf32_External_Rela)
+ * srelplt->reloc_count))
+ abort ();
+
+ /* The .xt.lit.plt section has just been modified. This must
+ happen before the code below which combines adjacent literal
+ table entries, and the .xt.lit.plt contents have to be forced to
+ the output here. */
+ if (! bfd_set_section_contents (output_bfd,
+ spltlittbl->output_section,
+ spltlittbl->contents,
+ spltlittbl->output_offset,
+ spltlittbl->size))
+ return FALSE;
+ /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
+ spltlittbl->flags &= ~SEC_HAS_CONTENTS;
+ }
+
+ /* Combine adjacent literal table entries. */
+ BFD_ASSERT (! info->relocatable);
+ sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
+ sgotloc = htab->sgotloc;
+ BFD_ASSERT (sgotloc);
+ if (sxtlit)
+ {
+ num_xtlit_entries =
+ elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
+ if (num_xtlit_entries < 0)
+ return FALSE;
+ }
+
+ dyncon = (Elf32_External_Dyn *) sdyn->contents;
+ dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
+ for (; dyncon < dynconend; dyncon++)
+ {
+ Elf_Internal_Dyn dyn;
+
+ bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
+
+ switch (dyn.d_tag)
+ {
+ default:
+ break;
+
+ case DT_XTENSA_GOT_LOC_SZ:
+ dyn.d_un.d_val = num_xtlit_entries;
+ break;
+
+ case DT_XTENSA_GOT_LOC_OFF:
+ dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
+ break;
+
+ case DT_PLTGOT:
+ dyn.d_un.d_ptr = htab->sgot->output_section->vma;
+ break;
+
+ case DT_JMPREL:
+ dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
+ break;
+
+ case DT_PLTRELSZ:
+ dyn.d_un.d_val = htab->srelplt->output_section->size;
+ break;
+
+ case DT_RELASZ:
+ /* Adjust RELASZ to not include JMPREL. This matches what
+ glibc expects and what is done for several other ELF
+ targets (e.g., i386, alpha), but the "correct" behavior
+ seems to be unresolved. Since the linker script arranges
+ for .rela.plt to follow all other relocation sections, we
+ don't have to worry about changing the DT_RELA entry. */
+ if (htab->srelplt)
+ dyn.d_un.d_val -= htab->srelplt->output_section->size;
+ break;
+ }
+
+ bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
+ }
+
+ return TRUE;
+}
+
+
+/* Functions for dealing with the e_flags field. */
+
+/* Merge backend specific data from an object file to the output
+ object file when linking. */
+
+static bfd_boolean
+elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
+{
+ unsigned out_mach, in_mach;
+ flagword out_flag, in_flag;
+
+ /* Check if we have the same endianness. */
+ if (!_bfd_generic_verify_endian_match (ibfd, obfd))
+ return FALSE;
+
+ /* Don't even pretend to support mixed-format linking. */
+ if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
+ || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
+ return FALSE;
+
+ out_flag = elf_elfheader (obfd)->e_flags;
+ in_flag = elf_elfheader (ibfd)->e_flags;
+
+ out_mach = out_flag & EF_XTENSA_MACH;
+ in_mach = in_flag & EF_XTENSA_MACH;
+ if (out_mach != in_mach)
+ {
+ (*_bfd_error_handler)
+ (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
+ ibfd, out_mach, in_mach);
+ bfd_set_error (bfd_error_wrong_format);
+ return FALSE;
+ }
+
+ if (! elf_flags_init (obfd))
+ {
+ elf_flags_init (obfd) = TRUE;
+ elf_elfheader (obfd)->e_flags = in_flag;
+
+ if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
+ && bfd_get_arch_info (obfd)->the_default)
+ return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
+ bfd_get_mach (ibfd));
+
+ return TRUE;
+ }
+
+ if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
+ elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
+
+ if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
+ elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
+
+ return TRUE;
+}
+
+
+static bfd_boolean
+elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
+{
+ BFD_ASSERT (!elf_flags_init (abfd)
+ || elf_elfheader (abfd)->e_flags == flags);
+
+ elf_elfheader (abfd)->e_flags |= flags;
+ elf_flags_init (abfd) = TRUE;
+
+ return TRUE;
+}
+
+
+static bfd_boolean
+elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
+{
+ FILE *f = (FILE *) farg;
+ flagword e_flags = elf_elfheader (abfd)->e_flags;
+
+ fprintf (f, "\nXtensa header:\n");
+ if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
+ fprintf (f, "\nMachine = Base\n");
+ else
+ fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
+
+ fprintf (f, "Insn tables = %s\n",
+ (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
+
+ fprintf (f, "Literal tables = %s\n",
+ (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
+
+ return _bfd_elf_print_private_bfd_data (abfd, farg);
+}
+
+
+/* Set the right machine number for an Xtensa ELF file. */
+
+static bfd_boolean
+elf_xtensa_object_p (bfd *abfd)
+{
+ int mach;
+ unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
+
+ switch (arch)
+ {
+ case E_XTENSA_MACH:
+ mach = bfd_mach_xtensa;
+ break;
+ default:
+ return FALSE;
+ }
+
+ (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
+ return TRUE;
+}
+
+
+/* The final processing done just before writing out an Xtensa ELF object
+ file. This gets the Xtensa architecture right based on the machine
+ number. */
+
+static void
+elf_xtensa_final_write_processing (bfd *abfd,
+ bfd_boolean linker ATTRIBUTE_UNUSED)
+{
+ int mach;
+ unsigned long val;
+
+ switch (mach = bfd_get_mach (abfd))
+ {
+ case bfd_mach_xtensa:
+ val = E_XTENSA_MACH;
+ break;
+ default:
+ return;
+ }
+
+ elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
+ elf_elfheader (abfd)->e_flags |= val;
+}
+
+
+static enum elf_reloc_type_class
+elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ const asection *rel_sec ATTRIBUTE_UNUSED,
+ const Elf_Internal_Rela *rela)
+{
+ switch ((int) ELF32_R_TYPE (rela->r_info))
+ {
+ case R_XTENSA_RELATIVE:
+ return reloc_class_relative;
+ case R_XTENSA_JMP_SLOT:
+ return reloc_class_plt;
+ default:
+ return reloc_class_normal;
+ }
+}
+
+
+static bfd_boolean
+elf_xtensa_discard_info_for_section (bfd *abfd,
+ struct elf_reloc_cookie *cookie,
+ struct bfd_link_info *info,
+ asection *sec)
+{
+ bfd_byte *contents;
+ bfd_vma offset, actual_offset;
+ bfd_size_type removed_bytes = 0;
+ bfd_size_type entry_size;
+
+ if (sec->output_section
+ && bfd_is_abs_section (sec->output_section))
+ return FALSE;
+
+ if (xtensa_is_proptable_section (sec))
+ entry_size = 12;
+ else
+ entry_size = 8;
+
+ if (sec->size == 0 || sec->size % entry_size != 0)
+ return FALSE;
+
+ contents = retrieve_contents (abfd, sec, info->keep_memory);
+ if (!contents)
+ return FALSE;
+
+ cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
+ if (!cookie->rels)
+ {
+ release_contents (sec, contents);
+ return FALSE;
+ }
+
+ /* Sort the relocations. They should already be in order when
+ relaxation is enabled, but it might not be. */
+ qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
+ internal_reloc_compare);
+
+ cookie->rel = cookie->rels;
+ cookie->relend = cookie->rels + sec->reloc_count;
+
+ for (offset = 0; offset < sec->size; offset += entry_size)
+ {
+ actual_offset = offset - removed_bytes;
+
+ /* The ...symbol_deleted_p function will skip over relocs but it
+ won't adjust their offsets, so do that here. */
+ while (cookie->rel < cookie->relend
+ && cookie->rel->r_offset < offset)
+ {
+ cookie->rel->r_offset -= removed_bytes;
+ cookie->rel++;
+ }
+
+ while (cookie->rel < cookie->relend
+ && cookie->rel->r_offset == offset)
+ {
+ if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
+ {
+ /* Remove the table entry. (If the reloc type is NONE, then
+ the entry has already been merged with another and deleted
+ during relaxation.) */
+ if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
+ {
+ /* Shift the contents up. */
+ if (offset + entry_size < sec->size)
+ memmove (&contents[actual_offset],
+ &contents[actual_offset + entry_size],
+ sec->size - offset - entry_size);
+ removed_bytes += entry_size;
+ }
+
+ /* Remove this relocation. */
+ cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
+ }
+
+ /* Adjust the relocation offset for previous removals. This
+ should not be done before calling ...symbol_deleted_p
+ because it might mess up the offset comparisons there.
+ Make sure the offset doesn't underflow in the case where
+ the first entry is removed. */
+ if (cookie->rel->r_offset >= removed_bytes)
+ cookie->rel->r_offset -= removed_bytes;
+ else
+ cookie->rel->r_offset = 0;
+
+ cookie->rel++;
+ }
+ }
+
+ if (removed_bytes != 0)
+ {
+ /* Adjust any remaining relocs (shouldn't be any). */
+ for (; cookie->rel < cookie->relend; cookie->rel++)
+ {
+ if (cookie->rel->r_offset >= removed_bytes)
+ cookie->rel->r_offset -= removed_bytes;
+ else
+ cookie->rel->r_offset = 0;
+ }
+
+ /* Clear the removed bytes. */
+ memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
+
+ pin_contents (sec, contents);
+ pin_internal_relocs (sec, cookie->rels);
+
+ /* Shrink size. */
+ if (sec->rawsize == 0)
+ sec->rawsize = sec->size;
+ sec->size -= removed_bytes;
+
+ if (xtensa_is_littable_section (sec))
+ {
+ asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
+ if (sgotloc)
+ sgotloc->size -= removed_bytes;
+ }
+ }
+ else
+ {
+ release_contents (sec, contents);
+ release_internal_relocs (sec, cookie->rels);
+ }
+
+ return (removed_bytes != 0);
+}
+
+
+static bfd_boolean
+elf_xtensa_discard_info (bfd *abfd,
+ struct elf_reloc_cookie *cookie,
+ struct bfd_link_info *info)
+{
+ asection *sec;
+ bfd_boolean changed = FALSE;
+
+ for (sec = abfd->sections; sec != NULL; sec = sec->next)
+ {
+ if (xtensa_is_property_section (sec))
+ {
+ if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
+ changed = TRUE;
+ }
+ }
+
+ return changed;
+}
+
+
+static bfd_boolean
+elf_xtensa_ignore_discarded_relocs (asection *sec)
+{
+ return xtensa_is_property_section (sec);
+}
+
+
+static unsigned int
+elf_xtensa_action_discarded (asection *sec)
+{
+ if (strcmp (".xt_except_table", sec->name) == 0)
+ return 0;
+
+ if (strcmp (".xt_except_desc", sec->name) == 0)
+ return 0;
+
+ return _bfd_elf_default_action_discarded (sec);
+}
+
+
+/* Support for core dump NOTE sections. */
+
+static bfd_boolean
+elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
+{
+ int offset;
+ unsigned int size;
+
+ /* The size for Xtensa is variable, so don't try to recognize the format
+ based on the size. Just assume this is GNU/Linux. */
+
+ /* pr_cursig */
+ elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
+
+ /* pr_pid */
+ elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
+
+ /* pr_reg */
+ offset = 72;
+ size = note->descsz - offset - 4;
+
+ /* Make a ".reg/999" section. */
+ return _bfd_elfcore_make_pseudosection (abfd, ".reg",
+ size, note->descpos + offset);
+}
+
+
+static bfd_boolean
+elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
+{
+ switch (note->descsz)
+ {
+ default:
+ return FALSE;
+
+ case 128: /* GNU/Linux elf_prpsinfo */
+ elf_tdata (abfd)->core->program
+ = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
+ elf_tdata (abfd)->core->command
+ = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
+ }
+
+ /* Note that for some reason, a spurious space is tacked
+ onto the end of the args in some (at least one anyway)
+ implementations, so strip it off if it exists. */
+
+ {
+ char *command = elf_tdata (abfd)->core->command;
+ int n = strlen (command);
+
+ if (0 < n && command[n - 1] == ' ')
+ command[n - 1] = '\0';
+ }
+
+ return TRUE;
+}
+
+
+/* Generic Xtensa configurability stuff. */
+
+static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
+static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
+static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
+static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
+static xtensa_opcode call0_op = XTENSA_UNDEFINED;
+static xtensa_opcode call4_op = XTENSA_UNDEFINED;
+static xtensa_opcode call8_op = XTENSA_UNDEFINED;
+static xtensa_opcode call12_op = XTENSA_UNDEFINED;
+
+static void
+init_call_opcodes (void)
+{
+ if (callx0_op == XTENSA_UNDEFINED)
+ {
+ callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
+ callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
+ callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
+ callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
+ call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
+ call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
+ call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
+ call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
+ }
+}
+
+
+static bfd_boolean
+is_indirect_call_opcode (xtensa_opcode opcode)
+{
+ init_call_opcodes ();
+ return (opcode == callx0_op
+ || opcode == callx4_op
+ || opcode == callx8_op
+ || opcode == callx12_op);
+}
+
+
+static bfd_boolean
+is_direct_call_opcode (xtensa_opcode opcode)
+{
+ init_call_opcodes ();
+ return (opcode == call0_op
+ || opcode == call4_op
+ || opcode == call8_op
+ || opcode == call12_op);
+}
+
+
+static bfd_boolean
+is_windowed_call_opcode (xtensa_opcode opcode)
+{
+ init_call_opcodes ();
+ return (opcode == call4_op
+ || opcode == call8_op
+ || opcode == call12_op
+ || opcode == callx4_op
+ || opcode == callx8_op
+ || opcode == callx12_op);
+}
+
+
+static bfd_boolean
+get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
+{
+ unsigned dst = (unsigned) -1;
+
+ init_call_opcodes ();
+ if (opcode == callx0_op)
+ dst = 0;
+ else if (opcode == callx4_op)
+ dst = 4;
+ else if (opcode == callx8_op)
+ dst = 8;
+ else if (opcode == callx12_op)
+ dst = 12;
+
+ if (dst == (unsigned) -1)
+ return FALSE;
+
+ *pdst = dst;
+ return TRUE;
+}
+
+
+static xtensa_opcode
+get_const16_opcode (void)
+{
+ static bfd_boolean done_lookup = FALSE;
+ static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
+ if (!done_lookup)
+ {
+ const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
+ done_lookup = TRUE;
+ }
+ return const16_opcode;
+}
+
+
+static xtensa_opcode
+get_l32r_opcode (void)
+{
+ static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
+ static bfd_boolean done_lookup = FALSE;
+
+ if (!done_lookup)
+ {
+ l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
+ done_lookup = TRUE;
+ }
+ return l32r_opcode;
+}
+
+
+static bfd_vma
+l32r_offset (bfd_vma addr, bfd_vma pc)
+{
+ bfd_vma offset;
+
+ offset = addr - ((pc+3) & -4);
+ BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
+ offset = (signed int) offset >> 2;
+ BFD_ASSERT ((signed int) offset >> 16 == -1);
+ return offset;
+}
+
+
+static int
+get_relocation_opnd (xtensa_opcode opcode, int r_type)
+{
+ xtensa_isa isa = xtensa_default_isa;
+ int last_immed, last_opnd, opi;
+
+ if (opcode == XTENSA_UNDEFINED)
+ return XTENSA_UNDEFINED;
+
+ /* Find the last visible PC-relative immediate operand for the opcode.
+ If there are no PC-relative immediates, then choose the last visible
+ immediate; otherwise, fail and return XTENSA_UNDEFINED. */
+ last_immed = XTENSA_UNDEFINED;
+ last_opnd = xtensa_opcode_num_operands (isa, opcode);
+ for (opi = last_opnd - 1; opi >= 0; opi--)
+ {
+ if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
+ continue;
+ if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
+ {
+ last_immed = opi;
+ break;
+ }
+ if (last_immed == XTENSA_UNDEFINED
+ && xtensa_operand_is_register (isa, opcode, opi) == 0)
+ last_immed = opi;
+ }
+ if (last_immed < 0)
+ return XTENSA_UNDEFINED;
+
+ /* If the operand number was specified in an old-style relocation,
+ check for consistency with the operand computed above. */
+ if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
+ {
+ int reloc_opnd = r_type - R_XTENSA_OP0;
+ if (reloc_opnd != last_immed)
+ return XTENSA_UNDEFINED;
+ }
+
+ return last_immed;
+}
+
+
+int
+get_relocation_slot (int r_type)
+{
+ switch (r_type)
+ {
+ case R_XTENSA_OP0:
+ case R_XTENSA_OP1:
+ case R_XTENSA_OP2:
+ return 0;
+
+ default:
+ if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
+ return r_type - R_XTENSA_SLOT0_OP;
+ if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
+ return r_type - R_XTENSA_SLOT0_ALT;
+ break;
+ }
+
+ return XTENSA_UNDEFINED;
+}
+
+
+/* Get the opcode for a relocation. */
+
+static xtensa_opcode
+get_relocation_opcode (bfd *abfd,
+ asection *sec,
+ bfd_byte *contents,
+ Elf_Internal_Rela *irel)
+{
+ static xtensa_insnbuf ibuff = NULL;
+ static xtensa_insnbuf sbuff = NULL;
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format fmt;
+ int slot;
+
+ if (contents == NULL)
+ return XTENSA_UNDEFINED;
+
+ if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
+ return XTENSA_UNDEFINED;
+
+ if (ibuff == NULL)
+ {
+ ibuff = xtensa_insnbuf_alloc (isa);
+ sbuff = xtensa_insnbuf_alloc (isa);
+ }
+
+ /* Decode the instruction. */
+ xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
+ sec->size - irel->r_offset);
+ fmt = xtensa_format_decode (isa, ibuff);
+ slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
+ if (slot == XTENSA_UNDEFINED)
+ return XTENSA_UNDEFINED;
+ xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
+ return xtensa_opcode_decode (isa, fmt, slot, sbuff);
+}
+
+
+bfd_boolean
+is_l32r_relocation (bfd *abfd,
+ asection *sec,
+ bfd_byte *contents,
+ Elf_Internal_Rela *irel)
+{
+ xtensa_opcode opcode;
+ if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
+ return FALSE;
+ opcode = get_relocation_opcode (abfd, sec, contents, irel);
+ return (opcode == get_l32r_opcode ());
+}
+
+
+static bfd_size_type
+get_asm_simplify_size (bfd_byte *contents,
+ bfd_size_type content_len,
+ bfd_size_type offset)
+{
+ bfd_size_type insnlen, size = 0;
+
+ /* Decode the size of the next two instructions. */
+ insnlen = insn_decode_len (contents, content_len, offset);
+ if (insnlen == 0)
+ return 0;
+
+ size += insnlen;
+
+ insnlen = insn_decode_len (contents, content_len, offset + size);
+ if (insnlen == 0)
+ return 0;
+
+ size += insnlen;
+ return size;
+}
+
+
+bfd_boolean
+is_alt_relocation (int r_type)
+{
+ return (r_type >= R_XTENSA_SLOT0_ALT
+ && r_type <= R_XTENSA_SLOT14_ALT);
+}
+
+
+bfd_boolean
+is_operand_relocation (int r_type)
+{
+ switch (r_type)
+ {
+ case R_XTENSA_OP0:
+ case R_XTENSA_OP1:
+ case R_XTENSA_OP2:
+ return TRUE;
+
+ default:
+ if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
+ return TRUE;
+ if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
+ return TRUE;
+ break;
+ }
+
+ return FALSE;
+}
+
+
+#define MIN_INSN_LENGTH 2
+
+/* Return 0 if it fails to decode. */
+
+bfd_size_type
+insn_decode_len (bfd_byte *contents,
+ bfd_size_type content_len,
+ bfd_size_type offset)
+{
+ int insn_len;
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format fmt;
+ static xtensa_insnbuf ibuff = NULL;
+
+ if (offset + MIN_INSN_LENGTH > content_len)
+ return 0;
+
+ if (ibuff == NULL)
+ ibuff = xtensa_insnbuf_alloc (isa);
+ xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
+ content_len - offset);
+ fmt = xtensa_format_decode (isa, ibuff);
+ if (fmt == XTENSA_UNDEFINED)
+ return 0;
+ insn_len = xtensa_format_length (isa, fmt);
+ if (insn_len == XTENSA_UNDEFINED)
+ return 0;
+ return insn_len;
+}
+
+
+/* Decode the opcode for a single slot instruction.
+ Return 0 if it fails to decode or the instruction is multi-slot. */
+
+xtensa_opcode
+insn_decode_opcode (bfd_byte *contents,
+ bfd_size_type content_len,
+ bfd_size_type offset,
+ int slot)
+{
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format fmt;
+ static xtensa_insnbuf insnbuf = NULL;
+ static xtensa_insnbuf slotbuf = NULL;
+
+ if (offset + MIN_INSN_LENGTH > content_len)
+ return XTENSA_UNDEFINED;
+
+ if (insnbuf == NULL)
+ {
+ insnbuf = xtensa_insnbuf_alloc (isa);
+ slotbuf = xtensa_insnbuf_alloc (isa);
+ }
+
+ xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
+ content_len - offset);
+ fmt = xtensa_format_decode (isa, insnbuf);
+ if (fmt == XTENSA_UNDEFINED)
+ return XTENSA_UNDEFINED;
+
+ if (slot >= xtensa_format_num_slots (isa, fmt))
+ return XTENSA_UNDEFINED;
+
+ xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
+ return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
+}
+
+
+/* The offset is the offset in the contents.
+ The address is the address of that offset. */
+
+static bfd_boolean
+check_branch_target_aligned (bfd_byte *contents,
+ bfd_size_type content_length,
+ bfd_vma offset,
+ bfd_vma address)
+{
+ bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
+ if (insn_len == 0)
+ return FALSE;
+ return check_branch_target_aligned_address (address, insn_len);
+}
+
+
+static bfd_boolean
+check_loop_aligned (bfd_byte *contents,
+ bfd_size_type content_length,
+ bfd_vma offset,
+ bfd_vma address)
+{
+ bfd_size_type loop_len, insn_len;
+ xtensa_opcode opcode;
+
+ opcode = insn_decode_opcode (contents, content_length, offset, 0);
+ if (opcode == XTENSA_UNDEFINED
+ || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
+ {
+ BFD_ASSERT (FALSE);
+ return FALSE;
+ }
+
+ loop_len = insn_decode_len (contents, content_length, offset);
+ insn_len = insn_decode_len (contents, content_length, offset + loop_len);
+ if (loop_len == 0 || insn_len == 0)
+ {
+ BFD_ASSERT (FALSE);
+ return FALSE;
+ }
+
+ return check_branch_target_aligned_address (address + loop_len, insn_len);
+}
+
+
+static bfd_boolean
+check_branch_target_aligned_address (bfd_vma addr, int len)
+{
+ if (len == 8)
+ return (addr % 8 == 0);
+ return ((addr >> 2) == ((addr + len - 1) >> 2));
+}
+
+
+/* Instruction widening and narrowing. */
+
+/* When FLIX is available we need to access certain instructions only
+ when they are 16-bit or 24-bit instructions. This table caches
+ information about such instructions by walking through all the
+ opcodes and finding the smallest single-slot format into which each
+ can be encoded. */
+
+static xtensa_format *op_single_fmt_table = NULL;
+
+
+static void
+init_op_single_format_table (void)
+{
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_insnbuf ibuf;
+ xtensa_opcode opcode;
+ xtensa_format fmt;
+ int num_opcodes;
+
+ if (op_single_fmt_table)
+ return;
+
+ ibuf = xtensa_insnbuf_alloc (isa);
+ num_opcodes = xtensa_isa_num_opcodes (isa);
+
+ op_single_fmt_table = (xtensa_format *)
+ bfd_malloc (sizeof (xtensa_format) * num_opcodes);
+ for (opcode = 0; opcode < num_opcodes; opcode++)
+ {
+ op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
+ for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
+ {
+ if (xtensa_format_num_slots (isa, fmt) == 1
+ && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
+ {
+ xtensa_opcode old_fmt = op_single_fmt_table[opcode];
+ int fmt_length = xtensa_format_length (isa, fmt);
+ if (old_fmt == XTENSA_UNDEFINED
+ || fmt_length < xtensa_format_length (isa, old_fmt))
+ op_single_fmt_table[opcode] = fmt;
+ }
+ }
+ }
+ xtensa_insnbuf_free (isa, ibuf);
+}
+
+
+static xtensa_format
+get_single_format (xtensa_opcode opcode)
+{
+ init_op_single_format_table ();
+ return op_single_fmt_table[opcode];
+}
+
+
+/* For the set of narrowable instructions we do NOT include the
+ narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
+ involved during linker relaxation that may require these to
+ re-expand in some conditions. Also, the narrowing "or" -> mov.n
+ requires special case code to ensure it only works when op1 == op2. */
+
+struct string_pair
+{
+ const char *wide;
+ const char *narrow;
+};
+
+struct string_pair narrowable[] =
+{
+ { "add", "add.n" },
+ { "addi", "addi.n" },
+ { "addmi", "addi.n" },
+ { "l32i", "l32i.n" },
+ { "movi", "movi.n" },
+ { "ret", "ret.n" },
+ { "retw", "retw.n" },
+ { "s32i", "s32i.n" },
+ { "or", "mov.n" } /* special case only when op1 == op2 */
+};
+
+struct string_pair widenable[] =
+{
+ { "add", "add.n" },
+ { "addi", "addi.n" },
+ { "addmi", "addi.n" },
+ { "beqz", "beqz.n" },
+ { "bnez", "bnez.n" },
+ { "l32i", "l32i.n" },
+ { "movi", "movi.n" },
+ { "ret", "ret.n" },
+ { "retw", "retw.n" },
+ { "s32i", "s32i.n" },
+ { "or", "mov.n" } /* special case only when op1 == op2 */
+};
+
+
+/* Check if an instruction can be "narrowed", i.e., changed from a standard
+ 3-byte instruction to a 2-byte "density" instruction. If it is valid,
+ return the instruction buffer holding the narrow instruction. Otherwise,
+ return 0. The set of valid narrowing are specified by a string table
+ but require some special case operand checks in some cases. */
+
+static xtensa_insnbuf
+can_narrow_instruction (xtensa_insnbuf slotbuf,
+ xtensa_format fmt,
+ xtensa_opcode opcode)
+{
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format o_fmt;
+ unsigned opi;
+
+ static xtensa_insnbuf o_insnbuf = NULL;
+ static xtensa_insnbuf o_slotbuf = NULL;
+
+ if (o_insnbuf == NULL)
+ {
+ o_insnbuf = xtensa_insnbuf_alloc (isa);
+ o_slotbuf = xtensa_insnbuf_alloc (isa);
+ }
+
+ for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
+ {
+ bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
+
+ if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
+ {
+ uint32 value, newval;
+ int i, operand_count, o_operand_count;
+ xtensa_opcode o_opcode;
+
+ /* Address does not matter in this case. We might need to
+ fix it to handle branches/jumps. */
+ bfd_vma self_address = 0;
+
+ o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
+ if (o_opcode == XTENSA_UNDEFINED)
+ return 0;
+ o_fmt = get_single_format (o_opcode);
+ if (o_fmt == XTENSA_UNDEFINED)
+ return 0;
+
+ if (xtensa_format_length (isa, fmt) != 3
+ || xtensa_format_length (isa, o_fmt) != 2)
+ return 0;
+
+ xtensa_format_encode (isa, o_fmt, o_insnbuf);
+ operand_count = xtensa_opcode_num_operands (isa, opcode);
+ o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
+
+ if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
+ return 0;
+
+ if (!is_or)
+ {
+ if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
+ return 0;
+ }
+ else
+ {
+ uint32 rawval0, rawval1, rawval2;
+
+ if (o_operand_count + 1 != operand_count
+ || xtensa_operand_get_field (isa, opcode, 0,
+ fmt, 0, slotbuf, &rawval0) != 0
+ || xtensa_operand_get_field (isa, opcode, 1,
+ fmt, 0, slotbuf, &rawval1) != 0
+ || xtensa_operand_get_field (isa, opcode, 2,
+ fmt, 0, slotbuf, &rawval2) != 0
+ || rawval1 != rawval2
+ || rawval0 == rawval1 /* it is a nop */)
+ return 0;
+ }
+
+ for (i = 0; i < o_operand_count; ++i)
+ {
+ if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
+ slotbuf, &value)
+ || xtensa_operand_decode (isa, opcode, i, &value))
+ return 0;
+
+ /* PC-relative branches need adjustment, but
+ the PC-rel operand will always have a relocation. */
+ newval = value;
+ if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
+ self_address)
+ || xtensa_operand_encode (isa, o_opcode, i, &newval)
+ || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
+ o_slotbuf, newval))
+ return 0;
+ }
+
+ if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
+ return 0;
+
+ return o_insnbuf;
+ }
+ }
+ return 0;
+}
+
+
+/* Attempt to narrow an instruction. If the narrowing is valid, perform
+ the action in-place directly into the contents and return TRUE. Otherwise,
+ the return value is FALSE and the contents are not modified. */
+
+static bfd_boolean
+narrow_instruction (bfd_byte *contents,
+ bfd_size_type content_length,
+ bfd_size_type offset)
+{
+ xtensa_opcode opcode;
+ bfd_size_type insn_len;
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format fmt;
+ xtensa_insnbuf o_insnbuf;
+
+ static xtensa_insnbuf insnbuf = NULL;
+ static xtensa_insnbuf slotbuf = NULL;
+
+ if (insnbuf == NULL)
+ {
+ insnbuf = xtensa_insnbuf_alloc (isa);
+ slotbuf = xtensa_insnbuf_alloc (isa);
+ }
+
+ BFD_ASSERT (offset < content_length);
+
+ if (content_length < 2)
+ return FALSE;
+
+ /* We will hand-code a few of these for a little while.
+ These have all been specified in the assembler aleady. */
+ xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
+ content_length - offset);
+ fmt = xtensa_format_decode (isa, insnbuf);
+ if (xtensa_format_num_slots (isa, fmt) != 1)
+ return FALSE;
+
+ if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
+ return FALSE;
+
+ opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
+ if (opcode == XTENSA_UNDEFINED)
+ return FALSE;
+ insn_len = xtensa_format_length (isa, fmt);
+ if (insn_len > content_length)
+ return FALSE;
+
+ o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
+ if (o_insnbuf)
+ {
+ xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
+ content_length - offset);
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/* Check if an instruction can be "widened", i.e., changed from a 2-byte
+ "density" instruction to a standard 3-byte instruction. If it is valid,
+ return the instruction buffer holding the wide instruction. Otherwise,
+ return 0. The set of valid widenings are specified by a string table
+ but require some special case operand checks in some cases. */
+
+static xtensa_insnbuf
+can_widen_instruction (xtensa_insnbuf slotbuf,
+ xtensa_format fmt,
+ xtensa_opcode opcode)
+{
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format o_fmt;
+ unsigned opi;
+
+ static xtensa_insnbuf o_insnbuf = NULL;
+ static xtensa_insnbuf o_slotbuf = NULL;
+
+ if (o_insnbuf == NULL)
+ {
+ o_insnbuf = xtensa_insnbuf_alloc (isa);
+ o_slotbuf = xtensa_insnbuf_alloc (isa);
+ }
+
+ for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
+ {
+ bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
+ bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
+ || strcmp ("bnez", widenable[opi].wide) == 0);
+
+ if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
+ {
+ uint32 value, newval;
+ int i, operand_count, o_operand_count, check_operand_count;
+ xtensa_opcode o_opcode;
+
+ /* Address does not matter in this case. We might need to fix it
+ to handle branches/jumps. */
+ bfd_vma self_address = 0;
+
+ o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
+ if (o_opcode == XTENSA_UNDEFINED)
+ return 0;
+ o_fmt = get_single_format (o_opcode);
+ if (o_fmt == XTENSA_UNDEFINED)
+ return 0;
+
+ if (xtensa_format_length (isa, fmt) != 2
+ || xtensa_format_length (isa, o_fmt) != 3)
+ return 0;
+
+ xtensa_format_encode (isa, o_fmt, o_insnbuf);
+ operand_count = xtensa_opcode_num_operands (isa, opcode);
+ o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
+ check_operand_count = o_operand_count;
+
+ if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
+ return 0;
+
+ if (!is_or)
+ {
+ if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
+ return 0;
+ }
+ else
+ {
+ uint32 rawval0, rawval1;
+
+ if (o_operand_count != operand_count + 1
+ || xtensa_operand_get_field (isa, opcode, 0,
+ fmt, 0, slotbuf, &rawval0) != 0
+ || xtensa_operand_get_field (isa, opcode, 1,
+ fmt, 0, slotbuf, &rawval1) != 0
+ || rawval0 == rawval1 /* it is a nop */)
+ return 0;
+ }
+ if (is_branch)
+ check_operand_count--;
+
+ for (i = 0; i < check_operand_count; i++)
+ {
+ int new_i = i;
+ if (is_or && i == o_operand_count - 1)
+ new_i = i - 1;
+ if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
+ slotbuf, &value)
+ || xtensa_operand_decode (isa, opcode, new_i, &value))
+ return 0;
+
+ /* PC-relative branches need adjustment, but
+ the PC-rel operand will always have a relocation. */
+ newval = value;
+ if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
+ self_address)
+ || xtensa_operand_encode (isa, o_opcode, i, &newval)
+ || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
+ o_slotbuf, newval))
+ return 0;
+ }
+
+ if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
+ return 0;
+
+ return o_insnbuf;
+ }
+ }
+ return 0;
+}
+
+
+/* Attempt to widen an instruction. If the widening is valid, perform
+ the action in-place directly into the contents and return TRUE. Otherwise,
+ the return value is FALSE and the contents are not modified. */
+
+static bfd_boolean
+widen_instruction (bfd_byte *contents,
+ bfd_size_type content_length,
+ bfd_size_type offset)
+{
+ xtensa_opcode opcode;
+ bfd_size_type insn_len;
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format fmt;
+ xtensa_insnbuf o_insnbuf;
+
+ static xtensa_insnbuf insnbuf = NULL;
+ static xtensa_insnbuf slotbuf = NULL;
+
+ if (insnbuf == NULL)
+ {
+ insnbuf = xtensa_insnbuf_alloc (isa);
+ slotbuf = xtensa_insnbuf_alloc (isa);
+ }
+
+ BFD_ASSERT (offset < content_length);
+
+ if (content_length < 2)
+ return FALSE;
+
+ /* We will hand-code a few of these for a little while.
+ These have all been specified in the assembler aleady. */
+ xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
+ content_length - offset);
+ fmt = xtensa_format_decode (isa, insnbuf);
+ if (xtensa_format_num_slots (isa, fmt) != 1)
+ return FALSE;
+
+ if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
+ return FALSE;
+
+ opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
+ if (opcode == XTENSA_UNDEFINED)
+ return FALSE;
+ insn_len = xtensa_format_length (isa, fmt);
+ if (insn_len > content_length)
+ return FALSE;
+
+ o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
+ if (o_insnbuf)
+ {
+ xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
+ content_length - offset);
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+/* Code for transforming CALLs at link-time. */
+
+static bfd_reloc_status_type
+elf_xtensa_do_asm_simplify (bfd_byte *contents,
+ bfd_vma address,
+ bfd_vma content_length,
+ char **error_message)
+{
+ static xtensa_insnbuf insnbuf = NULL;
+ static xtensa_insnbuf slotbuf = NULL;
+ xtensa_format core_format = XTENSA_UNDEFINED;
+ xtensa_opcode opcode;
+ xtensa_opcode direct_call_opcode;
+ xtensa_isa isa = xtensa_default_isa;
+ bfd_byte *chbuf = contents + address;
+ int opn;
+
+ if (insnbuf == NULL)
+ {
+ insnbuf = xtensa_insnbuf_alloc (isa);
+ slotbuf = xtensa_insnbuf_alloc (isa);
+ }
+
+ if (content_length < address)
+ {
+ *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
+ return bfd_reloc_other;
+ }
+
+ opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
+ direct_call_opcode = swap_callx_for_call_opcode (opcode);
+ if (direct_call_opcode == XTENSA_UNDEFINED)
+ {
+ *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
+ return bfd_reloc_other;
+ }
+
+ /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
+ core_format = xtensa_format_lookup (isa, "x24");
+ opcode = xtensa_opcode_lookup (isa, "or");
+ xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
+ for (opn = 0; opn < 3; opn++)
+ {
+ uint32 regno = 1;
+ xtensa_operand_encode (isa, opcode, opn, &regno);
+ xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
+ slotbuf, regno);
+ }
+ xtensa_format_encode (isa, core_format, insnbuf);
+ xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
+ xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
+
+ /* Assemble a CALL ("callN 0") into the 3 byte offset. */
+ xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
+ xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
+
+ xtensa_format_encode (isa, core_format, insnbuf);
+ xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
+ xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
+ content_length - address - 3);
+
+ return bfd_reloc_ok;
+}
+
+
+static bfd_reloc_status_type
+contract_asm_expansion (bfd_byte *contents,
+ bfd_vma content_length,
+ Elf_Internal_Rela *irel,
+ char **error_message)
+{
+ bfd_reloc_status_type retval =
+ elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
+ error_message);
+
+ if (retval != bfd_reloc_ok)
+ return bfd_reloc_dangerous;
+
+ /* Update the irel->r_offset field so that the right immediate and
+ the right instruction are modified during the relocation. */
+ irel->r_offset += 3;
+ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
+ return bfd_reloc_ok;
+}
+
+
+static xtensa_opcode
+swap_callx_for_call_opcode (xtensa_opcode opcode)
+{
+ init_call_opcodes ();
+
+ if (opcode == callx0_op) return call0_op;
+ if (opcode == callx4_op) return call4_op;
+ if (opcode == callx8_op) return call8_op;
+ if (opcode == callx12_op) return call12_op;
+
+ /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
+ return XTENSA_UNDEFINED;
+}
+
+
+/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
+ CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
+ If not, return XTENSA_UNDEFINED. */
+
+#define L32R_TARGET_REG_OPERAND 0
+#define CONST16_TARGET_REG_OPERAND 0
+#define CALLN_SOURCE_OPERAND 0
+
+static xtensa_opcode
+get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
+{
+ static xtensa_insnbuf insnbuf = NULL;
+ static xtensa_insnbuf slotbuf = NULL;
+ xtensa_format fmt;
+ xtensa_opcode opcode;
+ xtensa_isa isa = xtensa_default_isa;
+ uint32 regno, const16_regno, call_regno;
+ int offset = 0;
+
+ if (insnbuf == NULL)
+ {
+ insnbuf = xtensa_insnbuf_alloc (isa);
+ slotbuf = xtensa_insnbuf_alloc (isa);
+ }
+
+ xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
+ fmt = xtensa_format_decode (isa, insnbuf);
+ if (fmt == XTENSA_UNDEFINED
+ || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
+ return XTENSA_UNDEFINED;
+
+ opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
+ if (opcode == XTENSA_UNDEFINED)
+ return XTENSA_UNDEFINED;
+
+ if (opcode == get_l32r_opcode ())
+ {
+ if (p_uses_l32r)
+ *p_uses_l32r = TRUE;
+ if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
+ fmt, 0, slotbuf, &regno)
+ || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
+ &regno))
+ return XTENSA_UNDEFINED;
+ }
+ else if (opcode == get_const16_opcode ())
+ {
+ if (p_uses_l32r)
+ *p_uses_l32r = FALSE;
+ if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
+ fmt, 0, slotbuf, &regno)
+ || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
+ &regno))
+ return XTENSA_UNDEFINED;
+
+ /* Check that the next instruction is also CONST16. */
+ offset += xtensa_format_length (isa, fmt);
+ xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
+ fmt = xtensa_format_decode (isa, insnbuf);
+ if (fmt == XTENSA_UNDEFINED
+ || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
+ return XTENSA_UNDEFINED;
+ opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
+ if (opcode != get_const16_opcode ())
+ return XTENSA_UNDEFINED;
+
+ if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
+ fmt, 0, slotbuf, &const16_regno)
+ || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
+ &const16_regno)
+ || const16_regno != regno)
+ return XTENSA_UNDEFINED;
+ }
+ else
+ return XTENSA_UNDEFINED;
+
+ /* Next instruction should be an CALLXn with operand 0 == regno. */
+ offset += xtensa_format_length (isa, fmt);
+ xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
+ fmt = xtensa_format_decode (isa, insnbuf);
+ if (fmt == XTENSA_UNDEFINED
+ || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
+ return XTENSA_UNDEFINED;
+ opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
+ if (opcode == XTENSA_UNDEFINED
+ || !is_indirect_call_opcode (opcode))
+ return XTENSA_UNDEFINED;
+
+ if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
+ fmt, 0, slotbuf, &call_regno)
+ || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
+ &call_regno))
+ return XTENSA_UNDEFINED;
+
+ if (call_regno != regno)
+ return XTENSA_UNDEFINED;
+
+ return opcode;
+}
+
+
+/* Data structures used during relaxation. */
+
+/* r_reloc: relocation values. */
+
+/* Through the relaxation process, we need to keep track of the values
+ that will result from evaluating relocations. The standard ELF
+ relocation structure is not sufficient for this purpose because we're
+ operating on multiple input files at once, so we need to know which
+ input file a relocation refers to. The r_reloc structure thus
+ records both the input file (bfd) and ELF relocation.
+
+ For efficiency, an r_reloc also contains a "target_offset" field to
+ cache the target-section-relative offset value that is represented by
+ the relocation.
+
+ The r_reloc also contains a virtual offset that allows multiple
+ inserted literals to be placed at the same "address" with
+ different offsets. */
+
+typedef struct r_reloc_struct r_reloc;
+
+struct r_reloc_struct
+{
+ bfd *abfd;
+ Elf_Internal_Rela rela;
+ bfd_vma target_offset;
+ bfd_vma virtual_offset;
+};
+
+
+/* The r_reloc structure is included by value in literal_value, but not
+ every literal_value has an associated relocation -- some are simple
+ constants. In such cases, we set all the fields in the r_reloc
+ struct to zero. The r_reloc_is_const function should be used to
+ detect this case. */
+
+static bfd_boolean
+r_reloc_is_const (const r_reloc *r_rel)
+{
+ return (r_rel->abfd == NULL);
+}
+
+
+static bfd_vma
+r_reloc_get_target_offset (const r_reloc *r_rel)
+{
+ bfd_vma target_offset;
+ unsigned long r_symndx;
+
+ BFD_ASSERT (!r_reloc_is_const (r_rel));
+ r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
+ target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
+ return (target_offset + r_rel->rela.r_addend);
+}
+
+
+static struct elf_link_hash_entry *
+r_reloc_get_hash_entry (const r_reloc *r_rel)
+{
+ unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
+ return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
+}
+
+
+static asection *
+r_reloc_get_section (const r_reloc *r_rel)
+{
+ unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
+ return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
+}
+
+
+static bfd_boolean
+r_reloc_is_defined (const r_reloc *r_rel)
+{
+ asection *sec;
+ if (r_rel == NULL)
+ return FALSE;
+
+ sec = r_reloc_get_section (r_rel);
+ if (sec == bfd_abs_section_ptr
+ || sec == bfd_com_section_ptr
+ || sec == bfd_und_section_ptr)
+ return FALSE;
+ return TRUE;
+}
+
+
+static void
+r_reloc_init (r_reloc *r_rel,
+ bfd *abfd,
+ Elf_Internal_Rela *irel,
+ bfd_byte *contents,
+ bfd_size_type content_length)
+{
+ int r_type;
+ reloc_howto_type *howto;
+
+ if (irel)
+ {
+ r_rel->rela = *irel;
+ r_rel->abfd = abfd;
+ r_rel->target_offset = r_reloc_get_target_offset (r_rel);
+ r_rel->virtual_offset = 0;
+ r_type = ELF32_R_TYPE (r_rel->rela.r_info);
+ howto = &elf_howto_table[r_type];
+ if (howto->partial_inplace)
+ {
+ bfd_vma inplace_val;
+ BFD_ASSERT (r_rel->rela.r_offset < content_length);
+
+ inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
+ r_rel->target_offset += inplace_val;
+ }
+ }
+ else
+ memset (r_rel, 0, sizeof (r_reloc));
+}
+
+
+#if DEBUG
+
+static void
+print_r_reloc (FILE *fp, const r_reloc *r_rel)
+{
+ if (r_reloc_is_defined (r_rel))
+ {
+ asection *sec = r_reloc_get_section (r_rel);
+ fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
+ }
+ else if (r_reloc_get_hash_entry (r_rel))
+ fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
+ else
+ fprintf (fp, " ?? + ");
+
+ fprintf_vma (fp, r_rel->target_offset);
+ if (r_rel->virtual_offset)
+ {
+ fprintf (fp, " + ");
+ fprintf_vma (fp, r_rel->virtual_offset);
+ }
+
+ fprintf (fp, ")");
+}
+
+#endif /* DEBUG */
+
+
+/* source_reloc: relocations that reference literals. */
+
+/* To determine whether literals can be coalesced, we need to first
+ record all the relocations that reference the literals. The
+ source_reloc structure below is used for this purpose. The
+ source_reloc entries are kept in a per-literal-section array, sorted
+ by offset within the literal section (i.e., target offset).
+
+ The source_sec and r_rel.rela.r_offset fields identify the source of
+ the relocation. The r_rel field records the relocation value, i.e.,
+ the offset of the literal being referenced. The opnd field is needed
+ to determine the range of the immediate field to which the relocation
+ applies, so we can determine whether another literal with the same
+ value is within range. The is_null field is true when the relocation
+ is being removed (e.g., when an L32R is being removed due to a CALLX
+ that is converted to a direct CALL). */
+
+typedef struct source_reloc_struct source_reloc;
+
+struct source_reloc_struct
+{
+ asection *source_sec;
+ r_reloc r_rel;
+ xtensa_opcode opcode;
+ int opnd;
+ bfd_boolean is_null;
+ bfd_boolean is_abs_literal;
+};
+
+
+static void
+init_source_reloc (source_reloc *reloc,
+ asection *source_sec,
+ const r_reloc *r_rel,
+ xtensa_opcode opcode,
+ int opnd,
+ bfd_boolean is_abs_literal)
+{
+ reloc->source_sec = source_sec;
+ reloc->r_rel = *r_rel;
+ reloc->opcode = opcode;
+ reloc->opnd = opnd;
+ reloc->is_null = FALSE;
+ reloc->is_abs_literal = is_abs_literal;
+}
+
+
+/* Find the source_reloc for a particular source offset and relocation
+ type. Note that the array is sorted by _target_ offset, so this is
+ just a linear search. */
+
+static source_reloc *
+find_source_reloc (source_reloc *src_relocs,
+ int src_count,
+ asection *sec,
+ Elf_Internal_Rela *irel)
+{
+ int i;
+
+ for (i = 0; i < src_count; i++)
+ {
+ if (src_relocs[i].source_sec == sec
+ && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
+ && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
+ == ELF32_R_TYPE (irel->r_info)))
+ return &src_relocs[i];
+ }
+
+ return NULL;
+}
+
+
+static int
+source_reloc_compare (const void *ap, const void *bp)
+{
+ const source_reloc *a = (const source_reloc *) ap;
+ const source_reloc *b = (const source_reloc *) bp;
+
+ if (a->r_rel.target_offset != b->r_rel.target_offset)
+ return (a->r_rel.target_offset - b->r_rel.target_offset);
+
+ /* We don't need to sort on these criteria for correctness,
+ but enforcing a more strict ordering prevents unstable qsort
+ from behaving differently with different implementations.
+ Without the code below we get correct but different results
+ on Solaris 2.7 and 2.8. We would like to always produce the
+ same results no matter the host. */
+
+ if ((!a->is_null) - (!b->is_null))
+ return ((!a->is_null) - (!b->is_null));
+ return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
+}
+
+
+/* Literal values and value hash tables. */
+
+/* Literals with the same value can be coalesced. The literal_value
+ structure records the value of a literal: the "r_rel" field holds the
+ information from the relocation on the literal (if there is one) and
+ the "value" field holds the contents of the literal word itself.
+
+ The value_map structure records a literal value along with the
+ location of a literal holding that value. The value_map hash table
+ is indexed by the literal value, so that we can quickly check if a
+ particular literal value has been seen before and is thus a candidate
+ for coalescing. */
+
+typedef struct literal_value_struct literal_value;
+typedef struct value_map_struct value_map;
+typedef struct value_map_hash_table_struct value_map_hash_table;
+
+struct literal_value_struct
+{
+ r_reloc r_rel;
+ unsigned long value;
+ bfd_boolean is_abs_literal;
+};
+
+struct value_map_struct
+{
+ literal_value val; /* The literal value. */
+ r_reloc loc; /* Location of the literal. */
+ value_map *next;
+};
+
+struct value_map_hash_table_struct
+{
+ unsigned bucket_count;
+ value_map **buckets;
+ unsigned count;
+ bfd_boolean has_last_loc;
+ r_reloc last_loc;
+};
+
+
+static void
+init_literal_value (literal_value *lit,
+ const r_reloc *r_rel,
+ unsigned long value,
+ bfd_boolean is_abs_literal)
+{
+ lit->r_rel = *r_rel;
+ lit->value = value;
+ lit->is_abs_literal = is_abs_literal;
+}
+
+
+static bfd_boolean
+literal_value_equal (const literal_value *src1,
+ const literal_value *src2,
+ bfd_boolean final_static_link)
+{
+ struct elf_link_hash_entry *h1, *h2;
+
+ if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
+ return FALSE;
+
+ if (r_reloc_is_const (&src1->r_rel))
+ return (src1->value == src2->value);
+
+ if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
+ != ELF32_R_TYPE (src2->r_rel.rela.r_info))
+ return FALSE;
+
+ if (src1->r_rel.target_offset != src2->r_rel.target_offset)
+ return FALSE;
+
+ if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
+ return FALSE;
+
+ if (src1->value != src2->value)
+ return FALSE;
+
+ /* Now check for the same section (if defined) or the same elf_hash
+ (if undefined or weak). */
+ h1 = r_reloc_get_hash_entry (&src1->r_rel);
+ h2 = r_reloc_get_hash_entry (&src2->r_rel);
+ if (r_reloc_is_defined (&src1->r_rel)
+ && (final_static_link
+ || ((!h1 || h1->root.type != bfd_link_hash_defweak)
+ && (!h2 || h2->root.type != bfd_link_hash_defweak))))
+ {
+ if (r_reloc_get_section (&src1->r_rel)
+ != r_reloc_get_section (&src2->r_rel))
+ return FALSE;
+ }
+ else
+ {
+ /* Require that the hash entries (i.e., symbols) be identical. */
+ if (h1 != h2 || h1 == 0)
+ return FALSE;
+ }
+
+ if (src1->is_abs_literal != src2->is_abs_literal)
+ return FALSE;
+
+ return TRUE;
+}
+
+
+/* Must be power of 2. */
+#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
+
+static value_map_hash_table *
+value_map_hash_table_init (void)
+{
+ value_map_hash_table *values;
+
+ values = (value_map_hash_table *)
+ bfd_zmalloc (sizeof (value_map_hash_table));
+ values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
+ values->count = 0;
+ values->buckets = (value_map **)
+ bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
+ if (values->buckets == NULL)
+ {
+ free (values);
+ return NULL;
+ }
+ values->has_last_loc = FALSE;
+
+ return values;
+}
+
+
+static void
+value_map_hash_table_delete (value_map_hash_table *table)
+{
+ free (table->buckets);
+ free (table);
+}
+
+
+static unsigned
+hash_bfd_vma (bfd_vma val)
+{
+ return (val >> 2) + (val >> 10);
+}
+
+
+static unsigned
+literal_value_hash (const literal_value *src)
+{
+ unsigned hash_val;
+
+ hash_val = hash_bfd_vma (src->value);
+ if (!r_reloc_is_const (&src->r_rel))
+ {
+ void *sec_or_hash;
+
+ hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
+ hash_val += hash_bfd_vma (src->r_rel.target_offset);
+ hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
+
+ /* Now check for the same section and the same elf_hash. */
+ if (r_reloc_is_defined (&src->r_rel))
+ sec_or_hash = r_reloc_get_section (&src->r_rel);
+ else
+ sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
+ hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
+ }
+ return hash_val;
+}
+
+
+/* Check if the specified literal_value has been seen before. */
+
+static value_map *
+value_map_get_cached_value (value_map_hash_table *map,
+ const literal_value *val,
+ bfd_boolean final_static_link)
+{
+ value_map *map_e;
+ value_map *bucket;
+ unsigned idx;
+
+ idx = literal_value_hash (val);
+ idx = idx & (map->bucket_count - 1);
+ bucket = map->buckets[idx];
+ for (map_e = bucket; map_e; map_e = map_e->next)
+ {
+ if (literal_value_equal (&map_e->val, val, final_static_link))
+ return map_e;
+ }
+ return NULL;
+}
+
+
+/* Record a new literal value. It is illegal to call this if VALUE
+ already has an entry here. */
+
+static value_map *
+add_value_map (value_map_hash_table *map,
+ const literal_value *val,
+ const r_reloc *loc,
+ bfd_boolean final_static_link)
+{
+ value_map **bucket_p;
+ unsigned idx;
+
+ value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
+ if (val_e == NULL)
+ {
+ bfd_set_error (bfd_error_no_memory);
+ return NULL;
+ }
+
+ BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
+ val_e->val = *val;
+ val_e->loc = *loc;
+
+ idx = literal_value_hash (val);
+ idx = idx & (map->bucket_count - 1);
+ bucket_p = &map->buckets[idx];
+
+ val_e->next = *bucket_p;
+ *bucket_p = val_e;
+ map->count++;
+ /* FIXME: Consider resizing the hash table if we get too many entries. */
+
+ return val_e;
+}
+
+
+/* Lists of text actions (ta_) for narrowing, widening, longcall
+ conversion, space fill, code & literal removal, etc. */
+
+/* The following text actions are generated:
+
+ "ta_remove_insn" remove an instruction or instructions
+ "ta_remove_longcall" convert longcall to call
+ "ta_convert_longcall" convert longcall to nop/call
+ "ta_narrow_insn" narrow a wide instruction
+ "ta_widen" widen a narrow instruction
+ "ta_fill" add fill or remove fill
+ removed < 0 is a fill; branches to the fill address will be
+ changed to address + fill size (e.g., address - removed)
+ removed >= 0 branches to the fill address will stay unchanged
+ "ta_remove_literal" remove a literal; this action is
+ indicated when a literal is removed
+ or replaced.
+ "ta_add_literal" insert a new literal; this action is
+ indicated when a literal has been moved.
+ It may use a virtual_offset because
+ multiple literals can be placed at the
+ same location.
+
+ For each of these text actions, we also record the number of bytes
+ removed by performing the text action. In the case of a "ta_widen"
+ or a "ta_fill" that adds space, the removed_bytes will be negative. */
+
+typedef struct text_action_struct text_action;
+typedef struct text_action_list_struct text_action_list;
+typedef enum text_action_enum_t text_action_t;
+
+enum text_action_enum_t
+{
+ ta_none,
+ ta_remove_insn, /* removed = -size */
+ ta_remove_longcall, /* removed = -size */
+ ta_convert_longcall, /* removed = 0 */
+ ta_narrow_insn, /* removed = -1 */
+ ta_widen_insn, /* removed = +1 */
+ ta_fill, /* removed = +size */
+ ta_remove_literal,
+ ta_add_literal
+};
+
+
+/* Structure for a text action record. */
+struct text_action_struct
+{
+ text_action_t action;
+ asection *sec; /* Optional */
+ bfd_vma offset;
+ bfd_vma virtual_offset; /* Zero except for adding literals. */
+ int removed_bytes;
+ literal_value value; /* Only valid when adding literals. */
+
+ text_action *next;
+};
+
+
+/* List of all of the actions taken on a text section. */
+struct text_action_list_struct
+{
+ text_action *head;
+};
+
+
+static text_action *
+find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
+{
+ text_action **m_p;
+
+ /* It is not necessary to fill at the end of a section. */
+ if (sec->size == offset)
+ return NULL;
+
+ for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
+ {
+ text_action *t = *m_p;
+ /* When the action is another fill at the same address,
+ just increase the size. */
+ if (t->offset == offset && t->action == ta_fill)
+ return t;
+ }
+ return NULL;
+}
+
+
+static int
+compute_removed_action_diff (const text_action *ta,
+ asection *sec,
+ bfd_vma offset,
+ int removed,
+ int removable_space)
+{
+ int new_removed;
+ int current_removed = 0;
+
+ if (ta)
+ current_removed = ta->removed_bytes;
+
+ BFD_ASSERT (ta == NULL || ta->offset == offset);
+ BFD_ASSERT (ta == NULL || ta->action == ta_fill);
+
+ /* It is not necessary to fill at the end of a section. Clean this up. */
+ if (sec->size == offset)
+ new_removed = removable_space - 0;
+ else
+ {
+ int space;
+ int added = -removed - current_removed;
+ /* Ignore multiples of the section alignment. */
+ added = ((1 << sec->alignment_power) - 1) & added;
+ new_removed = (-added);
+
+ /* Modify for removable. */
+ space = removable_space - new_removed;
+ new_removed = (removable_space
+ - (((1 << sec->alignment_power) - 1) & space));
+ }
+ return (new_removed - current_removed);
+}
+
+
+static void
+adjust_fill_action (text_action *ta, int fill_diff)
+{
+ ta->removed_bytes += fill_diff;
+}
+
+
+/* Add a modification action to the text. For the case of adding or
+ removing space, modify any current fill and assume that
+ "unreachable_space" bytes can be freely contracted. Note that a
+ negative removed value is a fill. */
+
+static void
+text_action_add (text_action_list *l,
+ text_action_t action,
+ asection *sec,
+ bfd_vma offset,
+ int removed)
+{
+ text_action **m_p;
+ text_action *ta;
+
+ /* It is not necessary to fill at the end of a section. */
+ if (action == ta_fill && sec->size == offset)
+ return;
+
+ /* It is not necessary to fill 0 bytes. */
+ if (action == ta_fill && removed == 0)
+ return;
+
+ for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
+ {
+ text_action *t = *m_p;
+
+ if (action == ta_fill)
+ {
+ /* When the action is another fill at the same address,
+ just increase the size. */
+ if (t->offset == offset && t->action == ta_fill)
+ {
+ t->removed_bytes += removed;
+ return;
+ }
+ /* Fills need to happen before widens so that we don't
+ insert fill bytes into the instruction stream. */
+ if (t->offset == offset && t->action == ta_widen_insn)
+ break;
+ }
+ }
+
+ /* Create a new record and fill it up. */
+ ta = (text_action *) bfd_zmalloc (sizeof (text_action));
+ ta->action = action;
+ ta->sec = sec;
+ ta->offset = offset;
+ ta->removed_bytes = removed;
+ ta->next = (*m_p);
+ *m_p = ta;
+}
+
+
+static void
+text_action_add_literal (text_action_list *l,
+ text_action_t action,
+ const r_reloc *loc,
+ const literal_value *value,
+ int removed)
+{
+ text_action **m_p;
+ text_action *ta;
+ asection *sec = r_reloc_get_section (loc);
+ bfd_vma offset = loc->target_offset;
+ bfd_vma virtual_offset = loc->virtual_offset;
+
+ BFD_ASSERT (action == ta_add_literal);
+
+ for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
+ {
+ if ((*m_p)->offset > offset
+ && ((*m_p)->offset != offset
+ || (*m_p)->virtual_offset > virtual_offset))
+ break;
+ }
+
+ /* Create a new record and fill it up. */
+ ta = (text_action *) bfd_zmalloc (sizeof (text_action));
+ ta->action = action;
+ ta->sec = sec;
+ ta->offset = offset;
+ ta->virtual_offset = virtual_offset;
+ ta->value = *value;
+ ta->removed_bytes = removed;
+ ta->next = (*m_p);
+ *m_p = ta;
+}
+
+
+/* Find the total offset adjustment for the relaxations specified by
+ text_actions, beginning from a particular starting action. This is
+ typically used from offset_with_removed_text to search an entire list of
+ actions, but it may also be called directly when adjusting adjacent offsets
+ so that each search may begin where the previous one left off. */
+
+static int
+removed_by_actions (text_action **p_start_action,
+ bfd_vma offset,
+ bfd_boolean before_fill)
+{
+ text_action *r;
+ int removed = 0;
+
+ r = *p_start_action;
+ while (r)
+ {
+ if (r->offset > offset)
+ break;
+
+ if (r->offset == offset
+ && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
+ break;
+
+ removed += r->removed_bytes;
+
+ r = r->next;
+ }
+
+ *p_start_action = r;
+ return removed;
+}
+
+
+static bfd_vma
+offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
+{
+ text_action *r = action_list->head;
+ return offset - removed_by_actions (&r, offset, FALSE);
+}
+
+
+static unsigned
+action_list_count (text_action_list *action_list)
+{
+ text_action *r = action_list->head;
+ unsigned count = 0;
+ for (r = action_list->head; r != NULL; r = r->next)
+ {
+ count++;
+ }
+ return count;
+}
+
+
+/* The find_insn_action routine will only find non-fill actions. */
+
+static text_action *
+find_insn_action (text_action_list *action_list, bfd_vma offset)
+{
+ text_action *t;
+ for (t = action_list->head; t; t = t->next)
+ {
+ if (t->offset == offset)
+ {
+ switch (t->action)
+ {
+ case ta_none:
+ case ta_fill:
+ break;
+ case ta_remove_insn:
+ case ta_remove_longcall:
+ case ta_convert_longcall:
+ case ta_narrow_insn:
+ case ta_widen_insn:
+ return t;
+ case ta_remove_literal:
+ case ta_add_literal:
+ BFD_ASSERT (0);
+ break;
+ }
+ }
+ }
+ return NULL;
+}
+
+
+#if DEBUG
+
+static void
+print_action_list (FILE *fp, text_action_list *action_list)
+{
+ text_action *r;
+
+ fprintf (fp, "Text Action\n");
+ for (r = action_list->head; r != NULL; r = r->next)
+ {
+ const char *t = "unknown";
+ switch (r->action)
+ {
+ case ta_remove_insn:
+ t = "remove_insn"; break;
+ case ta_remove_longcall:
+ t = "remove_longcall"; break;
+ case ta_convert_longcall:
+ t = "convert_longcall"; break;
+ case ta_narrow_insn:
+ t = "narrow_insn"; break;
+ case ta_widen_insn:
+ t = "widen_insn"; break;
+ case ta_fill:
+ t = "fill"; break;
+ case ta_none:
+ t = "none"; break;
+ case ta_remove_literal:
+ t = "remove_literal"; break;
+ case ta_add_literal:
+ t = "add_literal"; break;
+ }
+
+ fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
+ r->sec->owner->filename,
+ r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
+ }
+}
+
+#endif /* DEBUG */
+
+
+/* Lists of literals being coalesced or removed. */
+
+/* In the usual case, the literal identified by "from" is being
+ coalesced with another literal identified by "to". If the literal is
+ unused and is being removed altogether, "to.abfd" will be NULL.
+ The removed_literal entries are kept on a per-section list, sorted
+ by the "from" offset field. */
+
+typedef struct removed_literal_struct removed_literal;
+typedef struct removed_literal_list_struct removed_literal_list;
+
+struct removed_literal_struct
+{
+ r_reloc from;
+ r_reloc to;
+ removed_literal *next;
+};
+
+struct removed_literal_list_struct
+{
+ removed_literal *head;
+ removed_literal *tail;
+};
+
+
+/* Record that the literal at "from" is being removed. If "to" is not
+ NULL, the "from" literal is being coalesced with the "to" literal. */
+
+static void
+add_removed_literal (removed_literal_list *removed_list,
+ const r_reloc *from,
+ const r_reloc *to)
+{
+ removed_literal *r, *new_r, *next_r;
+
+ new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
+
+ new_r->from = *from;
+ if (to)
+ new_r->to = *to;
+ else
+ new_r->to.abfd = NULL;
+ new_r->next = NULL;
+
+ r = removed_list->head;
+ if (r == NULL)
+ {
+ removed_list->head = new_r;
+ removed_list->tail = new_r;
+ }
+ /* Special check for common case of append. */
+ else if (removed_list->tail->from.target_offset < from->target_offset)
+ {
+ removed_list->tail->next = new_r;
+ removed_list->tail = new_r;
+ }
+ else
+ {
+ while (r->from.target_offset < from->target_offset && r->next)
+ {
+ r = r->next;
+ }
+ next_r = r->next;
+ r->next = new_r;
+ new_r->next = next_r;
+ if (next_r == NULL)
+ removed_list->tail = new_r;
+ }
+}
+
+
+/* Check if the list of removed literals contains an entry for the
+ given address. Return the entry if found. */
+
+static removed_literal *
+find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
+{
+ removed_literal *r = removed_list->head;
+ while (r && r->from.target_offset < addr)
+ r = r->next;
+ if (r && r->from.target_offset == addr)
+ return r;
+ return NULL;
+}
+
+
+#if DEBUG
+
+static void
+print_removed_literals (FILE *fp, removed_literal_list *removed_list)
+{
+ removed_literal *r;
+ r = removed_list->head;
+ if (r)
+ fprintf (fp, "Removed Literals\n");
+ for (; r != NULL; r = r->next)
+ {
+ print_r_reloc (fp, &r->from);
+ fprintf (fp, " => ");
+ if (r->to.abfd == NULL)
+ fprintf (fp, "REMOVED");
+ else
+ print_r_reloc (fp, &r->to);
+ fprintf (fp, "\n");
+ }
+}
+
+#endif /* DEBUG */
+
+
+/* Per-section data for relaxation. */
+
+typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
+
+struct xtensa_relax_info_struct
+{
+ bfd_boolean is_relaxable_literal_section;
+ bfd_boolean is_relaxable_asm_section;
+ int visited; /* Number of times visited. */
+
+ source_reloc *src_relocs; /* Array[src_count]. */
+ int src_count;
+ int src_next; /* Next src_relocs entry to assign. */
+
+ removed_literal_list removed_list;
+ text_action_list action_list;
+
+ reloc_bfd_fix *fix_list;
+ reloc_bfd_fix *fix_array;
+ unsigned fix_array_count;
+
+ /* Support for expanding the reloc array that is stored
+ in the section structure. If the relocations have been
+ reallocated, the newly allocated relocations will be referenced
+ here along with the actual size allocated. The relocation
+ count will always be found in the section structure. */
+ Elf_Internal_Rela *allocated_relocs;
+ unsigned relocs_count;
+ unsigned allocated_relocs_count;
+};
+
+struct elf_xtensa_section_data
+{
+ struct bfd_elf_section_data elf;
+ xtensa_relax_info relax_info;
+};
+
+
+static bfd_boolean
+elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
+{
+ if (!sec->used_by_bfd)
+ {
+ struct elf_xtensa_section_data *sdata;
+ bfd_size_type amt = sizeof (*sdata);
+
+ sdata = bfd_zalloc (abfd, amt);
+ if (sdata == NULL)
+ return FALSE;
+ sec->used_by_bfd = sdata;
+ }
+
+ return _bfd_elf_new_section_hook (abfd, sec);
+}
+
+
+static xtensa_relax_info *
+get_xtensa_relax_info (asection *sec)
+{
+ struct elf_xtensa_section_data *section_data;
+
+ /* No info available if no section or if it is an output section. */
+ if (!sec || sec == sec->output_section)
+ return NULL;
+
+ section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
+ return &section_data->relax_info;
+}
+
+
+static void
+init_xtensa_relax_info (asection *sec)
+{
+ xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
+
+ relax_info->is_relaxable_literal_section = FALSE;
+ relax_info->is_relaxable_asm_section = FALSE;
+ relax_info->visited = 0;
+
+ relax_info->src_relocs = NULL;
+ relax_info->src_count = 0;
+ relax_info->src_next = 0;
+
+ relax_info->removed_list.head = NULL;
+ relax_info->removed_list.tail = NULL;
+
+ relax_info->action_list.head = NULL;
+
+ relax_info->fix_list = NULL;
+ relax_info->fix_array = NULL;
+ relax_info->fix_array_count = 0;
+
+ relax_info->allocated_relocs = NULL;
+ relax_info->relocs_count = 0;
+ relax_info->allocated_relocs_count = 0;
+}
+
+
+/* Coalescing literals may require a relocation to refer to a section in
+ a different input file, but the standard relocation information
+ cannot express that. Instead, the reloc_bfd_fix structures are used
+ to "fix" the relocations that refer to sections in other input files.
+ These structures are kept on per-section lists. The "src_type" field
+ records the relocation type in case there are multiple relocations on
+ the same location. FIXME: This is ugly; an alternative might be to
+ add new symbols with the "owner" field to some other input file. */
+
+struct reloc_bfd_fix_struct
+{
+ asection *src_sec;
+ bfd_vma src_offset;
+ unsigned src_type; /* Relocation type. */
+
+ asection *target_sec;
+ bfd_vma target_offset;
+ bfd_boolean translated;
+
+ reloc_bfd_fix *next;
+};
+
+
+static reloc_bfd_fix *
+reloc_bfd_fix_init (asection *src_sec,
+ bfd_vma src_offset,
+ unsigned src_type,
+ asection *target_sec,
+ bfd_vma target_offset,
+ bfd_boolean translated)
+{
+ reloc_bfd_fix *fix;
+
+ fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
+ fix->src_sec = src_sec;
+ fix->src_offset = src_offset;
+ fix->src_type = src_type;
+ fix->target_sec = target_sec;
+ fix->target_offset = target_offset;
+ fix->translated = translated;
+
+ return fix;
+}
+
+
+static void
+add_fix (asection *src_sec, reloc_bfd_fix *fix)
+{
+ xtensa_relax_info *relax_info;
+
+ relax_info = get_xtensa_relax_info (src_sec);
+ fix->next = relax_info->fix_list;
+ relax_info->fix_list = fix;
+}
+
+
+static int
+fix_compare (const void *ap, const void *bp)
+{
+ const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
+ const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
+
+ if (a->src_offset != b->src_offset)
+ return (a->src_offset - b->src_offset);
+ return (a->src_type - b->src_type);
+}
+
+
+static void
+cache_fix_array (asection *sec)
+{
+ unsigned i, count = 0;
+ reloc_bfd_fix *r;
+ xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
+
+ if (relax_info == NULL)
+ return;
+ if (relax_info->fix_list == NULL)
+ return;
+
+ for (r = relax_info->fix_list; r != NULL; r = r->next)
+ count++;
+
+ relax_info->fix_array =
+ (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
+ relax_info->fix_array_count = count;
+
+ r = relax_info->fix_list;
+ for (i = 0; i < count; i++, r = r->next)
+ {
+ relax_info->fix_array[count - 1 - i] = *r;
+ relax_info->fix_array[count - 1 - i].next = NULL;
+ }
+
+ qsort (relax_info->fix_array, relax_info->fix_array_count,
+ sizeof (reloc_bfd_fix), fix_compare);
+}
+
+
+static reloc_bfd_fix *
+get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
+{
+ xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
+ reloc_bfd_fix *rv;
+ reloc_bfd_fix key;
+
+ if (relax_info == NULL)
+ return NULL;
+ if (relax_info->fix_list == NULL)
+ return NULL;
+
+ if (relax_info->fix_array == NULL)
+ cache_fix_array (sec);
+
+ key.src_offset = offset;
+ key.src_type = type;
+ rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
+ sizeof (reloc_bfd_fix), fix_compare);
+ return rv;
+}
+
+
+/* Section caching. */
+
+typedef struct section_cache_struct section_cache_t;
+
+struct section_cache_struct
+{
+ asection *sec;
+
+ bfd_byte *contents; /* Cache of the section contents. */
+ bfd_size_type content_length;
+
+ property_table_entry *ptbl; /* Cache of the section property table. */
+ unsigned pte_count;
+
+ Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
+ unsigned reloc_count;
+};
+
+
+static void
+init_section_cache (section_cache_t *sec_cache)
+{
+ memset (sec_cache, 0, sizeof (*sec_cache));
+}
+
+
+static void
+free_section_cache (section_cache_t *sec_cache)
+{
+ if (sec_cache->sec)
+ {
+ release_contents (sec_cache->sec, sec_cache->contents);
+ release_internal_relocs (sec_cache->sec, sec_cache->relocs);
+ if (sec_cache->ptbl)
+ free (sec_cache->ptbl);
+ }
+}
+
+
+static bfd_boolean
+section_cache_section (section_cache_t *sec_cache,
+ asection *sec,
+ struct bfd_link_info *link_info)
+{
+ bfd *abfd;
+ property_table_entry *prop_table = NULL;
+ int ptblsize = 0;
+ bfd_byte *contents = NULL;
+ Elf_Internal_Rela *internal_relocs = NULL;
+ bfd_size_type sec_size;
+
+ if (sec == NULL)
+ return FALSE;
+ if (sec == sec_cache->sec)
+ return TRUE;
+
+ abfd = sec->owner;
+ sec_size = bfd_get_section_limit (abfd, sec);
+
+ /* Get the contents. */
+ contents = retrieve_contents (abfd, sec, link_info->keep_memory);
+ if (contents == NULL && sec_size != 0)
+ goto err;
+
+ /* Get the relocations. */
+ internal_relocs = retrieve_internal_relocs (abfd, sec,
+ link_info->keep_memory);
+
+ /* Get the entry table. */
+ ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
+ XTENSA_PROP_SEC_NAME, FALSE);
+ if (ptblsize < 0)
+ goto err;
+
+ /* Fill in the new section cache. */
+ free_section_cache (sec_cache);
+ init_section_cache (sec_cache);
+
+ sec_cache->sec = sec;
+ sec_cache->contents = contents;
+ sec_cache->content_length = sec_size;
+ sec_cache->relocs = internal_relocs;
+ sec_cache->reloc_count = sec->reloc_count;
+ sec_cache->pte_count = ptblsize;
+ sec_cache->ptbl = prop_table;
+
+ return TRUE;
+
+ err:
+ release_contents (sec, contents);
+ release_internal_relocs (sec, internal_relocs);
+ if (prop_table)
+ free (prop_table);
+ return FALSE;
+}
+
+
+/* Extended basic blocks. */
+
+/* An ebb_struct represents an Extended Basic Block. Within this
+ range, we guarantee that all instructions are decodable, the
+ property table entries are contiguous, and no property table
+ specifies a segment that cannot have instructions moved. This
+ structure contains caches of the contents, property table and
+ relocations for the specified section for easy use. The range is
+ specified by ranges of indices for the byte offset, property table
+ offsets and relocation offsets. These must be consistent. */
+
+typedef struct ebb_struct ebb_t;
+
+struct ebb_struct
+{
+ asection *sec;
+
+ bfd_byte *contents; /* Cache of the section contents. */
+ bfd_size_type content_length;
+
+ property_table_entry *ptbl; /* Cache of the section property table. */
+ unsigned pte_count;
+
+ Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
+ unsigned reloc_count;
+
+ bfd_vma start_offset; /* Offset in section. */
+ unsigned start_ptbl_idx; /* Offset in the property table. */
+ unsigned start_reloc_idx; /* Offset in the relocations. */
+
+ bfd_vma end_offset;
+ unsigned end_ptbl_idx;
+ unsigned end_reloc_idx;
+
+ bfd_boolean ends_section; /* Is this the last ebb in a section? */
+
+ /* The unreachable property table at the end of this set of blocks;
+ NULL if the end is not an unreachable block. */
+ property_table_entry *ends_unreachable;
+};
+
+
+enum ebb_target_enum
+{
+ EBB_NO_ALIGN = 0,
+ EBB_DESIRE_TGT_ALIGN,
+ EBB_REQUIRE_TGT_ALIGN,
+ EBB_REQUIRE_LOOP_ALIGN,
+ EBB_REQUIRE_ALIGN
+};
+
+
+/* proposed_action_struct is similar to the text_action_struct except
+ that is represents a potential transformation, not one that will
+ occur. We build a list of these for an extended basic block
+ and use them to compute the actual actions desired. We must be
+ careful that the entire set of actual actions we perform do not
+ break any relocations that would fit if the actions were not
+ performed. */
+
+typedef struct proposed_action_struct proposed_action;
+
+struct proposed_action_struct
+{
+ enum ebb_target_enum align_type; /* for the target alignment */
+ bfd_vma alignment_pow;
+ text_action_t action;
+ bfd_vma offset;
+ int removed_bytes;
+ bfd_boolean do_action; /* If false, then we will not perform the action. */
+};
+
+
+/* The ebb_constraint_struct keeps a set of proposed actions for an
+ extended basic block. */
+
+typedef struct ebb_constraint_struct ebb_constraint;
+
+struct ebb_constraint_struct
+{
+ ebb_t ebb;
+ bfd_boolean start_movable;
+
+ /* Bytes of extra space at the beginning if movable. */
+ int start_extra_space;
+
+ enum ebb_target_enum start_align;
+
+ bfd_boolean end_movable;
+
+ /* Bytes of extra space at the end if movable. */
+ int end_extra_space;
+
+ unsigned action_count;
+ unsigned action_allocated;
+
+ /* Array of proposed actions. */
+ proposed_action *actions;
+
+ /* Action alignments -- one for each proposed action. */
+ enum ebb_target_enum *action_aligns;
+};
+
+
+static void
+init_ebb_constraint (ebb_constraint *c)
+{
+ memset (c, 0, sizeof (ebb_constraint));
+}
+
+
+static void
+free_ebb_constraint (ebb_constraint *c)
+{
+ if (c->actions)
+ free (c->actions);
+}
+
+
+static void
+init_ebb (ebb_t *ebb,
+ asection *sec,
+ bfd_byte *contents,
+ bfd_size_type content_length,
+ property_table_entry *prop_table,
+ unsigned ptblsize,
+ Elf_Internal_Rela *internal_relocs,
+ unsigned reloc_count)
+{
+ memset (ebb, 0, sizeof (ebb_t));
+ ebb->sec = sec;
+ ebb->contents = contents;
+ ebb->content_length = content_length;
+ ebb->ptbl = prop_table;
+ ebb->pte_count = ptblsize;
+ ebb->relocs = internal_relocs;
+ ebb->reloc_count = reloc_count;
+ ebb->start_offset = 0;
+ ebb->end_offset = ebb->content_length - 1;
+ ebb->start_ptbl_idx = 0;
+ ebb->end_ptbl_idx = ptblsize;
+ ebb->start_reloc_idx = 0;
+ ebb->end_reloc_idx = reloc_count;
+}
+
+
+/* Extend the ebb to all decodable contiguous sections. The algorithm
+ for building a basic block around an instruction is to push it
+ forward until we hit the end of a section, an unreachable block or
+ a block that cannot be transformed. Then we push it backwards
+ searching for similar conditions. */
+
+static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
+static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
+static bfd_size_type insn_block_decodable_len
+ (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
+
+static bfd_boolean
+extend_ebb_bounds (ebb_t *ebb)
+{
+ if (!extend_ebb_bounds_forward (ebb))
+ return FALSE;
+ if (!extend_ebb_bounds_backward (ebb))
+ return FALSE;
+ return TRUE;
+}
+
+
+static bfd_boolean
+extend_ebb_bounds_forward (ebb_t *ebb)
+{
+ property_table_entry *the_entry, *new_entry;
+
+ the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
+
+ /* Stop when (1) we cannot decode an instruction, (2) we are at
+ the end of the property tables, (3) we hit a non-contiguous property
+ table entry, (4) we hit a NO_TRANSFORM region. */
+
+ while (1)
+ {
+ bfd_vma entry_end;
+ bfd_size_type insn_block_len;
+
+ entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
+ insn_block_len =
+ insn_block_decodable_len (ebb->contents, ebb->content_length,
+ ebb->end_offset,
+ entry_end - ebb->end_offset);
+ if (insn_block_len != (entry_end - ebb->end_offset))
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
+ ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
+ return FALSE;
+ }
+ ebb->end_offset += insn_block_len;
+
+ if (ebb->end_offset == ebb->sec->size)
+ ebb->ends_section = TRUE;
+
+ /* Update the reloc counter. */
+ while (ebb->end_reloc_idx + 1 < ebb->reloc_count
+ && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
+ < ebb->end_offset))
+ {
+ ebb->end_reloc_idx++;
+ }
+
+ if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
+ return TRUE;
+
+ new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
+ if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
+ || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
+ || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
+ break;
+
+ if (the_entry->address + the_entry->size != new_entry->address)
+ break;
+
+ the_entry = new_entry;
+ ebb->end_ptbl_idx++;
+ }
+
+ /* Quick check for an unreachable or end of file just at the end. */
+ if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
+ {
+ if (ebb->end_offset == ebb->content_length)
+ ebb->ends_section = TRUE;
+ }
+ else
+ {
+ new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
+ if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
+ && the_entry->address + the_entry->size == new_entry->address)
+ ebb->ends_unreachable = new_entry;
+ }
+
+ /* Any other ending requires exact alignment. */
+ return TRUE;
+}
+
+
+static bfd_boolean
+extend_ebb_bounds_backward (ebb_t *ebb)
+{
+ property_table_entry *the_entry, *new_entry;
+
+ the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
+
+ /* Stop when (1) we cannot decode the instructions in the current entry.
+ (2) we are at the beginning of the property tables, (3) we hit a
+ non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
+
+ while (1)
+ {
+ bfd_vma block_begin;
+ bfd_size_type insn_block_len;
+
+ block_begin = the_entry->address - ebb->sec->vma;
+ insn_block_len =
+ insn_block_decodable_len (ebb->contents, ebb->content_length,
+ block_begin,
+ ebb->start_offset - block_begin);
+ if (insn_block_len != ebb->start_offset - block_begin)
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
+ ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
+ return FALSE;
+ }
+ ebb->start_offset -= insn_block_len;
+
+ /* Update the reloc counter. */
+ while (ebb->start_reloc_idx > 0
+ && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
+ >= ebb->start_offset))
+ {
+ ebb->start_reloc_idx--;
+ }
+
+ if (ebb->start_ptbl_idx == 0)
+ return TRUE;
+
+ new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
+ if ((new_entry->flags & XTENSA_PROP_INSN) == 0
+ || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
+ || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
+ return TRUE;
+ if (new_entry->address + new_entry->size != the_entry->address)
+ return TRUE;
+
+ the_entry = new_entry;
+ ebb->start_ptbl_idx--;
+ }
+ return TRUE;
+}
+
+
+static bfd_size_type
+insn_block_decodable_len (bfd_byte *contents,
+ bfd_size_type content_len,
+ bfd_vma block_offset,
+ bfd_size_type block_len)
+{
+ bfd_vma offset = block_offset;
+
+ while (offset < block_offset + block_len)
+ {
+ bfd_size_type insn_len = 0;
+
+ insn_len = insn_decode_len (contents, content_len, offset);
+ if (insn_len == 0)
+ return (offset - block_offset);
+ offset += insn_len;
+ }
+ return (offset - block_offset);
+}
+
+
+static void
+ebb_propose_action (ebb_constraint *c,
+ enum ebb_target_enum align_type,
+ bfd_vma alignment_pow,
+ text_action_t action,
+ bfd_vma offset,
+ int removed_bytes,
+ bfd_boolean do_action)
+{
+ proposed_action *act;
+
+ if (c->action_allocated <= c->action_count)
+ {
+ unsigned new_allocated, i;
+ proposed_action *new_actions;
+
+ new_allocated = (c->action_count + 2) * 2;
+ new_actions = (proposed_action *)
+ bfd_zmalloc (sizeof (proposed_action) * new_allocated);
+
+ for (i = 0; i < c->action_count; i++)
+ new_actions[i] = c->actions[i];
+ if (c->actions)
+ free (c->actions);
+ c->actions = new_actions;
+ c->action_allocated = new_allocated;
+ }
+
+ act = &c->actions[c->action_count];
+ act->align_type = align_type;
+ act->alignment_pow = alignment_pow;
+ act->action = action;
+ act->offset = offset;
+ act->removed_bytes = removed_bytes;
+ act->do_action = do_action;
+
+ c->action_count++;
+}
+
+
+/* Access to internal relocations, section contents and symbols. */
+
+/* During relaxation, we need to modify relocations, section contents,
+ and symbol definitions, and we need to keep the original values from
+ being reloaded from the input files, i.e., we need to "pin" the
+ modified values in memory. We also want to continue to observe the
+ setting of the "keep-memory" flag. The following functions wrap the
+ standard BFD functions to take care of this for us. */
+
+static Elf_Internal_Rela *
+retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
+{
+ Elf_Internal_Rela *internal_relocs;
+
+ if ((sec->flags & SEC_LINKER_CREATED) != 0)
+ return NULL;
+
+ internal_relocs = elf_section_data (sec)->relocs;
+ if (internal_relocs == NULL)
+ internal_relocs = (_bfd_elf_link_read_relocs
+ (abfd, sec, NULL, NULL, keep_memory));
+ return internal_relocs;
+}
+
+
+static void
+pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
+{
+ elf_section_data (sec)->relocs = internal_relocs;
+}
+
+
+static void
+release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
+{
+ if (internal_relocs
+ && elf_section_data (sec)->relocs != internal_relocs)
+ free (internal_relocs);
+}
+
+
+static bfd_byte *
+retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
+{
+ bfd_byte *contents;
+ bfd_size_type sec_size;
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+ contents = elf_section_data (sec)->this_hdr.contents;
+
+ if (contents == NULL && sec_size != 0)
+ {
+ if (!bfd_malloc_and_get_section (abfd, sec, &contents))
+ {
+ if (contents)
+ free (contents);
+ return NULL;
+ }
+ if (keep_memory)
+ elf_section_data (sec)->this_hdr.contents = contents;
+ }
+ return contents;
+}
+
+
+static void
+pin_contents (asection *sec, bfd_byte *contents)
+{
+ elf_section_data (sec)->this_hdr.contents = contents;
+}
+
+
+static void
+release_contents (asection *sec, bfd_byte *contents)
+{
+ if (contents && elf_section_data (sec)->this_hdr.contents != contents)
+ free (contents);
+}
+
+
+static Elf_Internal_Sym *
+retrieve_local_syms (bfd *input_bfd)
+{
+ Elf_Internal_Shdr *symtab_hdr;
+ Elf_Internal_Sym *isymbuf;
+ size_t locsymcount;
+
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ locsymcount = symtab_hdr->sh_info;
+
+ isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
+ if (isymbuf == NULL && locsymcount != 0)
+ isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
+ NULL, NULL, NULL);
+
+ /* Save the symbols for this input file so they won't be read again. */
+ if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
+ symtab_hdr->contents = (unsigned char *) isymbuf;
+
+ return isymbuf;
+}
+
+
+/* Code for link-time relaxation. */
+
+/* Initialization for relaxation: */
+static bfd_boolean analyze_relocations (struct bfd_link_info *);
+static bfd_boolean find_relaxable_sections
+ (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
+static bfd_boolean collect_source_relocs
+ (bfd *, asection *, struct bfd_link_info *);
+static bfd_boolean is_resolvable_asm_expansion
+ (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
+ bfd_boolean *);
+static Elf_Internal_Rela *find_associated_l32r_irel
+ (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
+static bfd_boolean compute_text_actions
+ (bfd *, asection *, struct bfd_link_info *);
+static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
+static bfd_boolean compute_ebb_actions (ebb_constraint *);
+static bfd_boolean check_section_ebb_pcrels_fit
+ (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
+ const xtensa_opcode *);
+static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
+static void text_action_add_proposed
+ (text_action_list *, const ebb_constraint *, asection *);
+static int compute_fill_extra_space (property_table_entry *);
+
+/* First pass: */
+static bfd_boolean compute_removed_literals
+ (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
+static Elf_Internal_Rela *get_irel_at_offset
+ (asection *, Elf_Internal_Rela *, bfd_vma);
+static bfd_boolean is_removable_literal
+ (const source_reloc *, int, const source_reloc *, int, asection *,
+ property_table_entry *, int);
+static bfd_boolean remove_dead_literal
+ (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
+ Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
+static bfd_boolean identify_literal_placement
+ (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
+ value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
+ source_reloc *, property_table_entry *, int, section_cache_t *,
+ bfd_boolean);
+static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
+static bfd_boolean coalesce_shared_literal
+ (asection *, source_reloc *, property_table_entry *, int, value_map *);
+static bfd_boolean move_shared_literal
+ (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
+ int, const r_reloc *, const literal_value *, section_cache_t *);
+
+/* Second pass: */
+static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
+static bfd_boolean translate_section_fixes (asection *);
+static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
+static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
+static void shrink_dynamic_reloc_sections
+ (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
+static bfd_boolean move_literal
+ (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
+ xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
+static bfd_boolean relax_property_section
+ (bfd *, asection *, struct bfd_link_info *);
+
+/* Third pass: */
+static bfd_boolean relax_section_symbols (bfd *, asection *);
+
+
+static bfd_boolean
+elf_xtensa_relax_section (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *link_info,
+ bfd_boolean *again)
+{
+ static value_map_hash_table *values = NULL;
+ static bfd_boolean relocations_analyzed = FALSE;
+ xtensa_relax_info *relax_info;
+
+ if (!relocations_analyzed)
+ {
+ /* Do some overall initialization for relaxation. */
+ values = value_map_hash_table_init ();
+ if (values == NULL)
+ return FALSE;
+ relaxing_section = TRUE;
+ if (!analyze_relocations (link_info))
+ return FALSE;
+ relocations_analyzed = TRUE;
+ }
+ *again = FALSE;
+
+ /* Don't mess with linker-created sections. */
+ if ((sec->flags & SEC_LINKER_CREATED) != 0)
+ return TRUE;
+
+ relax_info = get_xtensa_relax_info (sec);
+ BFD_ASSERT (relax_info != NULL);
+
+ switch (relax_info->visited)
+ {
+ case 0:
+ /* Note: It would be nice to fold this pass into
+ analyze_relocations, but it is important for this step that the
+ sections be examined in link order. */
+ if (!compute_removed_literals (abfd, sec, link_info, values))
+ return FALSE;
+ *again = TRUE;
+ break;
+
+ case 1:
+ if (values)
+ value_map_hash_table_delete (values);
+ values = NULL;
+ if (!relax_section (abfd, sec, link_info))
+ return FALSE;
+ *again = TRUE;
+ break;
+
+ case 2:
+ if (!relax_section_symbols (abfd, sec))
+ return FALSE;
+ break;
+ }
+
+ relax_info->visited++;
+ return TRUE;
+}
+
+
+/* Initialization for relaxation. */
+
+/* This function is called once at the start of relaxation. It scans
+ all the input sections and marks the ones that are relaxable (i.e.,
+ literal sections with L32R relocations against them), and then
+ collects source_reloc information for all the relocations against
+ those relaxable sections. During this process, it also detects
+ longcalls, i.e., calls relaxed by the assembler into indirect
+ calls, that can be optimized back into direct calls. Within each
+ extended basic block (ebb) containing an optimized longcall, it
+ computes a set of "text actions" that can be performed to remove
+ the L32R associated with the longcall while optionally preserving
+ branch target alignments. */
+
+static bfd_boolean
+analyze_relocations (struct bfd_link_info *link_info)
+{
+ bfd *abfd;
+ asection *sec;
+ bfd_boolean is_relaxable = FALSE;
+
+ /* Initialize the per-section relaxation info. */
+ for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
+ for (sec = abfd->sections; sec != NULL; sec = sec->next)
+ {
+ init_xtensa_relax_info (sec);
+ }
+
+ /* Mark relaxable sections (and count relocations against each one). */
+ for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
+ for (sec = abfd->sections; sec != NULL; sec = sec->next)
+ {
+ if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
+ return FALSE;
+ }
+
+ /* Bail out if there are no relaxable sections. */
+ if (!is_relaxable)
+ return TRUE;
+
+ /* Allocate space for source_relocs. */
+ for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
+ for (sec = abfd->sections; sec != NULL; sec = sec->next)
+ {
+ xtensa_relax_info *relax_info;
+
+ relax_info = get_xtensa_relax_info (sec);
+ if (relax_info->is_relaxable_literal_section
+ || relax_info->is_relaxable_asm_section)
+ {
+ relax_info->src_relocs = (source_reloc *)
+ bfd_malloc (relax_info->src_count * sizeof (source_reloc));
+ }
+ else
+ relax_info->src_count = 0;
+ }
+
+ /* Collect info on relocations against each relaxable section. */
+ for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
+ for (sec = abfd->sections; sec != NULL; sec = sec->next)
+ {
+ if (!collect_source_relocs (abfd, sec, link_info))
+ return FALSE;
+ }
+
+ /* Compute the text actions. */
+ for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
+ for (sec = abfd->sections; sec != NULL; sec = sec->next)
+ {
+ if (!compute_text_actions (abfd, sec, link_info))
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+
+/* Find all the sections that might be relaxed. The motivation for
+ this pass is that collect_source_relocs() needs to record _all_ the
+ relocations that target each relaxable section. That is expensive
+ and unnecessary unless the target section is actually going to be
+ relaxed. This pass identifies all such sections by checking if
+ they have L32Rs pointing to them. In the process, the total number
+ of relocations targeting each section is also counted so that we
+ know how much space to allocate for source_relocs against each
+ relaxable literal section. */
+
+static bfd_boolean
+find_relaxable_sections (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *link_info,
+ bfd_boolean *is_relaxable_p)
+{
+ Elf_Internal_Rela *internal_relocs;
+ bfd_byte *contents;
+ bfd_boolean ok = TRUE;
+ unsigned i;
+ xtensa_relax_info *source_relax_info;
+ bfd_boolean is_l32r_reloc;
+
+ internal_relocs = retrieve_internal_relocs (abfd, sec,
+ link_info->keep_memory);
+ if (internal_relocs == NULL)
+ return ok;
+
+ contents = retrieve_contents (abfd, sec, link_info->keep_memory);
+ if (contents == NULL && sec->size != 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ source_relax_info = get_xtensa_relax_info (sec);
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel = &internal_relocs[i];
+ r_reloc r_rel;
+ asection *target_sec;
+ xtensa_relax_info *target_relax_info;
+
+ /* If this section has not already been marked as "relaxable", and
+ if it contains any ASM_EXPAND relocations (marking expanded
+ longcalls) that can be optimized into direct calls, then mark
+ the section as "relaxable". */
+ if (source_relax_info
+ && !source_relax_info->is_relaxable_asm_section
+ && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
+ {
+ bfd_boolean is_reachable = FALSE;
+ if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
+ link_info, &is_reachable)
+ && is_reachable)
+ {
+ source_relax_info->is_relaxable_asm_section = TRUE;
+ *is_relaxable_p = TRUE;
+ }
+ }
+
+ r_reloc_init (&r_rel, abfd, irel, contents,
+ bfd_get_section_limit (abfd, sec));
+
+ target_sec = r_reloc_get_section (&r_rel);
+ target_relax_info = get_xtensa_relax_info (target_sec);
+ if (!target_relax_info)
+ continue;
+
+ /* Count PC-relative operand relocations against the target section.
+ Note: The conditions tested here must match the conditions under
+ which init_source_reloc is called in collect_source_relocs(). */
+ is_l32r_reloc = FALSE;
+ if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
+ {
+ xtensa_opcode opcode =
+ get_relocation_opcode (abfd, sec, contents, irel);
+ if (opcode != XTENSA_UNDEFINED)
+ {
+ is_l32r_reloc = (opcode == get_l32r_opcode ());
+ if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
+ || is_l32r_reloc)
+ target_relax_info->src_count++;
+ }
+ }
+
+ if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
+ {
+ /* Mark the target section as relaxable. */
+ target_relax_info->is_relaxable_literal_section = TRUE;
+ *is_relaxable_p = TRUE;
+ }
+ }
+
+ error_return:
+ release_contents (sec, contents);
+ release_internal_relocs (sec, internal_relocs);
+ return ok;
+}
+
+
+/* Record _all_ the relocations that point to relaxable sections, and
+ get rid of ASM_EXPAND relocs by either converting them to
+ ASM_SIMPLIFY or by removing them. */
+
+static bfd_boolean
+collect_source_relocs (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *link_info)
+{
+ Elf_Internal_Rela *internal_relocs;
+ bfd_byte *contents;
+ bfd_boolean ok = TRUE;
+ unsigned i;
+ bfd_size_type sec_size;
+
+ internal_relocs = retrieve_internal_relocs (abfd, sec,
+ link_info->keep_memory);
+ if (internal_relocs == NULL)
+ return ok;
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+ contents = retrieve_contents (abfd, sec, link_info->keep_memory);
+ if (contents == NULL && sec_size != 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ /* Record relocations against relaxable literal sections. */
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel = &internal_relocs[i];
+ r_reloc r_rel;
+ asection *target_sec;
+ xtensa_relax_info *target_relax_info;
+
+ r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
+
+ target_sec = r_reloc_get_section (&r_rel);
+ target_relax_info = get_xtensa_relax_info (target_sec);
+
+ if (target_relax_info
+ && (target_relax_info->is_relaxable_literal_section
+ || target_relax_info->is_relaxable_asm_section))
+ {
+ xtensa_opcode opcode = XTENSA_UNDEFINED;
+ int opnd = -1;
+ bfd_boolean is_abs_literal = FALSE;
+
+ if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
+ {
+ /* None of the current alternate relocs are PC-relative,
+ and only PC-relative relocs matter here. However, we
+ still need to record the opcode for literal
+ coalescing. */
+ opcode = get_relocation_opcode (abfd, sec, contents, irel);
+ if (opcode == get_l32r_opcode ())
+ {
+ is_abs_literal = TRUE;
+ opnd = 1;
+ }
+ else
+ opcode = XTENSA_UNDEFINED;
+ }
+ else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
+ {
+ opcode = get_relocation_opcode (abfd, sec, contents, irel);
+ opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
+ }
+
+ if (opcode != XTENSA_UNDEFINED)
+ {
+ int src_next = target_relax_info->src_next++;
+ source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
+
+ init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
+ is_abs_literal);
+ }
+ }
+ }
+
+ /* Now get rid of ASM_EXPAND relocations. At this point, the
+ src_relocs array for the target literal section may still be
+ incomplete, but it must at least contain the entries for the L32R
+ relocations associated with ASM_EXPANDs because they were just
+ added in the preceding loop over the relocations. */
+
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel = &internal_relocs[i];
+ bfd_boolean is_reachable;
+
+ if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
+ &is_reachable))
+ continue;
+
+ if (is_reachable)
+ {
+ Elf_Internal_Rela *l32r_irel;
+ r_reloc r_rel;
+ asection *target_sec;
+ xtensa_relax_info *target_relax_info;
+
+ /* Mark the source_reloc for the L32R so that it will be
+ removed in compute_removed_literals(), along with the
+ associated literal. */
+ l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
+ irel, internal_relocs);
+ if (l32r_irel == NULL)
+ continue;
+
+ r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
+
+ target_sec = r_reloc_get_section (&r_rel);
+ target_relax_info = get_xtensa_relax_info (target_sec);
+
+ if (target_relax_info
+ && (target_relax_info->is_relaxable_literal_section
+ || target_relax_info->is_relaxable_asm_section))
+ {
+ source_reloc *s_reloc;
+
+ /* Search the source_relocs for the entry corresponding to
+ the l32r_irel. Note: The src_relocs array is not yet
+ sorted, but it wouldn't matter anyway because we're
+ searching by source offset instead of target offset. */
+ s_reloc = find_source_reloc (target_relax_info->src_relocs,
+ target_relax_info->src_next,
+ sec, l32r_irel);
+ BFD_ASSERT (s_reloc);
+ s_reloc->is_null = TRUE;
+ }
+
+ /* Convert this reloc to ASM_SIMPLIFY. */
+ irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
+ R_XTENSA_ASM_SIMPLIFY);
+ l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
+
+ pin_internal_relocs (sec, internal_relocs);
+ }
+ else
+ {
+ /* It is resolvable but doesn't reach. We resolve now
+ by eliminating the relocation -- the call will remain
+ expanded into L32R/CALLX. */
+ irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
+ pin_internal_relocs (sec, internal_relocs);
+ }
+ }
+
+ error_return:
+ release_contents (sec, contents);
+ release_internal_relocs (sec, internal_relocs);
+ return ok;
+}
+
+
+/* Return TRUE if the asm expansion can be resolved. Generally it can
+ be resolved on a final link or when a partial link locates it in the
+ same section as the target. Set "is_reachable" flag if the target of
+ the call is within the range of a direct call, given the current VMA
+ for this section and the target section. */
+
+bfd_boolean
+is_resolvable_asm_expansion (bfd *abfd,
+ asection *sec,
+ bfd_byte *contents,
+ Elf_Internal_Rela *irel,
+ struct bfd_link_info *link_info,
+ bfd_boolean *is_reachable_p)
+{
+ asection *target_sec;
+ bfd_vma target_offset;
+ r_reloc r_rel;
+ xtensa_opcode opcode, direct_call_opcode;
+ bfd_vma self_address;
+ bfd_vma dest_address;
+ bfd_boolean uses_l32r;
+ bfd_size_type sec_size;
+
+ *is_reachable_p = FALSE;
+
+ if (contents == NULL)
+ return FALSE;
+
+ if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
+ return FALSE;
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+ opcode = get_expanded_call_opcode (contents + irel->r_offset,
+ sec_size - irel->r_offset, &uses_l32r);
+ /* Optimization of longcalls that use CONST16 is not yet implemented. */
+ if (!uses_l32r)
+ return FALSE;
+
+ direct_call_opcode = swap_callx_for_call_opcode (opcode);
+ if (direct_call_opcode == XTENSA_UNDEFINED)
+ return FALSE;
+
+ /* Check and see that the target resolves. */
+ r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
+ if (!r_reloc_is_defined (&r_rel))
+ return FALSE;
+
+ target_sec = r_reloc_get_section (&r_rel);
+ target_offset = r_rel.target_offset;
+
+ /* If the target is in a shared library, then it doesn't reach. This
+ isn't supposed to come up because the compiler should never generate
+ non-PIC calls on systems that use shared libraries, but the linker
+ shouldn't crash regardless. */
+ if (!target_sec->output_section)
+ return FALSE;
+
+ /* For relocatable sections, we can only simplify when the output
+ section of the target is the same as the output section of the
+ source. */
+ if (link_info->relocatable
+ && (target_sec->output_section != sec->output_section
+ || is_reloc_sym_weak (abfd, irel)))
+ return FALSE;
+
+ if (target_sec->output_section != sec->output_section)
+ {
+ /* If the two sections are sufficiently far away that relaxation
+ might take the call out of range, we can't simplify. For
+ example, a positive displacement call into another memory
+ could get moved to a lower address due to literal removal,
+ but the destination won't move, and so the displacment might
+ get larger.
+
+ If the displacement is negative, assume the destination could
+ move as far back as the start of the output section. The
+ self_address will be at least as far into the output section
+ as it is prior to relaxation.
+
+ If the displacement is postive, assume the destination will be in
+ it's pre-relaxed location (because relaxation only makes sections
+ smaller). The self_address could go all the way to the beginning
+ of the output section. */
+
+ dest_address = target_sec->output_section->vma;
+ self_address = sec->output_section->vma;
+
+ if (sec->output_section->vma > target_sec->output_section->vma)
+ self_address += sec->output_offset + irel->r_offset + 3;
+ else
+ dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
+ /* Call targets should be four-byte aligned. */
+ dest_address = (dest_address + 3) & ~3;
+ }
+ else
+ {
+
+ self_address = (sec->output_section->vma
+ + sec->output_offset + irel->r_offset + 3);
+ dest_address = (target_sec->output_section->vma
+ + target_sec->output_offset + target_offset);
+ }
+
+ *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
+ self_address, dest_address);
+
+ if ((self_address >> CALL_SEGMENT_BITS) !=
+ (dest_address >> CALL_SEGMENT_BITS))
+ return FALSE;
+
+ return TRUE;
+}
+
+
+static Elf_Internal_Rela *
+find_associated_l32r_irel (bfd *abfd,
+ asection *sec,
+ bfd_byte *contents,
+ Elf_Internal_Rela *other_irel,
+ Elf_Internal_Rela *internal_relocs)
+{
+ unsigned i;
+
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel = &internal_relocs[i];
+
+ if (irel == other_irel)
+ continue;
+ if (irel->r_offset != other_irel->r_offset)
+ continue;
+ if (is_l32r_relocation (abfd, sec, contents, irel))
+ return irel;
+ }
+
+ return NULL;
+}
+
+
+static xtensa_opcode *
+build_reloc_opcodes (bfd *abfd,
+ asection *sec,
+ bfd_byte *contents,
+ Elf_Internal_Rela *internal_relocs)
+{
+ unsigned i;
+ xtensa_opcode *reloc_opcodes =
+ (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel = &internal_relocs[i];
+ reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
+ }
+ return reloc_opcodes;
+}
+
+
+/* The compute_text_actions function will build a list of potential
+ transformation actions for code in the extended basic block of each
+ longcall that is optimized to a direct call. From this list we
+ generate a set of actions to actually perform that optimizes for
+ space and, if not using size_opt, maintains branch target
+ alignments.
+
+ These actions to be performed are placed on a per-section list.
+ The actual changes are performed by relax_section() in the second
+ pass. */
+
+bfd_boolean
+compute_text_actions (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *link_info)
+{
+ xtensa_opcode *reloc_opcodes = NULL;
+ xtensa_relax_info *relax_info;
+ bfd_byte *contents;
+ Elf_Internal_Rela *internal_relocs;
+ bfd_boolean ok = TRUE;
+ unsigned i;
+ property_table_entry *prop_table = 0;
+ int ptblsize = 0;
+ bfd_size_type sec_size;
+
+ relax_info = get_xtensa_relax_info (sec);
+ BFD_ASSERT (relax_info);
+ BFD_ASSERT (relax_info->src_next == relax_info->src_count);
+
+ /* Do nothing if the section contains no optimized longcalls. */
+ if (!relax_info->is_relaxable_asm_section)
+ return ok;
+
+ internal_relocs = retrieve_internal_relocs (abfd, sec,
+ link_info->keep_memory);
+
+ if (internal_relocs)
+ qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
+ internal_reloc_compare);
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+ contents = retrieve_contents (abfd, sec, link_info->keep_memory);
+ if (contents == NULL && sec_size != 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
+ XTENSA_PROP_SEC_NAME, FALSE);
+ if (ptblsize < 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel = &internal_relocs[i];
+ bfd_vma r_offset;
+ property_table_entry *the_entry;
+ int ptbl_idx;
+ ebb_t *ebb;
+ ebb_constraint ebb_table;
+ bfd_size_type simplify_size;
+
+ if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
+ continue;
+ r_offset = irel->r_offset;
+
+ simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
+ if (simplify_size == 0)
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
+ sec->owner, sec, r_offset);
+ continue;
+ }
+
+ /* If the instruction table is not around, then don't do this
+ relaxation. */
+ the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
+ sec->vma + irel->r_offset);
+ if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
+ {
+ text_action_add (&relax_info->action_list,
+ ta_convert_longcall, sec, r_offset,
+ 0);
+ continue;
+ }
+
+ /* If the next longcall happens to be at the same address as an
+ unreachable section of size 0, then skip forward. */
+ ptbl_idx = the_entry - prop_table;
+ while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
+ && the_entry->size == 0
+ && ptbl_idx + 1 < ptblsize
+ && (prop_table[ptbl_idx + 1].address
+ == prop_table[ptbl_idx].address))
+ {
+ ptbl_idx++;
+ the_entry++;
+ }
+
+ if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
+ /* NO_REORDER is OK */
+ continue;
+
+ init_ebb_constraint (&ebb_table);
+ ebb = &ebb_table.ebb;
+ init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
+ internal_relocs, sec->reloc_count);
+ ebb->start_offset = r_offset + simplify_size;
+ ebb->end_offset = r_offset + simplify_size;
+ ebb->start_ptbl_idx = ptbl_idx;
+ ebb->end_ptbl_idx = ptbl_idx;
+ ebb->start_reloc_idx = i;
+ ebb->end_reloc_idx = i;
+
+ /* Precompute the opcode for each relocation. */
+ if (reloc_opcodes == NULL)
+ reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
+ internal_relocs);
+
+ if (!extend_ebb_bounds (ebb)
+ || !compute_ebb_proposed_actions (&ebb_table)
+ || !compute_ebb_actions (&ebb_table)
+ || !check_section_ebb_pcrels_fit (abfd, sec, contents,
+ internal_relocs, &ebb_table,
+ reloc_opcodes)
+ || !check_section_ebb_reduces (&ebb_table))
+ {
+ /* If anything goes wrong or we get unlucky and something does
+ not fit, with our plan because of expansion between
+ critical branches, just convert to a NOP. */
+
+ text_action_add (&relax_info->action_list,
+ ta_convert_longcall, sec, r_offset, 0);
+ i = ebb_table.ebb.end_reloc_idx;
+ free_ebb_constraint (&ebb_table);
+ continue;
+ }
+
+ text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
+
+ /* Update the index so we do not go looking at the relocations
+ we have already processed. */
+ i = ebb_table.ebb.end_reloc_idx;
+ free_ebb_constraint (&ebb_table);
+ }
+
+#if DEBUG
+ if (relax_info->action_list.head)
+ print_action_list (stderr, &relax_info->action_list);
+#endif
+
+error_return:
+ release_contents (sec, contents);
+ release_internal_relocs (sec, internal_relocs);
+ if (prop_table)
+ free (prop_table);
+ if (reloc_opcodes)
+ free (reloc_opcodes);
+
+ return ok;
+}
+
+
+/* Do not widen an instruction if it is preceeded by a
+ loop opcode. It might cause misalignment. */
+
+static bfd_boolean
+prev_instr_is_a_loop (bfd_byte *contents,
+ bfd_size_type content_length,
+ bfd_size_type offset)
+{
+ xtensa_opcode prev_opcode;
+
+ if (offset < 3)
+ return FALSE;
+ prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
+ return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
+}
+
+
+/* Find all of the possible actions for an extended basic block. */
+
+bfd_boolean
+compute_ebb_proposed_actions (ebb_constraint *ebb_table)
+{
+ const ebb_t *ebb = &ebb_table->ebb;
+ unsigned rel_idx = ebb->start_reloc_idx;
+ property_table_entry *entry, *start_entry, *end_entry;
+ bfd_vma offset = 0;
+ xtensa_isa isa = xtensa_default_isa;
+ xtensa_format fmt;
+ static xtensa_insnbuf insnbuf = NULL;
+ static xtensa_insnbuf slotbuf = NULL;
+
+ if (insnbuf == NULL)
+ {
+ insnbuf = xtensa_insnbuf_alloc (isa);
+ slotbuf = xtensa_insnbuf_alloc (isa);
+ }
+
+ start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
+ end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
+
+ for (entry = start_entry; entry <= end_entry; entry++)
+ {
+ bfd_vma start_offset, end_offset;
+ bfd_size_type insn_len;
+
+ start_offset = entry->address - ebb->sec->vma;
+ end_offset = entry->address + entry->size - ebb->sec->vma;
+
+ if (entry == start_entry)
+ start_offset = ebb->start_offset;
+ if (entry == end_entry)
+ end_offset = ebb->end_offset;
+ offset = start_offset;
+
+ if (offset == entry->address - ebb->sec->vma
+ && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
+ {
+ enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
+ BFD_ASSERT (offset != end_offset);
+ if (offset == end_offset)
+ return FALSE;
+
+ insn_len = insn_decode_len (ebb->contents, ebb->content_length,
+ offset);
+ if (insn_len == 0)
+ goto decode_error;
+
+ if (check_branch_target_aligned_address (offset, insn_len))
+ align_type = EBB_REQUIRE_TGT_ALIGN;
+
+ ebb_propose_action (ebb_table, align_type, 0,
+ ta_none, offset, 0, TRUE);
+ }
+
+ while (offset != end_offset)
+ {
+ Elf_Internal_Rela *irel;
+ xtensa_opcode opcode;
+
+ while (rel_idx < ebb->end_reloc_idx
+ && (ebb->relocs[rel_idx].r_offset < offset
+ || (ebb->relocs[rel_idx].r_offset == offset
+ && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
+ != R_XTENSA_ASM_SIMPLIFY))))
+ rel_idx++;
+
+ /* Check for longcall. */
+ irel = &ebb->relocs[rel_idx];
+ if (irel->r_offset == offset
+ && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
+ {
+ bfd_size_type simplify_size;
+
+ simplify_size = get_asm_simplify_size (ebb->contents,
+ ebb->content_length,
+ irel->r_offset);
+ if (simplify_size == 0)
+ goto decode_error;
+
+ ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
+ ta_convert_longcall, offset, 0, TRUE);
+
+ offset += simplify_size;
+ continue;
+ }
+
+ if (offset + MIN_INSN_LENGTH > ebb->content_length)
+ goto decode_error;
+ xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
+ ebb->content_length - offset);
+ fmt = xtensa_format_decode (isa, insnbuf);
+ if (fmt == XTENSA_UNDEFINED)
+ goto decode_error;
+ insn_len = xtensa_format_length (isa, fmt);
+ if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
+ goto decode_error;
+
+ if (xtensa_format_num_slots (isa, fmt) != 1)
+ {
+ offset += insn_len;
+ continue;
+ }
+
+ xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
+ opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
+ if (opcode == XTENSA_UNDEFINED)
+ goto decode_error;
+
+ if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
+ && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
+ && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
+ {
+ /* Add an instruction narrow action. */
+ ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
+ ta_narrow_insn, offset, 0, FALSE);
+ }
+ else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
+ && can_widen_instruction (slotbuf, fmt, opcode) != 0
+ && ! prev_instr_is_a_loop (ebb->contents,
+ ebb->content_length, offset))
+ {
+ /* Add an instruction widen action. */
+ ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
+ ta_widen_insn, offset, 0, FALSE);
+ }
+ else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
+ {
+ /* Check for branch targets. */
+ ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
+ ta_none, offset, 0, TRUE);
+ }
+
+ offset += insn_len;
+ }
+ }
+
+ if (ebb->ends_unreachable)
+ {
+ ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
+ ta_fill, ebb->end_offset, 0, TRUE);
+ }
+
+ return TRUE;
+
+ decode_error:
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
+ ebb->sec->owner, ebb->sec, offset);
+ return FALSE;
+}
+
+
+/* After all of the information has collected about the
+ transformations possible in an EBB, compute the appropriate actions
+ here in compute_ebb_actions. We still must check later to make
+ sure that the actions do not break any relocations. The algorithm
+ used here is pretty greedy. Basically, it removes as many no-ops
+ as possible so that the end of the EBB has the same alignment
+ characteristics as the original. First, it uses narrowing, then
+ fill space at the end of the EBB, and finally widenings. If that
+ does not work, it tries again with one fewer no-op removed. The
+ optimization will only be performed if all of the branch targets
+ that were aligned before transformation are also aligned after the
+ transformation.
+
+ When the size_opt flag is set, ignore the branch target alignments,
+ narrow all wide instructions, and remove all no-ops unless the end
+ of the EBB prevents it. */
+
+bfd_boolean
+compute_ebb_actions (ebb_constraint *ebb_table)
+{
+ unsigned i = 0;
+ unsigned j;
+ int removed_bytes = 0;
+ ebb_t *ebb = &ebb_table->ebb;
+ unsigned seg_idx_start = 0;
+ unsigned seg_idx_end = 0;
+
+ /* We perform this like the assembler relaxation algorithm: Start by
+ assuming all instructions are narrow and all no-ops removed; then
+ walk through.... */
+
+ /* For each segment of this that has a solid constraint, check to
+ see if there are any combinations that will keep the constraint.
+ If so, use it. */
+ for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
+ {
+ bfd_boolean requires_text_end_align = FALSE;
+ unsigned longcall_count = 0;
+ unsigned longcall_convert_count = 0;
+ unsigned narrowable_count = 0;
+ unsigned narrowable_convert_count = 0;
+ unsigned widenable_count = 0;
+ unsigned widenable_convert_count = 0;
+
+ proposed_action *action = NULL;
+ int align = (1 << ebb_table->ebb.sec->alignment_power);
+
+ seg_idx_start = seg_idx_end;
+
+ for (i = seg_idx_start; i < ebb_table->action_count; i++)
+ {
+ action = &ebb_table->actions[i];
+ if (action->action == ta_convert_longcall)
+ longcall_count++;
+ if (action->action == ta_narrow_insn)
+ narrowable_count++;
+ if (action->action == ta_widen_insn)
+ widenable_count++;
+ if (action->action == ta_fill)
+ break;
+ if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
+ break;
+ if (action->align_type == EBB_REQUIRE_TGT_ALIGN
+ && !elf32xtensa_size_opt)
+ break;
+ }
+ seg_idx_end = i;
+
+ if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
+ requires_text_end_align = TRUE;
+
+ if (elf32xtensa_size_opt && !requires_text_end_align
+ && action->align_type != EBB_REQUIRE_LOOP_ALIGN
+ && action->align_type != EBB_REQUIRE_TGT_ALIGN)
+ {
+ longcall_convert_count = longcall_count;
+ narrowable_convert_count = narrowable_count;
+ widenable_convert_count = 0;
+ }
+ else
+ {
+ /* There is a constraint. Convert the max number of longcalls. */
+ narrowable_convert_count = 0;
+ longcall_convert_count = 0;
+ widenable_convert_count = 0;
+
+ for (j = 0; j < longcall_count; j++)
+ {
+ int removed = (longcall_count - j) * 3 & (align - 1);
+ unsigned desire_narrow = (align - removed) & (align - 1);
+ unsigned desire_widen = removed;
+ if (desire_narrow <= narrowable_count)
+ {
+ narrowable_convert_count = desire_narrow;
+ narrowable_convert_count +=
+ (align * ((narrowable_count - narrowable_convert_count)
+ / align));
+ longcall_convert_count = (longcall_count - j);
+ widenable_convert_count = 0;
+ break;
+ }
+ if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
+ {
+ narrowable_convert_count = 0;
+ longcall_convert_count = longcall_count - j;
+ widenable_convert_count = desire_widen;
+ break;
+ }
+ }
+ }
+
+ /* Now the number of conversions are saved. Do them. */
+ for (i = seg_idx_start; i < seg_idx_end; i++)
+ {
+ action = &ebb_table->actions[i];
+ switch (action->action)
+ {
+ case ta_convert_longcall:
+ if (longcall_convert_count != 0)
+ {
+ action->action = ta_remove_longcall;
+ action->do_action = TRUE;
+ action->removed_bytes += 3;
+ longcall_convert_count--;
+ }
+ break;
+ case ta_narrow_insn:
+ if (narrowable_convert_count != 0)
+ {
+ action->do_action = TRUE;
+ action->removed_bytes += 1;
+ narrowable_convert_count--;
+ }
+ break;
+ case ta_widen_insn:
+ if (widenable_convert_count != 0)
+ {
+ action->do_action = TRUE;
+ action->removed_bytes -= 1;
+ widenable_convert_count--;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ /* Now we move on to some local opts. Try to remove each of the
+ remaining longcalls. */
+
+ if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
+ {
+ removed_bytes = 0;
+ for (i = 0; i < ebb_table->action_count; i++)
+ {
+ int old_removed_bytes = removed_bytes;
+ proposed_action *action = &ebb_table->actions[i];
+
+ if (action->do_action && action->action == ta_convert_longcall)
+ {
+ bfd_boolean bad_alignment = FALSE;
+ removed_bytes += 3;
+ for (j = i + 1; j < ebb_table->action_count; j++)
+ {
+ proposed_action *new_action = &ebb_table->actions[j];
+ bfd_vma offset = new_action->offset;
+ if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
+ {
+ if (!check_branch_target_aligned
+ (ebb_table->ebb.contents,
+ ebb_table->ebb.content_length,
+ offset, offset - removed_bytes))
+ {
+ bad_alignment = TRUE;
+ break;
+ }
+ }
+ if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
+ {
+ if (!check_loop_aligned (ebb_table->ebb.contents,
+ ebb_table->ebb.content_length,
+ offset,
+ offset - removed_bytes))
+ {
+ bad_alignment = TRUE;
+ break;
+ }
+ }
+ if (new_action->action == ta_narrow_insn
+ && !new_action->do_action
+ && ebb_table->ebb.sec->alignment_power == 2)
+ {
+ /* Narrow an instruction and we are done. */
+ new_action->do_action = TRUE;
+ new_action->removed_bytes += 1;
+ bad_alignment = FALSE;
+ break;
+ }
+ if (new_action->action == ta_widen_insn
+ && new_action->do_action
+ && ebb_table->ebb.sec->alignment_power == 2)
+ {
+ /* Narrow an instruction and we are done. */
+ new_action->do_action = FALSE;
+ new_action->removed_bytes += 1;
+ bad_alignment = FALSE;
+ break;
+ }
+ if (new_action->do_action)
+ removed_bytes += new_action->removed_bytes;
+ }
+ if (!bad_alignment)
+ {
+ action->removed_bytes += 3;
+ action->action = ta_remove_longcall;
+ action->do_action = TRUE;
+ }
+ }
+ removed_bytes = old_removed_bytes;
+ if (action->do_action)
+ removed_bytes += action->removed_bytes;
+ }
+ }
+
+ removed_bytes = 0;
+ for (i = 0; i < ebb_table->action_count; ++i)
+ {
+ proposed_action *action = &ebb_table->actions[i];
+ if (action->do_action)
+ removed_bytes += action->removed_bytes;
+ }
+
+ if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
+ && ebb->ends_unreachable)
+ {
+ proposed_action *action;
+ int br;
+ int extra_space;
+
+ BFD_ASSERT (ebb_table->action_count != 0);
+ action = &ebb_table->actions[ebb_table->action_count - 1];
+ BFD_ASSERT (action->action == ta_fill);
+ BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
+
+ extra_space = compute_fill_extra_space (ebb->ends_unreachable);
+ br = action->removed_bytes + removed_bytes + extra_space;
+ br = br & ((1 << ebb->sec->alignment_power ) - 1);
+
+ action->removed_bytes = extra_space - br;
+ }
+ return TRUE;
+}
+
+
+/* The xlate_map is a sorted array of address mappings designed to
+ answer the offset_with_removed_text() query with a binary search instead
+ of a linear search through the section's action_list. */
+
+typedef struct xlate_map_entry xlate_map_entry_t;
+typedef struct xlate_map xlate_map_t;
+
+struct xlate_map_entry
+{
+ unsigned orig_address;
+ unsigned new_address;
+ unsigned size;
+};
+
+struct xlate_map
+{
+ unsigned entry_count;
+ xlate_map_entry_t *entry;
+};
+
+
+static int
+xlate_compare (const void *a_v, const void *b_v)
+{
+ const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
+ const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
+ if (a->orig_address < b->orig_address)
+ return -1;
+ if (a->orig_address > (b->orig_address + b->size - 1))
+ return 1;
+ return 0;
+}
+
+
+static bfd_vma
+xlate_offset_with_removed_text (const xlate_map_t *map,
+ text_action_list *action_list,
+ bfd_vma offset)
+{
+ void *r;
+ xlate_map_entry_t *e;
+
+ if (map == NULL)
+ return offset_with_removed_text (action_list, offset);
+
+ if (map->entry_count == 0)
+ return offset;
+
+ r = bsearch (&offset, map->entry, map->entry_count,
+ sizeof (xlate_map_entry_t), &xlate_compare);
+ e = (xlate_map_entry_t *) r;
+
+ BFD_ASSERT (e != NULL);
+ if (e == NULL)
+ return offset;
+ return e->new_address - e->orig_address + offset;
+}
+
+
+/* Build a binary searchable offset translation map from a section's
+ action list. */
+
+static xlate_map_t *
+build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
+{
+ xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
+ text_action_list *action_list = &relax_info->action_list;
+ unsigned num_actions = 0;
+ text_action *r;
+ int removed;
+ xlate_map_entry_t *current_entry;
+
+ if (map == NULL)
+ return NULL;
+
+ num_actions = action_list_count (action_list);
+ map->entry = (xlate_map_entry_t *)
+ bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
+ if (map->entry == NULL)
+ {
+ free (map);
+ return NULL;
+ }
+ map->entry_count = 0;
+
+ removed = 0;
+ current_entry = &map->entry[0];
+
+ current_entry->orig_address = 0;
+ current_entry->new_address = 0;
+ current_entry->size = 0;
+
+ for (r = action_list->head; r != NULL; r = r->next)
+ {
+ unsigned orig_size = 0;
+ switch (r->action)
+ {
+ case ta_none:
+ case ta_remove_insn:
+ case ta_convert_longcall:
+ case ta_remove_literal:
+ case ta_add_literal:
+ break;
+ case ta_remove_longcall:
+ orig_size = 6;
+ break;
+ case ta_narrow_insn:
+ orig_size = 3;
+ break;
+ case ta_widen_insn:
+ orig_size = 2;
+ break;
+ case ta_fill:
+ break;
+ }
+ current_entry->size =
+ r->offset + orig_size - current_entry->orig_address;
+ if (current_entry->size != 0)
+ {
+ current_entry++;
+ map->entry_count++;
+ }
+ current_entry->orig_address = r->offset + orig_size;
+ removed += r->removed_bytes;
+ current_entry->new_address = r->offset + orig_size - removed;
+ current_entry->size = 0;
+ }
+
+ current_entry->size = (bfd_get_section_limit (sec->owner, sec)
+ - current_entry->orig_address);
+ if (current_entry->size != 0)
+ map->entry_count++;
+
+ return map;
+}
+
+
+/* Free an offset translation map. */
+
+static void
+free_xlate_map (xlate_map_t *map)
+{
+ if (map && map->entry)
+ free (map->entry);
+ if (map)
+ free (map);
+}
+
+
+/* Use check_section_ebb_pcrels_fit to make sure that all of the
+ relocations in a section will fit if a proposed set of actions
+ are performed. */
+
+static bfd_boolean
+check_section_ebb_pcrels_fit (bfd *abfd,
+ asection *sec,
+ bfd_byte *contents,
+ Elf_Internal_Rela *internal_relocs,
+ const ebb_constraint *constraint,
+ const xtensa_opcode *reloc_opcodes)
+{
+ unsigned i, j;
+ Elf_Internal_Rela *irel;
+ xlate_map_t *xmap = NULL;
+ bfd_boolean ok = TRUE;
+ xtensa_relax_info *relax_info;
+
+ relax_info = get_xtensa_relax_info (sec);
+
+ if (relax_info && sec->reloc_count > 100)
+ {
+ xmap = build_xlate_map (sec, relax_info);
+ /* NULL indicates out of memory, but the slow version
+ can still be used. */
+ }
+
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ r_reloc r_rel;
+ bfd_vma orig_self_offset, orig_target_offset;
+ bfd_vma self_offset, target_offset;
+ int r_type;
+ reloc_howto_type *howto;
+ int self_removed_bytes, target_removed_bytes;
+
+ irel = &internal_relocs[i];
+ r_type = ELF32_R_TYPE (irel->r_info);
+
+ howto = &elf_howto_table[r_type];
+ /* We maintain the required invariant: PC-relative relocations
+ that fit before linking must fit after linking. Thus we only
+ need to deal with relocations to the same section that are
+ PC-relative. */
+ if (r_type == R_XTENSA_ASM_SIMPLIFY
+ || r_type == R_XTENSA_32_PCREL
+ || !howto->pc_relative)
+ continue;
+
+ r_reloc_init (&r_rel, abfd, irel, contents,
+ bfd_get_section_limit (abfd, sec));
+
+ if (r_reloc_get_section (&r_rel) != sec)
+ continue;
+
+ orig_self_offset = irel->r_offset;
+ orig_target_offset = r_rel.target_offset;
+
+ self_offset = orig_self_offset;
+ target_offset = orig_target_offset;
+
+ if (relax_info)
+ {
+ self_offset =
+ xlate_offset_with_removed_text (xmap, &relax_info->action_list,
+ orig_self_offset);
+ target_offset =
+ xlate_offset_with_removed_text (xmap, &relax_info->action_list,
+ orig_target_offset);
+ }
+
+ self_removed_bytes = 0;
+ target_removed_bytes = 0;
+
+ for (j = 0; j < constraint->action_count; ++j)
+ {
+ proposed_action *action = &constraint->actions[j];
+ bfd_vma offset = action->offset;
+ int removed_bytes = action->removed_bytes;
+ if (offset < orig_self_offset
+ || (offset == orig_self_offset && action->action == ta_fill
+ && action->removed_bytes < 0))
+ self_removed_bytes += removed_bytes;
+ if (offset < orig_target_offset
+ || (offset == orig_target_offset && action->action == ta_fill
+ && action->removed_bytes < 0))
+ target_removed_bytes += removed_bytes;
+ }
+ self_offset -= self_removed_bytes;
+ target_offset -= target_removed_bytes;
+
+ /* Try to encode it. Get the operand and check. */
+ if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
+ {
+ /* None of the current alternate relocs are PC-relative,
+ and only PC-relative relocs matter here. */
+ }
+ else
+ {
+ xtensa_opcode opcode;
+ int opnum;
+
+ if (reloc_opcodes)
+ opcode = reloc_opcodes[i];
+ else
+ opcode = get_relocation_opcode (abfd, sec, contents, irel);
+ if (opcode == XTENSA_UNDEFINED)
+ {
+ ok = FALSE;
+ break;
+ }
+
+ opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
+ if (opnum == XTENSA_UNDEFINED)
+ {
+ ok = FALSE;
+ break;
+ }
+
+ if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
+ {
+ ok = FALSE;
+ break;
+ }
+ }
+ }
+
+ if (xmap)
+ free_xlate_map (xmap);
+
+ return ok;
+}
+
+
+static bfd_boolean
+check_section_ebb_reduces (const ebb_constraint *constraint)
+{
+ int removed = 0;
+ unsigned i;
+
+ for (i = 0; i < constraint->action_count; i++)
+ {
+ const proposed_action *action = &constraint->actions[i];
+ if (action->do_action)
+ removed += action->removed_bytes;
+ }
+ if (removed < 0)
+ return FALSE;
+
+ return TRUE;
+}
+
+
+void
+text_action_add_proposed (text_action_list *l,
+ const ebb_constraint *ebb_table,
+ asection *sec)
+{
+ unsigned i;
+
+ for (i = 0; i < ebb_table->action_count; i++)
+ {
+ proposed_action *action = &ebb_table->actions[i];
+
+ if (!action->do_action)
+ continue;
+ switch (action->action)
+ {
+ case ta_remove_insn:
+ case ta_remove_longcall:
+ case ta_convert_longcall:
+ case ta_narrow_insn:
+ case ta_widen_insn:
+ case ta_fill:
+ case ta_remove_literal:
+ text_action_add (l, action->action, sec, action->offset,
+ action->removed_bytes);
+ break;
+ case ta_none:
+ break;
+ default:
+ BFD_ASSERT (0);
+ break;
+ }
+ }
+}
+
+
+int
+compute_fill_extra_space (property_table_entry *entry)
+{
+ int fill_extra_space;
+
+ if (!entry)
+ return 0;
+
+ if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
+ return 0;
+
+ fill_extra_space = entry->size;
+ if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
+ {
+ /* Fill bytes for alignment:
+ (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
+ int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
+ int nsm = (1 << pow) - 1;
+ bfd_vma addr = entry->address + entry->size;
+ bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
+ fill_extra_space += align_fill;
+ }
+ return fill_extra_space;
+}
+
+
+/* First relaxation pass. */
+
+/* If the section contains relaxable literals, check each literal to
+ see if it has the same value as another literal that has already
+ been seen, either in the current section or a previous one. If so,
+ add an entry to the per-section list of removed literals. The
+ actual changes are deferred until the next pass. */
+
+static bfd_boolean
+compute_removed_literals (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *link_info,
+ value_map_hash_table *values)
+{
+ xtensa_relax_info *relax_info;
+ bfd_byte *contents;
+ Elf_Internal_Rela *internal_relocs;
+ source_reloc *src_relocs, *rel;
+ bfd_boolean ok = TRUE;
+ property_table_entry *prop_table = NULL;
+ int ptblsize;
+ int i, prev_i;
+ bfd_boolean last_loc_is_prev = FALSE;
+ bfd_vma last_target_offset = 0;
+ section_cache_t target_sec_cache;
+ bfd_size_type sec_size;
+
+ init_section_cache (&target_sec_cache);
+
+ /* Do nothing if it is not a relaxable literal section. */
+ relax_info = get_xtensa_relax_info (sec);
+ BFD_ASSERT (relax_info);
+ if (!relax_info->is_relaxable_literal_section)
+ return ok;
+
+ internal_relocs = retrieve_internal_relocs (abfd, sec,
+ link_info->keep_memory);
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+ contents = retrieve_contents (abfd, sec, link_info->keep_memory);
+ if (contents == NULL && sec_size != 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ /* Sort the source_relocs by target offset. */
+ src_relocs = relax_info->src_relocs;
+ qsort (src_relocs, relax_info->src_count,
+ sizeof (source_reloc), source_reloc_compare);
+ qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
+ internal_reloc_compare);
+
+ ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
+ XTENSA_PROP_SEC_NAME, FALSE);
+ if (ptblsize < 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ prev_i = -1;
+ for (i = 0; i < relax_info->src_count; i++)
+ {
+ Elf_Internal_Rela *irel = NULL;
+
+ rel = &src_relocs[i];
+ if (get_l32r_opcode () != rel->opcode)
+ continue;
+ irel = get_irel_at_offset (sec, internal_relocs,
+ rel->r_rel.target_offset);
+
+ /* If the relocation on this is not a simple R_XTENSA_32 or
+ R_XTENSA_PLT then do not consider it. This may happen when
+ the difference of two symbols is used in a literal. */
+ if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
+ && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
+ continue;
+
+ /* If the target_offset for this relocation is the same as the
+ previous relocation, then we've already considered whether the
+ literal can be coalesced. Skip to the next one.... */
+ if (i != 0 && prev_i != -1
+ && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
+ continue;
+ prev_i = i;
+
+ if (last_loc_is_prev &&
+ last_target_offset + 4 != rel->r_rel.target_offset)
+ last_loc_is_prev = FALSE;
+
+ /* Check if the relocation was from an L32R that is being removed
+ because a CALLX was converted to a direct CALL, and check if
+ there are no other relocations to the literal. */
+ if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
+ sec, prop_table, ptblsize))
+ {
+ if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
+ irel, rel, prop_table, ptblsize))
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+ last_target_offset = rel->r_rel.target_offset;
+ continue;
+ }
+
+ if (!identify_literal_placement (abfd, sec, contents, link_info,
+ values,
+ &last_loc_is_prev, irel,
+ relax_info->src_count - i, rel,
+ prop_table, ptblsize,
+ &target_sec_cache, rel->is_abs_literal))
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+ last_target_offset = rel->r_rel.target_offset;
+ }
+
+#if DEBUG
+ print_removed_literals (stderr, &relax_info->removed_list);
+ print_action_list (stderr, &relax_info->action_list);
+#endif /* DEBUG */
+
+error_return:
+ if (prop_table)
+ free (prop_table);
+ free_section_cache (&target_sec_cache);
+
+ release_contents (sec, contents);
+ release_internal_relocs (sec, internal_relocs);
+ return ok;
+}
+
+
+static Elf_Internal_Rela *
+get_irel_at_offset (asection *sec,
+ Elf_Internal_Rela *internal_relocs,
+ bfd_vma offset)
+{
+ unsigned i;
+ Elf_Internal_Rela *irel;
+ unsigned r_type;
+ Elf_Internal_Rela key;
+
+ if (!internal_relocs)
+ return NULL;
+
+ key.r_offset = offset;
+ irel = bsearch (&key, internal_relocs, sec->reloc_count,
+ sizeof (Elf_Internal_Rela), internal_reloc_matches);
+ if (!irel)
+ return NULL;
+
+ /* bsearch does not guarantee which will be returned if there are
+ multiple matches. We need the first that is not an alignment. */
+ i = irel - internal_relocs;
+ while (i > 0)
+ {
+ if (internal_relocs[i-1].r_offset != offset)
+ break;
+ i--;
+ }
+ for ( ; i < sec->reloc_count; i++)
+ {
+ irel = &internal_relocs[i];
+ r_type = ELF32_R_TYPE (irel->r_info);
+ if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
+ return irel;
+ }
+
+ return NULL;
+}
+
+
+bfd_boolean
+is_removable_literal (const source_reloc *rel,
+ int i,
+ const source_reloc *src_relocs,
+ int src_count,
+ asection *sec,
+ property_table_entry *prop_table,
+ int ptblsize)
+{
+ const source_reloc *curr_rel;
+ property_table_entry *entry;
+
+ if (!rel->is_null)
+ return FALSE;
+
+ entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
+ sec->vma + rel->r_rel.target_offset);
+ if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
+ return FALSE;
+
+ for (++i; i < src_count; ++i)
+ {
+ curr_rel = &src_relocs[i];
+ /* If all others have the same target offset.... */
+ if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
+ return TRUE;
+
+ if (!curr_rel->is_null
+ && !xtensa_is_property_section (curr_rel->source_sec)
+ && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
+ return FALSE;
+ }
+ return TRUE;
+}
+
+
+bfd_boolean
+remove_dead_literal (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *link_info,
+ Elf_Internal_Rela *internal_relocs,
+ Elf_Internal_Rela *irel,
+ source_reloc *rel,
+ property_table_entry *prop_table,
+ int ptblsize)
+{
+ property_table_entry *entry;
+ xtensa_relax_info *relax_info;
+
+ relax_info = get_xtensa_relax_info (sec);
+ if (!relax_info)
+ return FALSE;
+
+ entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
+ sec->vma + rel->r_rel.target_offset);
+
+ /* Mark the unused literal so that it will be removed. */
+ add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
+
+ text_action_add (&relax_info->action_list,
+ ta_remove_literal, sec, rel->r_rel.target_offset, 4);
+
+ /* If the section is 4-byte aligned, do not add fill. */
+ if (sec->alignment_power > 2)
+ {
+ int fill_extra_space;
+ bfd_vma entry_sec_offset;
+ text_action *fa;
+ property_table_entry *the_add_entry;
+ int removed_diff;
+
+ if (entry)
+ entry_sec_offset = entry->address - sec->vma + entry->size;
+ else
+ entry_sec_offset = rel->r_rel.target_offset + 4;
+
+ /* If the literal range is at the end of the section,
+ do not add fill. */
+ the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
+ entry_sec_offset);
+ fill_extra_space = compute_fill_extra_space (the_add_entry);
+
+ fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
+ removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
+ -4, fill_extra_space);
+ if (fa)
+ adjust_fill_action (fa, removed_diff);
+ else
+ text_action_add (&relax_info->action_list,
+ ta_fill, sec, entry_sec_offset, removed_diff);
+ }
+
+ /* Zero out the relocation on this literal location. */
+ if (irel)
+ {
+ if (elf_hash_table (link_info)->dynamic_sections_created)
+ shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
+
+ irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
+ pin_internal_relocs (sec, internal_relocs);
+ }
+
+ /* Do not modify "last_loc_is_prev". */
+ return TRUE;
+}
+
+
+bfd_boolean
+identify_literal_placement (bfd *abfd,
+ asection *sec,
+ bfd_byte *contents,
+ struct bfd_link_info *link_info,
+ value_map_hash_table *values,
+ bfd_boolean *last_loc_is_prev_p,
+ Elf_Internal_Rela *irel,
+ int remaining_src_rels,
+ source_reloc *rel,
+ property_table_entry *prop_table,
+ int ptblsize,
+ section_cache_t *target_sec_cache,
+ bfd_boolean is_abs_literal)
+{
+ literal_value val;
+ value_map *val_map;
+ xtensa_relax_info *relax_info;
+ bfd_boolean literal_placed = FALSE;
+ r_reloc r_rel;
+ unsigned long value;
+ bfd_boolean final_static_link;
+ bfd_size_type sec_size;
+
+ relax_info = get_xtensa_relax_info (sec);
+ if (!relax_info)
+ return FALSE;
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+
+ final_static_link =
+ (!link_info->relocatable
+ && !elf_hash_table (link_info)->dynamic_sections_created);
+
+ /* The placement algorithm first checks to see if the literal is
+ already in the value map. If so and the value map is reachable
+ from all uses, then the literal is moved to that location. If
+ not, then we identify the last location where a fresh literal was
+ placed. If the literal can be safely moved there, then we do so.
+ If not, then we assume that the literal is not to move and leave
+ the literal where it is, marking it as the last literal
+ location. */
+
+ /* Find the literal value. */
+ value = 0;
+ r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
+ if (!irel)
+ {
+ BFD_ASSERT (rel->r_rel.target_offset < sec_size);
+ value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
+ }
+ init_literal_value (&val, &r_rel, value, is_abs_literal);
+
+ /* Check if we've seen another literal with the same value that
+ is in the same output section. */
+ val_map = value_map_get_cached_value (values, &val, final_static_link);
+
+ if (val_map
+ && (r_reloc_get_section (&val_map->loc)->output_section
+ == sec->output_section)
+ && relocations_reach (rel, remaining_src_rels, &val_map->loc)
+ && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
+ {
+ /* No change to last_loc_is_prev. */
+ literal_placed = TRUE;
+ }
+
+ /* For relocatable links, do not try to move literals. To do it
+ correctly might increase the number of relocations in an input
+ section making the default relocatable linking fail. */
+ if (!link_info->relocatable && !literal_placed
+ && values->has_last_loc && !(*last_loc_is_prev_p))
+ {
+ asection *target_sec = r_reloc_get_section (&values->last_loc);
+ if (target_sec && target_sec->output_section == sec->output_section)
+ {
+ /* Increment the virtual offset. */
+ r_reloc try_loc = values->last_loc;
+ try_loc.virtual_offset += 4;
+
+ /* There is a last loc that was in the same output section. */
+ if (relocations_reach (rel, remaining_src_rels, &try_loc)
+ && move_shared_literal (sec, link_info, rel,
+ prop_table, ptblsize,
+ &try_loc, &val, target_sec_cache))
+ {
+ values->last_loc.virtual_offset += 4;
+ literal_placed = TRUE;
+ if (!val_map)
+ val_map = add_value_map (values, &val, &try_loc,
+ final_static_link);
+ else
+ val_map->loc = try_loc;
+ }
+ }
+ }
+
+ if (!literal_placed)
+ {
+ /* Nothing worked, leave the literal alone but update the last loc. */
+ values->has_last_loc = TRUE;
+ values->last_loc = rel->r_rel;
+ if (!val_map)
+ val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
+ else
+ val_map->loc = rel->r_rel;
+ *last_loc_is_prev_p = TRUE;
+ }
+
+ return TRUE;
+}
+
+
+/* Check if the original relocations (presumably on L32R instructions)
+ identified by reloc[0..N] can be changed to reference the literal
+ identified by r_rel. If r_rel is out of range for any of the
+ original relocations, then we don't want to coalesce the original
+ literal with the one at r_rel. We only check reloc[0..N], where the
+ offsets are all the same as for reloc[0] (i.e., they're all
+ referencing the same literal) and where N is also bounded by the
+ number of remaining entries in the "reloc" array. The "reloc" array
+ is sorted by target offset so we know all the entries for the same
+ literal will be contiguous. */
+
+static bfd_boolean
+relocations_reach (source_reloc *reloc,
+ int remaining_relocs,
+ const r_reloc *r_rel)
+{
+ bfd_vma from_offset, source_address, dest_address;
+ asection *sec;
+ int i;
+
+ if (!r_reloc_is_defined (r_rel))
+ return FALSE;
+
+ sec = r_reloc_get_section (r_rel);
+ from_offset = reloc[0].r_rel.target_offset;
+
+ for (i = 0; i < remaining_relocs; i++)
+ {
+ if (reloc[i].r_rel.target_offset != from_offset)
+ break;
+
+ /* Ignore relocations that have been removed. */
+ if (reloc[i].is_null)
+ continue;
+
+ /* The original and new output section for these must be the same
+ in order to coalesce. */
+ if (r_reloc_get_section (&reloc[i].r_rel)->output_section
+ != sec->output_section)
+ return FALSE;
+
+ /* Absolute literals in the same output section can always be
+ combined. */
+ if (reloc[i].is_abs_literal)
+ continue;
+
+ /* A literal with no PC-relative relocations can be moved anywhere. */
+ if (reloc[i].opnd != -1)
+ {
+ /* Otherwise, check to see that it fits. */
+ source_address = (reloc[i].source_sec->output_section->vma
+ + reloc[i].source_sec->output_offset
+ + reloc[i].r_rel.rela.r_offset);
+ dest_address = (sec->output_section->vma
+ + sec->output_offset
+ + r_rel->target_offset);
+
+ if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
+ source_address, dest_address))
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+
+/* Move a literal to another literal location because it is
+ the same as the other literal value. */
+
+static bfd_boolean
+coalesce_shared_literal (asection *sec,
+ source_reloc *rel,
+ property_table_entry *prop_table,
+ int ptblsize,
+ value_map *val_map)
+{
+ property_table_entry *entry;
+ text_action *fa;
+ property_table_entry *the_add_entry;
+ int removed_diff;
+ xtensa_relax_info *relax_info;
+
+ relax_info = get_xtensa_relax_info (sec);
+ if (!relax_info)
+ return FALSE;
+
+ entry = elf_xtensa_find_property_entry
+ (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
+ if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
+ return TRUE;
+
+ /* Mark that the literal will be coalesced. */
+ add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
+
+ text_action_add (&relax_info->action_list,
+ ta_remove_literal, sec, rel->r_rel.target_offset, 4);
+
+ /* If the section is 4-byte aligned, do not add fill. */
+ if (sec->alignment_power > 2)
+ {
+ int fill_extra_space;
+ bfd_vma entry_sec_offset;
+
+ if (entry)
+ entry_sec_offset = entry->address - sec->vma + entry->size;
+ else
+ entry_sec_offset = rel->r_rel.target_offset + 4;
+
+ /* If the literal range is at the end of the section,
+ do not add fill. */
+ fill_extra_space = 0;
+ the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
+ entry_sec_offset);
+ if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
+ fill_extra_space = the_add_entry->size;
+
+ fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
+ removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
+ -4, fill_extra_space);
+ if (fa)
+ adjust_fill_action (fa, removed_diff);
+ else
+ text_action_add (&relax_info->action_list,
+ ta_fill, sec, entry_sec_offset, removed_diff);
+ }
+
+ return TRUE;
+}
+
+
+/* Move a literal to another location. This may actually increase the
+ total amount of space used because of alignments so we need to do
+ this carefully. Also, it may make a branch go out of range. */
+
+static bfd_boolean
+move_shared_literal (asection *sec,
+ struct bfd_link_info *link_info,
+ source_reloc *rel,
+ property_table_entry *prop_table,
+ int ptblsize,
+ const r_reloc *target_loc,
+ const literal_value *lit_value,
+ section_cache_t *target_sec_cache)
+{
+ property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
+ text_action *fa, *target_fa;
+ int removed_diff;
+ xtensa_relax_info *relax_info, *target_relax_info;
+ asection *target_sec;
+ ebb_t *ebb;
+ ebb_constraint ebb_table;
+ bfd_boolean relocs_fit;
+
+ /* If this routine always returns FALSE, the literals that cannot be
+ coalesced will not be moved. */
+ if (elf32xtensa_no_literal_movement)
+ return FALSE;
+
+ relax_info = get_xtensa_relax_info (sec);
+ if (!relax_info)
+ return FALSE;
+
+ target_sec = r_reloc_get_section (target_loc);
+ target_relax_info = get_xtensa_relax_info (target_sec);
+
+ /* Literals to undefined sections may not be moved because they
+ must report an error. */
+ if (bfd_is_und_section (target_sec))
+ return FALSE;
+
+ src_entry = elf_xtensa_find_property_entry
+ (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
+
+ if (!section_cache_section (target_sec_cache, target_sec, link_info))
+ return FALSE;
+
+ target_entry = elf_xtensa_find_property_entry
+ (target_sec_cache->ptbl, target_sec_cache->pte_count,
+ target_sec->vma + target_loc->target_offset);
+
+ if (!target_entry)
+ return FALSE;
+
+ /* Make sure that we have not broken any branches. */
+ relocs_fit = FALSE;
+
+ init_ebb_constraint (&ebb_table);
+ ebb = &ebb_table.ebb;
+ init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
+ target_sec_cache->content_length,
+ target_sec_cache->ptbl, target_sec_cache->pte_count,
+ target_sec_cache->relocs, target_sec_cache->reloc_count);
+
+ /* Propose to add 4 bytes + worst-case alignment size increase to
+ destination. */
+ ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
+ ta_fill, target_loc->target_offset,
+ -4 - (1 << target_sec->alignment_power), TRUE);
+
+ /* Check all of the PC-relative relocations to make sure they still fit. */
+ relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
+ target_sec_cache->contents,
+ target_sec_cache->relocs,
+ &ebb_table, NULL);
+
+ if (!relocs_fit)
+ return FALSE;
+
+ text_action_add_literal (&target_relax_info->action_list,
+ ta_add_literal, target_loc, lit_value, -4);
+
+ if (target_sec->alignment_power > 2 && target_entry != src_entry)
+ {
+ /* May need to add or remove some fill to maintain alignment. */
+ int fill_extra_space;
+ bfd_vma entry_sec_offset;
+
+ entry_sec_offset =
+ target_entry->address - target_sec->vma + target_entry->size;
+
+ /* If the literal range is at the end of the section,
+ do not add fill. */
+ fill_extra_space = 0;
+ the_add_entry =
+ elf_xtensa_find_property_entry (target_sec_cache->ptbl,
+ target_sec_cache->pte_count,
+ entry_sec_offset);
+ if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
+ fill_extra_space = the_add_entry->size;
+
+ target_fa = find_fill_action (&target_relax_info->action_list,
+ target_sec, entry_sec_offset);
+ removed_diff = compute_removed_action_diff (target_fa, target_sec,
+ entry_sec_offset, 4,
+ fill_extra_space);
+ if (target_fa)
+ adjust_fill_action (target_fa, removed_diff);
+ else
+ text_action_add (&target_relax_info->action_list,
+ ta_fill, target_sec, entry_sec_offset, removed_diff);
+ }
+
+ /* Mark that the literal will be moved to the new location. */
+ add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
+
+ /* Remove the literal. */
+ text_action_add (&relax_info->action_list,
+ ta_remove_literal, sec, rel->r_rel.target_offset, 4);
+
+ /* If the section is 4-byte aligned, do not add fill. */
+ if (sec->alignment_power > 2 && target_entry != src_entry)
+ {
+ int fill_extra_space;
+ bfd_vma entry_sec_offset;
+
+ if (src_entry)
+ entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
+ else
+ entry_sec_offset = rel->r_rel.target_offset+4;
+
+ /* If the literal range is at the end of the section,
+ do not add fill. */
+ fill_extra_space = 0;
+ the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
+ entry_sec_offset);
+ if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
+ fill_extra_space = the_add_entry->size;
+
+ fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
+ removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
+ -4, fill_extra_space);
+ if (fa)
+ adjust_fill_action (fa, removed_diff);
+ else
+ text_action_add (&relax_info->action_list,
+ ta_fill, sec, entry_sec_offset, removed_diff);
+ }
+
+ return TRUE;
+}
+
+
+/* Second relaxation pass. */
+
+/* Modify all of the relocations to point to the right spot, and if this
+ is a relaxable section, delete the unwanted literals and fix the
+ section size. */
+
+bfd_boolean
+relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
+{
+ Elf_Internal_Rela *internal_relocs;
+ xtensa_relax_info *relax_info;
+ bfd_byte *contents;
+ bfd_boolean ok = TRUE;
+ unsigned i;
+ bfd_boolean rv = FALSE;
+ bfd_boolean virtual_action;
+ bfd_size_type sec_size;
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+ relax_info = get_xtensa_relax_info (sec);
+ BFD_ASSERT (relax_info);
+
+ /* First translate any of the fixes that have been added already. */
+ translate_section_fixes (sec);
+
+ /* Handle property sections (e.g., literal tables) specially. */
+ if (xtensa_is_property_section (sec))
+ {
+ BFD_ASSERT (!relax_info->is_relaxable_literal_section);
+ return relax_property_section (abfd, sec, link_info);
+ }
+
+ internal_relocs = retrieve_internal_relocs (abfd, sec,
+ link_info->keep_memory);
+ if (!internal_relocs && !relax_info->action_list.head)
+ return TRUE;
+
+ contents = retrieve_contents (abfd, sec, link_info->keep_memory);
+ if (contents == NULL && sec_size != 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ if (internal_relocs)
+ {
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel;
+ xtensa_relax_info *target_relax_info;
+ bfd_vma source_offset, old_source_offset;
+ r_reloc r_rel;
+ unsigned r_type;
+ asection *target_sec;
+
+ /* Locally change the source address.
+ Translate the target to the new target address.
+ If it points to this section and has been removed,
+ NULLify it.
+ Write it back. */
+
+ irel = &internal_relocs[i];
+ source_offset = irel->r_offset;
+ old_source_offset = source_offset;
+
+ r_type = ELF32_R_TYPE (irel->r_info);
+ r_reloc_init (&r_rel, abfd, irel, contents,
+ bfd_get_section_limit (abfd, sec));
+
+ /* If this section could have changed then we may need to
+ change the relocation's offset. */
+
+ if (relax_info->is_relaxable_literal_section
+ || relax_info->is_relaxable_asm_section)
+ {
+ pin_internal_relocs (sec, internal_relocs);
+
+ if (r_type != R_XTENSA_NONE
+ && find_removed_literal (&relax_info->removed_list,
+ irel->r_offset))
+ {
+ /* Remove this relocation. */
+ if (elf_hash_table (link_info)->dynamic_sections_created)
+ shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
+ irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
+ irel->r_offset = offset_with_removed_text
+ (&relax_info->action_list, irel->r_offset);
+ continue;
+ }
+
+ if (r_type == R_XTENSA_ASM_SIMPLIFY)
+ {
+ text_action *action =
+ find_insn_action (&relax_info->action_list,
+ irel->r_offset);
+ if (action && (action->action == ta_convert_longcall
+ || action->action == ta_remove_longcall))
+ {
+ bfd_reloc_status_type retval;
+ char *error_message = NULL;
+
+ retval = contract_asm_expansion (contents, sec_size,
+ irel, &error_message);
+ if (retval != bfd_reloc_ok)
+ {
+ (*link_info->callbacks->reloc_dangerous)
+ (link_info, error_message, abfd, sec,
+ irel->r_offset);
+ goto error_return;
+ }
+ /* Update the action so that the code that moves
+ the contents will do the right thing. */
+ if (action->action == ta_remove_longcall)
+ action->action = ta_remove_insn;
+ else
+ action->action = ta_none;
+ /* Refresh the info in the r_rel. */
+ r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
+ r_type = ELF32_R_TYPE (irel->r_info);
+ }
+ }
+
+ source_offset = offset_with_removed_text
+ (&relax_info->action_list, irel->r_offset);
+ irel->r_offset = source_offset;
+ }
+
+ /* If the target section could have changed then
+ we may need to change the relocation's target offset. */
+
+ target_sec = r_reloc_get_section (&r_rel);
+
+ /* For a reference to a discarded section from a DWARF section,
+ i.e., where action_discarded is PRETEND, the symbol will
+ eventually be modified to refer to the kept section (at least if
+ the kept and discarded sections are the same size). Anticipate
+ that here and adjust things accordingly. */
+ if (! elf_xtensa_ignore_discarded_relocs (sec)
+ && elf_xtensa_action_discarded (sec) == PRETEND
+ && sec->sec_info_type != SEC_INFO_TYPE_STABS
+ && target_sec != NULL
+ && discarded_section (target_sec))
+ {
+ /* It would be natural to call _bfd_elf_check_kept_section
+ here, but it's not exported from elflink.c. It's also a
+ fairly expensive check. Adjusting the relocations to the
+ discarded section is fairly harmless; it will only adjust
+ some addends and difference values. If it turns out that
+ _bfd_elf_check_kept_section fails later, it won't matter,
+ so just compare the section names to find the right group
+ member. */
+ asection *kept = target_sec->kept_section;
+ if (kept != NULL)
+ {
+ if ((kept->flags & SEC_GROUP) != 0)
+ {
+ asection *first = elf_next_in_group (kept);
+ asection *s = first;
+
+ kept = NULL;
+ while (s != NULL)
+ {
+ if (strcmp (s->name, target_sec->name) == 0)
+ {
+ kept = s;
+ break;
+ }
+ s = elf_next_in_group (s);
+ if (s == first)
+ break;
+ }
+ }
+ }
+ if (kept != NULL
+ && ((target_sec->rawsize != 0
+ ? target_sec->rawsize : target_sec->size)
+ == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
+ target_sec = kept;
+ }
+
+ target_relax_info = get_xtensa_relax_info (target_sec);
+ if (target_relax_info
+ && (target_relax_info->is_relaxable_literal_section
+ || target_relax_info->is_relaxable_asm_section))
+ {
+ r_reloc new_reloc;
+ target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
+
+ if (r_type == R_XTENSA_DIFF8
+ || r_type == R_XTENSA_DIFF16
+ || r_type == R_XTENSA_DIFF32)
+ {
+ bfd_signed_vma diff_value = 0;
+ bfd_vma new_end_offset, diff_mask = 0;
+
+ if (bfd_get_section_limit (abfd, sec) < old_source_offset)
+ {
+ (*link_info->callbacks->reloc_dangerous)
+ (link_info, _("invalid relocation address"),
+ abfd, sec, old_source_offset);
+ goto error_return;
+ }
+
+ switch (r_type)
+ {
+ case R_XTENSA_DIFF8:
+ diff_value =
+ bfd_get_signed_8 (abfd, &contents[old_source_offset]);
+ break;
+ case R_XTENSA_DIFF16:
+ diff_value =
+ bfd_get_signed_16 (abfd, &contents[old_source_offset]);
+ break;
+ case R_XTENSA_DIFF32:
+ diff_value =
+ bfd_get_signed_32 (abfd, &contents[old_source_offset]);
+ break;
+ }
+
+ new_end_offset = offset_with_removed_text
+ (&target_relax_info->action_list,
+ r_rel.target_offset + diff_value);
+ diff_value = new_end_offset - new_reloc.target_offset;
+
+ switch (r_type)
+ {
+ case R_XTENSA_DIFF8:
+ diff_mask = 0x7f;
+ bfd_put_signed_8 (abfd, diff_value,
+ &contents[old_source_offset]);
+ break;
+ case R_XTENSA_DIFF16:
+ diff_mask = 0x7fff;
+ bfd_put_signed_16 (abfd, diff_value,
+ &contents[old_source_offset]);
+ break;
+ case R_XTENSA_DIFF32:
+ diff_mask = 0x7fffffff;
+ bfd_put_signed_32 (abfd, diff_value,
+ &contents[old_source_offset]);
+ break;
+ }
+
+ /* Check for overflow. Sign bits must be all zeroes or all ones */
+ if ((diff_value & ~diff_mask) != 0 &&
+ (diff_value & ~diff_mask) != (-1 & ~diff_mask))
+ {
+ (*link_info->callbacks->reloc_dangerous)
+ (link_info, _("overflow after relaxation"),
+ abfd, sec, old_source_offset);
+ goto error_return;
+ }
+
+ pin_contents (sec, contents);
+ }
+
+ /* If the relocation still references a section in the same
+ input file, modify the relocation directly instead of
+ adding a "fix" record. */
+ if (target_sec->owner == abfd)
+ {
+ unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
+ irel->r_info = ELF32_R_INFO (r_symndx, r_type);
+ irel->r_addend = new_reloc.rela.r_addend;
+ pin_internal_relocs (sec, internal_relocs);
+ }
+ else
+ {
+ bfd_vma addend_displacement;
+ reloc_bfd_fix *fix;
+
+ addend_displacement =
+ new_reloc.target_offset + new_reloc.virtual_offset;
+ fix = reloc_bfd_fix_init (sec, source_offset, r_type,
+ target_sec,
+ addend_displacement, TRUE);
+ add_fix (sec, fix);
+ }
+ }
+ }
+ }
+
+ if ((relax_info->is_relaxable_literal_section
+ || relax_info->is_relaxable_asm_section)
+ && relax_info->action_list.head)
+ {
+ /* Walk through the planned actions and build up a table
+ of move, copy and fill records. Use the move, copy and
+ fill records to perform the actions once. */
+
+ int removed = 0;
+ bfd_size_type final_size, copy_size, orig_insn_size;
+ bfd_byte *scratch = NULL;
+ bfd_byte *dup_contents = NULL;
+ bfd_size_type orig_size = sec->size;
+ bfd_vma orig_dot = 0;
+ bfd_vma orig_dot_copied = 0; /* Byte copied already from
+ orig dot in physical memory. */
+ bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
+ bfd_vma dup_dot = 0;
+
+ text_action *action = relax_info->action_list.head;
+
+ final_size = sec->size;
+ for (action = relax_info->action_list.head; action;
+ action = action->next)
+ {
+ final_size -= action->removed_bytes;
+ }
+
+ scratch = (bfd_byte *) bfd_zmalloc (final_size);
+ dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
+
+ /* The dot is the current fill location. */
+#if DEBUG
+ print_action_list (stderr, &relax_info->action_list);
+#endif
+
+ for (action = relax_info->action_list.head; action;
+ action = action->next)
+ {
+ virtual_action = FALSE;
+ if (action->offset > orig_dot)
+ {
+ orig_dot += orig_dot_copied;
+ orig_dot_copied = 0;
+ orig_dot_vo = 0;
+ /* Out of the virtual world. */
+ }
+
+ if (action->offset > orig_dot)
+ {
+ copy_size = action->offset - orig_dot;
+ memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
+ orig_dot += copy_size;
+ dup_dot += copy_size;
+ BFD_ASSERT (action->offset == orig_dot);
+ }
+ else if (action->offset < orig_dot)
+ {
+ if (action->action == ta_fill
+ && action->offset - action->removed_bytes == orig_dot)
+ {
+ /* This is OK because the fill only effects the dup_dot. */
+ }
+ else if (action->action == ta_add_literal)
+ {
+ /* TBD. Might need to handle this. */
+ }
+ }
+ if (action->offset == orig_dot)
+ {
+ if (action->virtual_offset > orig_dot_vo)
+ {
+ if (orig_dot_vo == 0)
+ {
+ /* Need to copy virtual_offset bytes. Probably four. */
+ copy_size = action->virtual_offset - orig_dot_vo;
+ memmove (&dup_contents[dup_dot],
+ &contents[orig_dot], copy_size);
+ orig_dot_copied = copy_size;
+ dup_dot += copy_size;
+ }
+ virtual_action = TRUE;
+ }
+ else
+ BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
+ }
+ switch (action->action)
+ {
+ case ta_remove_literal:
+ case ta_remove_insn:
+ BFD_ASSERT (action->removed_bytes >= 0);
+ orig_dot += action->removed_bytes;
+ break;
+
+ case ta_narrow_insn:
+ orig_insn_size = 3;
+ copy_size = 2;
+ memmove (scratch, &contents[orig_dot], orig_insn_size);
+ BFD_ASSERT (action->removed_bytes == 1);
+ rv = narrow_instruction (scratch, final_size, 0);
+ BFD_ASSERT (rv);
+ memmove (&dup_contents[dup_dot], scratch, copy_size);
+ orig_dot += orig_insn_size;
+ dup_dot += copy_size;
+ break;
+
+ case ta_fill:
+ if (action->removed_bytes >= 0)
+ orig_dot += action->removed_bytes;
+ else
+ {
+ /* Already zeroed in dup_contents. Just bump the
+ counters. */
+ dup_dot += (-action->removed_bytes);
+ }
+ break;
+
+ case ta_none:
+ BFD_ASSERT (action->removed_bytes == 0);
+ break;
+
+ case ta_convert_longcall:
+ case ta_remove_longcall:
+ /* These will be removed or converted before we get here. */
+ BFD_ASSERT (0);
+ break;
+
+ case ta_widen_insn:
+ orig_insn_size = 2;
+ copy_size = 3;
+ memmove (scratch, &contents[orig_dot], orig_insn_size);
+ BFD_ASSERT (action->removed_bytes == -1);
+ rv = widen_instruction (scratch, final_size, 0);
+ BFD_ASSERT (rv);
+ memmove (&dup_contents[dup_dot], scratch, copy_size);
+ orig_dot += orig_insn_size;
+ dup_dot += copy_size;
+ break;
+
+ case ta_add_literal:
+ orig_insn_size = 0;
+ copy_size = 4;
+ BFD_ASSERT (action->removed_bytes == -4);
+ /* TBD -- place the literal value here and insert
+ into the table. */
+ memset (&dup_contents[dup_dot], 0, 4);
+ pin_internal_relocs (sec, internal_relocs);
+ pin_contents (sec, contents);
+
+ if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
+ relax_info, &internal_relocs, &action->value))
+ goto error_return;
+
+ if (virtual_action)
+ orig_dot_vo += copy_size;
+
+ orig_dot += orig_insn_size;
+ dup_dot += copy_size;
+ break;
+
+ default:
+ /* Not implemented yet. */
+ BFD_ASSERT (0);
+ break;
+ }
+
+ removed += action->removed_bytes;
+ BFD_ASSERT (dup_dot <= final_size);
+ BFD_ASSERT (orig_dot <= orig_size);
+ }
+
+ orig_dot += orig_dot_copied;
+ orig_dot_copied = 0;
+
+ if (orig_dot != orig_size)
+ {
+ copy_size = orig_size - orig_dot;
+ BFD_ASSERT (orig_size > orig_dot);
+ BFD_ASSERT (dup_dot + copy_size == final_size);
+ memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
+ orig_dot += copy_size;
+ dup_dot += copy_size;
+ }
+ BFD_ASSERT (orig_size == orig_dot);
+ BFD_ASSERT (final_size == dup_dot);
+
+ /* Move the dup_contents back. */
+ if (final_size > orig_size)
+ {
+ /* Contents need to be reallocated. Swap the dup_contents into
+ contents. */
+ sec->contents = dup_contents;
+ free (contents);
+ contents = dup_contents;
+ pin_contents (sec, contents);
+ }
+ else
+ {
+ BFD_ASSERT (final_size <= orig_size);
+ memset (contents, 0, orig_size);
+ memcpy (contents, dup_contents, final_size);
+ free (dup_contents);
+ }
+ free (scratch);
+ pin_contents (sec, contents);
+
+ if (sec->rawsize == 0)
+ sec->rawsize = sec->size;
+ sec->size = final_size;
+ }
+
+ error_return:
+ release_internal_relocs (sec, internal_relocs);
+ release_contents (sec, contents);
+ return ok;
+}
+
+
+static bfd_boolean
+translate_section_fixes (asection *sec)
+{
+ xtensa_relax_info *relax_info;
+ reloc_bfd_fix *r;
+
+ relax_info = get_xtensa_relax_info (sec);
+ if (!relax_info)
+ return TRUE;
+
+ for (r = relax_info->fix_list; r != NULL; r = r->next)
+ if (!translate_reloc_bfd_fix (r))
+ return FALSE;
+
+ return TRUE;
+}
+
+
+/* Translate a fix given the mapping in the relax info for the target
+ section. If it has already been translated, no work is required. */
+
+static bfd_boolean
+translate_reloc_bfd_fix (reloc_bfd_fix *fix)
+{
+ reloc_bfd_fix new_fix;
+ asection *sec;
+ xtensa_relax_info *relax_info;
+ removed_literal *removed;
+ bfd_vma new_offset, target_offset;
+
+ if (fix->translated)
+ return TRUE;
+
+ sec = fix->target_sec;
+ target_offset = fix->target_offset;
+
+ relax_info = get_xtensa_relax_info (sec);
+ if (!relax_info)
+ {
+ fix->translated = TRUE;
+ return TRUE;
+ }
+
+ new_fix = *fix;
+
+ /* The fix does not need to be translated if the section cannot change. */
+ if (!relax_info->is_relaxable_literal_section
+ && !relax_info->is_relaxable_asm_section)
+ {
+ fix->translated = TRUE;
+ return TRUE;
+ }
+
+ /* If the literal has been moved and this relocation was on an
+ opcode, then the relocation should move to the new literal
+ location. Otherwise, the relocation should move within the
+ section. */
+
+ removed = FALSE;
+ if (is_operand_relocation (fix->src_type))
+ {
+ /* Check if the original relocation is against a literal being
+ removed. */
+ removed = find_removed_literal (&relax_info->removed_list,
+ target_offset);
+ }
+
+ if (removed)
+ {
+ asection *new_sec;
+
+ /* The fact that there is still a relocation to this literal indicates
+ that the literal is being coalesced, not simply removed. */
+ BFD_ASSERT (removed->to.abfd != NULL);
+
+ /* This was moved to some other address (possibly another section). */
+ new_sec = r_reloc_get_section (&removed->to);
+ if (new_sec != sec)
+ {
+ sec = new_sec;
+ relax_info = get_xtensa_relax_info (sec);
+ if (!relax_info ||
+ (!relax_info->is_relaxable_literal_section
+ && !relax_info->is_relaxable_asm_section))
+ {
+ target_offset = removed->to.target_offset;
+ new_fix.target_sec = new_sec;
+ new_fix.target_offset = target_offset;
+ new_fix.translated = TRUE;
+ *fix = new_fix;
+ return TRUE;
+ }
+ }
+ target_offset = removed->to.target_offset;
+ new_fix.target_sec = new_sec;
+ }
+
+ /* The target address may have been moved within its section. */
+ new_offset = offset_with_removed_text (&relax_info->action_list,
+ target_offset);
+
+ new_fix.target_offset = new_offset;
+ new_fix.target_offset = new_offset;
+ new_fix.translated = TRUE;
+ *fix = new_fix;
+ return TRUE;
+}
+
+
+/* Fix up a relocation to take account of removed literals. */
+
+static asection *
+translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
+{
+ xtensa_relax_info *relax_info;
+ removed_literal *removed;
+ bfd_vma target_offset, base_offset;
+ text_action *act;
+
+ *new_rel = *orig_rel;
+
+ if (!r_reloc_is_defined (orig_rel))
+ return sec ;
+
+ relax_info = get_xtensa_relax_info (sec);
+ BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
+ || relax_info->is_relaxable_asm_section));
+
+ target_offset = orig_rel->target_offset;
+
+ removed = FALSE;
+ if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
+ {
+ /* Check if the original relocation is against a literal being
+ removed. */
+ removed = find_removed_literal (&relax_info->removed_list,
+ target_offset);
+ }
+ if (removed && removed->to.abfd)
+ {
+ asection *new_sec;
+
+ /* The fact that there is still a relocation to this literal indicates
+ that the literal is being coalesced, not simply removed. */
+ BFD_ASSERT (removed->to.abfd != NULL);
+
+ /* This was moved to some other address
+ (possibly in another section). */
+ *new_rel = removed->to;
+ new_sec = r_reloc_get_section (new_rel);
+ if (new_sec != sec)
+ {
+ sec = new_sec;
+ relax_info = get_xtensa_relax_info (sec);
+ if (!relax_info
+ || (!relax_info->is_relaxable_literal_section
+ && !relax_info->is_relaxable_asm_section))
+ return sec;
+ }
+ target_offset = new_rel->target_offset;
+ }
+
+ /* Find the base offset of the reloc symbol, excluding any addend from the
+ reloc or from the section contents (for a partial_inplace reloc). Then
+ find the adjusted values of the offsets due to relaxation. The base
+ offset is needed to determine the change to the reloc's addend; the reloc
+ addend should not be adjusted due to relaxations located before the base
+ offset. */
+
+ base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
+ act = relax_info->action_list.head;
+ if (base_offset <= target_offset)
+ {
+ int base_removed = removed_by_actions (&act, base_offset, FALSE);
+ int addend_removed = removed_by_actions (&act, target_offset, FALSE);
+ new_rel->target_offset = target_offset - base_removed - addend_removed;
+ new_rel->rela.r_addend -= addend_removed;
+ }
+ else
+ {
+ /* Handle a negative addend. The base offset comes first. */
+ int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
+ int addend_removed = removed_by_actions (&act, base_offset, FALSE);
+ new_rel->target_offset = target_offset - tgt_removed;
+ new_rel->rela.r_addend += addend_removed;
+ }
+
+ return sec;
+}
+
+
+/* For dynamic links, there may be a dynamic relocation for each
+ literal. The number of dynamic relocations must be computed in
+ size_dynamic_sections, which occurs before relaxation. When a
+ literal is removed, this function checks if there is a corresponding
+ dynamic relocation and shrinks the size of the appropriate dynamic
+ relocation section accordingly. At this point, the contents of the
+ dynamic relocation sections have not yet been filled in, so there's
+ nothing else that needs to be done. */
+
+static void
+shrink_dynamic_reloc_sections (struct bfd_link_info *info,
+ bfd *abfd,
+ asection *input_section,
+ Elf_Internal_Rela *rel)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **sym_hashes;
+ unsigned long r_symndx;
+ int r_type;
+ struct elf_link_hash_entry *h;
+ bfd_boolean dynamic_symbol;
+
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return;
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ sym_hashes = elf_sym_hashes (abfd);
+
+ r_type = ELF32_R_TYPE (rel->r_info);
+ r_symndx = ELF32_R_SYM (rel->r_info);
+
+ if (r_symndx < symtab_hdr->sh_info)
+ h = NULL;
+ else
+ h = sym_hashes[r_symndx - symtab_hdr->sh_info];
+
+ dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
+
+ if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
+ && (input_section->flags & SEC_ALLOC) != 0
+ && (dynamic_symbol || info->shared))
+ {
+ asection *srel;
+ bfd_boolean is_plt = FALSE;
+
+ if (dynamic_symbol && r_type == R_XTENSA_PLT)
+ {
+ srel = htab->srelplt;
+ is_plt = TRUE;
+ }
+ else
+ srel = htab->srelgot;
+
+ /* Reduce size of the .rela.* section by one reloc. */
+ BFD_ASSERT (srel != NULL);
+ BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
+ srel->size -= sizeof (Elf32_External_Rela);
+
+ if (is_plt)
+ {
+ asection *splt, *sgotplt, *srelgot;
+ int reloc_index, chunk;
+
+ /* Find the PLT reloc index of the entry being removed. This
+ is computed from the size of ".rela.plt". It is needed to
+ figure out which PLT chunk to resize. Usually "last index
+ = size - 1" since the index starts at zero, but in this
+ context, the size has just been decremented so there's no
+ need to subtract one. */
+ reloc_index = srel->size / sizeof (Elf32_External_Rela);
+
+ chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
+ splt = elf_xtensa_get_plt_section (info, chunk);
+ sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
+ BFD_ASSERT (splt != NULL && sgotplt != NULL);
+
+ /* Check if an entire PLT chunk has just been eliminated. */
+ if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
+ {
+ /* The two magic GOT entries for that chunk can go away. */
+ srelgot = htab->srelgot;
+ BFD_ASSERT (srelgot != NULL);
+ srelgot->reloc_count -= 2;
+ srelgot->size -= 2 * sizeof (Elf32_External_Rela);
+ sgotplt->size -= 8;
+
+ /* There should be only one entry left (and it will be
+ removed below). */
+ BFD_ASSERT (sgotplt->size == 4);
+ BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
+ }
+
+ BFD_ASSERT (sgotplt->size >= 4);
+ BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
+
+ sgotplt->size -= 4;
+ splt->size -= PLT_ENTRY_SIZE;
+ }
+ }
+}
+
+
+/* Take an r_rel and move it to another section. This usually
+ requires extending the interal_relocation array and pinning it. If
+ the original r_rel is from the same BFD, we can complete this here.
+ Otherwise, we add a fix record to let the final link fix the
+ appropriate address. Contents and internal relocations for the
+ section must be pinned after calling this routine. */
+
+static bfd_boolean
+move_literal (bfd *abfd,
+ struct bfd_link_info *link_info,
+ asection *sec,
+ bfd_vma offset,
+ bfd_byte *contents,
+ xtensa_relax_info *relax_info,
+ Elf_Internal_Rela **internal_relocs_p,
+ const literal_value *lit)
+{
+ Elf_Internal_Rela *new_relocs = NULL;
+ size_t new_relocs_count = 0;
+ Elf_Internal_Rela this_rela;
+ const r_reloc *r_rel;
+
+ r_rel = &lit->r_rel;
+ BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
+
+ if (r_reloc_is_const (r_rel))
+ bfd_put_32 (abfd, lit->value, contents + offset);
+ else
+ {
+ int r_type;
+ unsigned i;
+ reloc_bfd_fix *fix;
+ unsigned insert_at;
+
+ r_type = ELF32_R_TYPE (r_rel->rela.r_info);
+
+ /* This is the difficult case. We have to create a fix up. */
+ this_rela.r_offset = offset;
+ this_rela.r_info = ELF32_R_INFO (0, r_type);
+ this_rela.r_addend =
+ r_rel->target_offset - r_reloc_get_target_offset (r_rel);
+ bfd_put_32 (abfd, lit->value, contents + offset);
+
+ /* Currently, we cannot move relocations during a relocatable link. */
+ BFD_ASSERT (!link_info->relocatable);
+ fix = reloc_bfd_fix_init (sec, offset, r_type,
+ r_reloc_get_section (r_rel),
+ r_rel->target_offset + r_rel->virtual_offset,
+ FALSE);
+ /* We also need to mark that relocations are needed here. */
+ sec->flags |= SEC_RELOC;
+
+ translate_reloc_bfd_fix (fix);
+ /* This fix has not yet been translated. */
+ add_fix (sec, fix);
+
+ /* Add the relocation. If we have already allocated our own
+ space for the relocations and we have room for more, then use
+ it. Otherwise, allocate new space and move the literals. */
+ insert_at = sec->reloc_count;
+ for (i = 0; i < sec->reloc_count; ++i)
+ {
+ if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
+ {
+ insert_at = i;
+ break;
+ }
+ }
+
+ if (*internal_relocs_p != relax_info->allocated_relocs
+ || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
+ {
+ BFD_ASSERT (relax_info->allocated_relocs == NULL
+ || sec->reloc_count == relax_info->relocs_count);
+
+ if (relax_info->allocated_relocs_count == 0)
+ new_relocs_count = (sec->reloc_count + 2) * 2;
+ else
+ new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
+
+ new_relocs = (Elf_Internal_Rela *)
+ bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
+ if (!new_relocs)
+ return FALSE;
+
+ /* We could handle this more quickly by finding the split point. */
+ if (insert_at != 0)
+ memcpy (new_relocs, *internal_relocs_p,
+ insert_at * sizeof (Elf_Internal_Rela));
+
+ new_relocs[insert_at] = this_rela;
+
+ if (insert_at != sec->reloc_count)
+ memcpy (new_relocs + insert_at + 1,
+ (*internal_relocs_p) + insert_at,
+ (sec->reloc_count - insert_at)
+ * sizeof (Elf_Internal_Rela));
+
+ if (*internal_relocs_p != relax_info->allocated_relocs)
+ {
+ /* The first time we re-allocate, we can only free the
+ old relocs if they were allocated with bfd_malloc.
+ This is not true when keep_memory is in effect. */
+ if (!link_info->keep_memory)
+ free (*internal_relocs_p);
+ }
+ else
+ free (*internal_relocs_p);
+ relax_info->allocated_relocs = new_relocs;
+ relax_info->allocated_relocs_count = new_relocs_count;
+ elf_section_data (sec)->relocs = new_relocs;
+ sec->reloc_count++;
+ relax_info->relocs_count = sec->reloc_count;
+ *internal_relocs_p = new_relocs;
+ }
+ else
+ {
+ if (insert_at != sec->reloc_count)
+ {
+ unsigned idx;
+ for (idx = sec->reloc_count; idx > insert_at; idx--)
+ (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
+ }
+ (*internal_relocs_p)[insert_at] = this_rela;
+ sec->reloc_count++;
+ if (relax_info->allocated_relocs)
+ relax_info->relocs_count = sec->reloc_count;
+ }
+ }
+ return TRUE;
+}
+
+
+/* This is similar to relax_section except that when a target is moved,
+ we shift addresses up. We also need to modify the size. This
+ algorithm does NOT allow for relocations into the middle of the
+ property sections. */
+
+static bfd_boolean
+relax_property_section (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *link_info)
+{
+ Elf_Internal_Rela *internal_relocs;
+ bfd_byte *contents;
+ unsigned i;
+ bfd_boolean ok = TRUE;
+ bfd_boolean is_full_prop_section;
+ size_t last_zfill_target_offset = 0;
+ asection *last_zfill_target_sec = NULL;
+ bfd_size_type sec_size;
+ bfd_size_type entry_size;
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+ internal_relocs = retrieve_internal_relocs (abfd, sec,
+ link_info->keep_memory);
+ contents = retrieve_contents (abfd, sec, link_info->keep_memory);
+ if (contents == NULL && sec_size != 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ is_full_prop_section = xtensa_is_proptable_section (sec);
+ if (is_full_prop_section)
+ entry_size = 12;
+ else
+ entry_size = 8;
+
+ if (internal_relocs)
+ {
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel;
+ xtensa_relax_info *target_relax_info;
+ unsigned r_type;
+ asection *target_sec;
+ literal_value val;
+ bfd_byte *size_p, *flags_p;
+
+ /* Locally change the source address.
+ Translate the target to the new target address.
+ If it points to this section and has been removed, MOVE IT.
+ Also, don't forget to modify the associated SIZE at
+ (offset + 4). */
+
+ irel = &internal_relocs[i];
+ r_type = ELF32_R_TYPE (irel->r_info);
+ if (r_type == R_XTENSA_NONE)
+ continue;
+
+ /* Find the literal value. */
+ r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
+ size_p = &contents[irel->r_offset + 4];
+ flags_p = NULL;
+ if (is_full_prop_section)
+ flags_p = &contents[irel->r_offset + 8];
+ BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
+
+ target_sec = r_reloc_get_section (&val.r_rel);
+ target_relax_info = get_xtensa_relax_info (target_sec);
+
+ if (target_relax_info
+ && (target_relax_info->is_relaxable_literal_section
+ || target_relax_info->is_relaxable_asm_section ))
+ {
+ /* Translate the relocation's destination. */
+ bfd_vma old_offset = val.r_rel.target_offset;
+ bfd_vma new_offset;
+ long old_size, new_size;
+ text_action *act = target_relax_info->action_list.head;
+ new_offset = old_offset -
+ removed_by_actions (&act, old_offset, FALSE);
+
+ /* Assert that we are not out of bounds. */
+ old_size = bfd_get_32 (abfd, size_p);
+ new_size = old_size;
+
+ if (old_size == 0)
+ {
+ /* Only the first zero-sized unreachable entry is
+ allowed to expand. In this case the new offset
+ should be the offset before the fill and the new
+ size is the expansion size. For other zero-sized
+ entries the resulting size should be zero with an
+ offset before or after the fill address depending
+ on whether the expanding unreachable entry
+ preceeds it. */
+ if (last_zfill_target_sec == 0
+ || last_zfill_target_sec != target_sec
+ || last_zfill_target_offset != old_offset)
+ {
+ bfd_vma new_end_offset = new_offset;
+
+ /* Recompute the new_offset, but this time don't
+ include any fill inserted by relaxation. */
+ act = target_relax_info->action_list.head;
+ new_offset = old_offset -
+ removed_by_actions (&act, old_offset, TRUE);
+
+ /* If it is not unreachable and we have not yet
+ seen an unreachable at this address, place it
+ before the fill address. */
+ if (flags_p && (bfd_get_32 (abfd, flags_p)
+ & XTENSA_PROP_UNREACHABLE) != 0)
+ {
+ new_size = new_end_offset - new_offset;
+
+ last_zfill_target_sec = target_sec;
+ last_zfill_target_offset = old_offset;
+ }
+ }
+ }
+ else
+ new_size -=
+ removed_by_actions (&act, old_offset + old_size, TRUE);
+
+ if (new_size != old_size)
+ {
+ bfd_put_32 (abfd, new_size, size_p);
+ pin_contents (sec, contents);
+ }
+
+ if (new_offset != old_offset)
+ {
+ bfd_vma diff = new_offset - old_offset;
+ irel->r_addend += diff;
+ pin_internal_relocs (sec, internal_relocs);
+ }
+ }
+ }
+ }
+
+ /* Combine adjacent property table entries. This is also done in
+ finish_dynamic_sections() but at that point it's too late to
+ reclaim the space in the output section, so we do this twice. */
+
+ if (internal_relocs && (!link_info->relocatable
+ || xtensa_is_littable_section (sec)))
+ {
+ Elf_Internal_Rela *last_irel = NULL;
+ Elf_Internal_Rela *irel, *next_rel, *rel_end;
+ int removed_bytes = 0;
+ bfd_vma offset;
+ flagword predef_flags;
+
+ predef_flags = xtensa_get_property_predef_flags (sec);
+
+ /* Walk over memory and relocations at the same time.
+ This REQUIRES that the internal_relocs be sorted by offset. */
+ qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
+ internal_reloc_compare);
+
+ pin_internal_relocs (sec, internal_relocs);
+ pin_contents (sec, contents);
+
+ next_rel = internal_relocs;
+ rel_end = internal_relocs + sec->reloc_count;
+
+ BFD_ASSERT (sec->size % entry_size == 0);
+
+ for (offset = 0; offset < sec->size; offset += entry_size)
+ {
+ Elf_Internal_Rela *offset_rel, *extra_rel;
+ bfd_vma bytes_to_remove, size, actual_offset;
+ bfd_boolean remove_this_rel;
+ flagword flags;
+
+ /* Find the first relocation for the entry at the current offset.
+ Adjust the offsets of any extra relocations for the previous
+ entry. */
+ offset_rel = NULL;
+ if (next_rel)
+ {
+ for (irel = next_rel; irel < rel_end; irel++)
+ {
+ if ((irel->r_offset == offset
+ && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
+ || irel->r_offset > offset)
+ {
+ offset_rel = irel;
+ break;
+ }
+ irel->r_offset -= removed_bytes;
+ }
+ }
+
+ /* Find the next relocation (if there are any left). */
+ extra_rel = NULL;
+ if (offset_rel)
+ {
+ for (irel = offset_rel + 1; irel < rel_end; irel++)
+ {
+ if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
+ {
+ extra_rel = irel;
+ break;
+ }
+ }
+ }
+
+ /* Check if there are relocations on the current entry. There
+ should usually be a relocation on the offset field. If there
+ are relocations on the size or flags, then we can't optimize
+ this entry. Also, find the next relocation to examine on the
+ next iteration. */
+ if (offset_rel)
+ {
+ if (offset_rel->r_offset >= offset + entry_size)
+ {
+ next_rel = offset_rel;
+ /* There are no relocations on the current entry, but we
+ might still be able to remove it if the size is zero. */
+ offset_rel = NULL;
+ }
+ else if (offset_rel->r_offset > offset
+ || (extra_rel
+ && extra_rel->r_offset < offset + entry_size))
+ {
+ /* There is a relocation on the size or flags, so we can't
+ do anything with this entry. Continue with the next. */
+ next_rel = offset_rel;
+ continue;
+ }
+ else
+ {
+ BFD_ASSERT (offset_rel->r_offset == offset);
+ offset_rel->r_offset -= removed_bytes;
+ next_rel = offset_rel + 1;
+ }
+ }
+ else
+ next_rel = NULL;
+
+ remove_this_rel = FALSE;
+ bytes_to_remove = 0;
+ actual_offset = offset - removed_bytes;
+ size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
+
+ if (is_full_prop_section)
+ flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
+ else
+ flags = predef_flags;
+
+ if (size == 0
+ && (flags & XTENSA_PROP_ALIGN) == 0
+ && (flags & XTENSA_PROP_UNREACHABLE) == 0)
+ {
+ /* Always remove entries with zero size and no alignment. */
+ bytes_to_remove = entry_size;
+ if (offset_rel)
+ remove_this_rel = TRUE;
+ }
+ else if (offset_rel
+ && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
+ {
+ if (last_irel)
+ {
+ flagword old_flags;
+ bfd_vma old_size =
+ bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
+ bfd_vma old_address =
+ (last_irel->r_addend
+ + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
+ bfd_vma new_address =
+ (offset_rel->r_addend
+ + bfd_get_32 (abfd, &contents[actual_offset]));
+ if (is_full_prop_section)
+ old_flags = bfd_get_32
+ (abfd, &contents[last_irel->r_offset + 8]);
+ else
+ old_flags = predef_flags;
+
+ if ((ELF32_R_SYM (offset_rel->r_info)
+ == ELF32_R_SYM (last_irel->r_info))
+ && old_address + old_size == new_address
+ && old_flags == flags
+ && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
+ && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
+ {
+ /* Fix the old size. */
+ bfd_put_32 (abfd, old_size + size,
+ &contents[last_irel->r_offset + 4]);
+ bytes_to_remove = entry_size;
+ remove_this_rel = TRUE;
+ }
+ else
+ last_irel = offset_rel;
+ }
+ else
+ last_irel = offset_rel;
+ }
+
+ if (remove_this_rel)
+ {
+ offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
+ offset_rel->r_offset = 0;
+ }
+
+ if (bytes_to_remove != 0)
+ {
+ removed_bytes += bytes_to_remove;
+ if (offset + bytes_to_remove < sec->size)
+ memmove (&contents[actual_offset],
+ &contents[actual_offset + bytes_to_remove],
+ sec->size - offset - bytes_to_remove);
+ }
+ }
+
+ if (removed_bytes)
+ {
+ /* Fix up any extra relocations on the last entry. */
+ for (irel = next_rel; irel < rel_end; irel++)
+ irel->r_offset -= removed_bytes;
+
+ /* Clear the removed bytes. */
+ memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
+
+ if (sec->rawsize == 0)
+ sec->rawsize = sec->size;
+ sec->size -= removed_bytes;
+
+ if (xtensa_is_littable_section (sec))
+ {
+ asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
+ if (sgotloc)
+ sgotloc->size -= removed_bytes;
+ }
+ }
+ }
+
+ error_return:
+ release_internal_relocs (sec, internal_relocs);
+ release_contents (sec, contents);
+ return ok;
+}
+
+
+/* Third relaxation pass. */
+
+/* Change symbol values to account for removed literals. */
+
+bfd_boolean
+relax_section_symbols (bfd *abfd, asection *sec)
+{
+ xtensa_relax_info *relax_info;
+ unsigned int sec_shndx;
+ Elf_Internal_Shdr *symtab_hdr;
+ Elf_Internal_Sym *isymbuf;
+ unsigned i, num_syms, num_locals;
+
+ relax_info = get_xtensa_relax_info (sec);
+ BFD_ASSERT (relax_info);
+
+ if (!relax_info->is_relaxable_literal_section
+ && !relax_info->is_relaxable_asm_section)
+ return TRUE;
+
+ sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ isymbuf = retrieve_local_syms (abfd);
+
+ num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
+ num_locals = symtab_hdr->sh_info;
+
+ /* Adjust the local symbols defined in this section. */
+ for (i = 0; i < num_locals; i++)
+ {
+ Elf_Internal_Sym *isym = &isymbuf[i];
+
+ if (isym->st_shndx == sec_shndx)
+ {
+ text_action *act = relax_info->action_list.head;
+ bfd_vma orig_addr = isym->st_value;
+
+ isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
+
+ if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
+ isym->st_size -=
+ removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
+ }
+ }
+
+ /* Now adjust the global symbols defined in this section. */
+ for (i = 0; i < (num_syms - num_locals); i++)
+ {
+ struct elf_link_hash_entry *sym_hash;
+
+ sym_hash = elf_sym_hashes (abfd)[i];
+
+ if (sym_hash->root.type == bfd_link_hash_warning)
+ sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
+
+ if ((sym_hash->root.type == bfd_link_hash_defined
+ || sym_hash->root.type == bfd_link_hash_defweak)
+ && sym_hash->root.u.def.section == sec)
+ {
+ text_action *act = relax_info->action_list.head;
+ bfd_vma orig_addr = sym_hash->root.u.def.value;
+
+ sym_hash->root.u.def.value -=
+ removed_by_actions (&act, orig_addr, FALSE);
+
+ if (sym_hash->type == STT_FUNC)
+ sym_hash->size -=
+ removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
+ }
+ }
+
+ return TRUE;
+}
+
+
+/* "Fix" handling functions, called while performing relocations. */
+
+static bfd_boolean
+do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
+ bfd *input_bfd,
+ asection *input_section,
+ bfd_byte *contents)
+{
+ r_reloc r_rel;
+ asection *sec, *old_sec;
+ bfd_vma old_offset;
+ int r_type = ELF32_R_TYPE (rel->r_info);
+ reloc_bfd_fix *fix;
+
+ if (r_type == R_XTENSA_NONE)
+ return TRUE;
+
+ fix = get_bfd_fix (input_section, rel->r_offset, r_type);
+ if (!fix)
+ return TRUE;
+
+ r_reloc_init (&r_rel, input_bfd, rel, contents,
+ bfd_get_section_limit (input_bfd, input_section));
+ old_sec = r_reloc_get_section (&r_rel);
+ old_offset = r_rel.target_offset;
+
+ if (!old_sec || !r_reloc_is_defined (&r_rel))
+ {
+ if (r_type != R_XTENSA_ASM_EXPAND)
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
+ input_bfd, input_section, rel->r_offset,
+ elf_howto_table[r_type].name);
+ return FALSE;
+ }
+ /* Leave it be. Resolution will happen in a later stage. */
+ }
+ else
+ {
+ sec = fix->target_sec;
+ rel->r_addend += ((sec->output_offset + fix->target_offset)
+ - (old_sec->output_offset + old_offset));
+ }
+ return TRUE;
+}
+
+
+static void
+do_fix_for_final_link (Elf_Internal_Rela *rel,
+ bfd *input_bfd,
+ asection *input_section,
+ bfd_byte *contents,
+ bfd_vma *relocationp)
+{
+ asection *sec;
+ int r_type = ELF32_R_TYPE (rel->r_info);
+ reloc_bfd_fix *fix;
+ bfd_vma fixup_diff;
+
+ if (r_type == R_XTENSA_NONE)
+ return;
+
+ fix = get_bfd_fix (input_section, rel->r_offset, r_type);
+ if (!fix)
+ return;
+
+ sec = fix->target_sec;
+
+ fixup_diff = rel->r_addend;
+ if (elf_howto_table[fix->src_type].partial_inplace)
+ {
+ bfd_vma inplace_val;
+ BFD_ASSERT (fix->src_offset
+ < bfd_get_section_limit (input_bfd, input_section));
+ inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
+ fixup_diff += inplace_val;
+ }
+
+ *relocationp = (sec->output_section->vma
+ + sec->output_offset
+ + fix->target_offset - fixup_diff);
+}
+
+
+/* Miscellaneous utility functions.... */
+
+static asection *
+elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ bfd *dynobj;
+ char plt_name[10];
+
+ if (chunk == 0)
+ {
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return NULL;
+
+ return htab->splt;
+ }
+
+ dynobj = elf_hash_table (info)->dynobj;
+ sprintf (plt_name, ".plt.%u", chunk);
+ return bfd_get_linker_section (dynobj, plt_name);
+}
+
+
+static asection *
+elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
+{
+ struct elf_xtensa_link_hash_table *htab;
+ bfd *dynobj;
+ char got_name[14];
+
+ if (chunk == 0)
+ {
+ htab = elf_xtensa_hash_table (info);
+ if (htab == NULL)
+ return NULL;
+ return htab->sgotplt;
+ }
+
+ dynobj = elf_hash_table (info)->dynobj;
+ sprintf (got_name, ".got.plt.%u", chunk);
+ return bfd_get_linker_section (dynobj, got_name);
+}
+
+
+/* Get the input section for a given symbol index.
+ If the symbol is:
+ . a section symbol, return the section;
+ . a common symbol, return the common section;
+ . an undefined symbol, return the undefined section;
+ . an indirect symbol, follow the links;
+ . an absolute value, return the absolute section. */
+
+static asection *
+get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
+{
+ Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ asection *target_sec = NULL;
+ if (r_symndx < symtab_hdr->sh_info)
+ {
+ Elf_Internal_Sym *isymbuf;
+ unsigned int section_index;
+
+ isymbuf = retrieve_local_syms (abfd);
+ section_index = isymbuf[r_symndx].st_shndx;
+
+ if (section_index == SHN_UNDEF)
+ target_sec = bfd_und_section_ptr;
+ else if (section_index == SHN_ABS)
+ target_sec = bfd_abs_section_ptr;
+ else if (section_index == SHN_COMMON)
+ target_sec = bfd_com_section_ptr;
+ else
+ target_sec = bfd_section_from_elf_index (abfd, section_index);
+ }
+ else
+ {
+ unsigned long indx = r_symndx - symtab_hdr->sh_info;
+ struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
+
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+
+ switch (h->root.type)
+ {
+ case bfd_link_hash_defined:
+ case bfd_link_hash_defweak:
+ target_sec = h->root.u.def.section;
+ break;
+ case bfd_link_hash_common:
+ target_sec = bfd_com_section_ptr;
+ break;
+ case bfd_link_hash_undefined:
+ case bfd_link_hash_undefweak:
+ target_sec = bfd_und_section_ptr;
+ break;
+ default: /* New indirect warning. */
+ target_sec = bfd_und_section_ptr;
+ break;
+ }
+ }
+ return target_sec;
+}
+
+
+static struct elf_link_hash_entry *
+get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
+{
+ unsigned long indx;
+ struct elf_link_hash_entry *h;
+ Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+
+ if (r_symndx < symtab_hdr->sh_info)
+ return NULL;
+
+ indx = r_symndx - symtab_hdr->sh_info;
+ h = elf_sym_hashes (abfd)[indx];
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ return h;
+}
+
+
+/* Get the section-relative offset for a symbol number. */
+
+static bfd_vma
+get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
+{
+ Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ bfd_vma offset = 0;
+
+ if (r_symndx < symtab_hdr->sh_info)
+ {
+ Elf_Internal_Sym *isymbuf;
+ isymbuf = retrieve_local_syms (abfd);
+ offset = isymbuf[r_symndx].st_value;
+ }
+ else
+ {
+ unsigned long indx = r_symndx - symtab_hdr->sh_info;
+ struct elf_link_hash_entry *h =
+ elf_sym_hashes (abfd)[indx];
+
+ while (h->root.type == bfd_link_hash_indirect
+ || h->root.type == bfd_link_hash_warning)
+ h = (struct elf_link_hash_entry *) h->root.u.i.link;
+ if (h->root.type == bfd_link_hash_defined
+ || h->root.type == bfd_link_hash_defweak)
+ offset = h->root.u.def.value;
+ }
+ return offset;
+}
+
+
+static bfd_boolean
+is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
+{
+ unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
+ struct elf_link_hash_entry *h;
+
+ h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
+ if (h && h->root.type == bfd_link_hash_defweak)
+ return TRUE;
+ return FALSE;
+}
+
+
+static bfd_boolean
+pcrel_reloc_fits (xtensa_opcode opc,
+ int opnd,
+ bfd_vma self_address,
+ bfd_vma dest_address)
+{
+ xtensa_isa isa = xtensa_default_isa;
+ uint32 valp = dest_address;
+ if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
+ || xtensa_operand_encode (isa, opc, opnd, &valp))
+ return FALSE;
+ return TRUE;
+}
+
+
+static bfd_boolean
+xtensa_is_property_section (asection *sec)
+{
+ if (xtensa_is_insntable_section (sec)
+ || xtensa_is_littable_section (sec)
+ || xtensa_is_proptable_section (sec))
+ return TRUE;
+
+ return FALSE;
+}
+
+
+static bfd_boolean
+xtensa_is_insntable_section (asection *sec)
+{
+ if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
+ || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
+ return TRUE;
+
+ return FALSE;
+}
+
+
+static bfd_boolean
+xtensa_is_littable_section (asection *sec)
+{
+ if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
+ || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
+ return TRUE;
+
+ return FALSE;
+}
+
+
+static bfd_boolean
+xtensa_is_proptable_section (asection *sec)
+{
+ if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
+ || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
+ return TRUE;
+
+ return FALSE;
+}
+
+
+static int
+internal_reloc_compare (const void *ap, const void *bp)
+{
+ const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
+ const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
+
+ if (a->r_offset != b->r_offset)
+ return (a->r_offset - b->r_offset);
+
+ /* We don't need to sort on these criteria for correctness,
+ but enforcing a more strict ordering prevents unstable qsort
+ from behaving differently with different implementations.
+ Without the code below we get correct but different results
+ on Solaris 2.7 and 2.8. We would like to always produce the
+ same results no matter the host. */
+
+ if (a->r_info != b->r_info)
+ return (a->r_info - b->r_info);
+
+ return (a->r_addend - b->r_addend);
+}
+
+
+static int
+internal_reloc_matches (const void *ap, const void *bp)
+{
+ const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
+ const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
+
+ /* Check if one entry overlaps with the other; this shouldn't happen
+ except when searching for a match. */
+ return (a->r_offset - b->r_offset);
+}
+
+
+/* Predicate function used to look up a section in a particular group. */
+
+static bfd_boolean
+match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
+{
+ const char *gname = inf;
+ const char *group_name = elf_group_name (sec);
+
+ return (group_name == gname
+ || (group_name != NULL
+ && gname != NULL
+ && strcmp (group_name, gname) == 0));
+}
+
+
+static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
+
+static char *
+xtensa_property_section_name (asection *sec, const char *base_name)
+{
+ const char *suffix, *group_name;
+ char *prop_sec_name;
+
+ group_name = elf_group_name (sec);
+ if (group_name)
+ {
+ suffix = strrchr (sec->name, '.');
+ if (suffix == sec->name)
+ suffix = 0;
+ prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
+ + (suffix ? strlen (suffix) : 0));
+ strcpy (prop_sec_name, base_name);
+ if (suffix)
+ strcat (prop_sec_name, suffix);
+ }
+ else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
+ {
+ char *linkonce_kind = 0;
+
+ if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
+ linkonce_kind = "x.";
+ else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
+ linkonce_kind = "p.";
+ else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
+ linkonce_kind = "prop.";
+ else
+ abort ();
+
+ prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
+ + strlen (linkonce_kind) + 1);
+ memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
+ strcpy (prop_sec_name + linkonce_len, linkonce_kind);
+
+ suffix = sec->name + linkonce_len;
+ /* For backward compatibility, replace "t." instead of inserting
+ the new linkonce_kind (but not for "prop" sections). */
+ if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
+ suffix += 2;
+ strcat (prop_sec_name + linkonce_len, suffix);
+ }
+ else
+ prop_sec_name = strdup (base_name);
+
+ return prop_sec_name;
+}
+
+
+static asection *
+xtensa_get_property_section (asection *sec, const char *base_name)
+{
+ char *prop_sec_name;
+ asection *prop_sec;
+
+ prop_sec_name = xtensa_property_section_name (sec, base_name);
+ prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
+ match_section_group,
+ (void *) elf_group_name (sec));
+ free (prop_sec_name);
+ return prop_sec;
+}
+
+
+asection *
+xtensa_make_property_section (asection *sec, const char *base_name)
+{
+ char *prop_sec_name;
+ asection *prop_sec;
+
+ /* Check if the section already exists. */
+ prop_sec_name = xtensa_property_section_name (sec, base_name);
+ prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
+ match_section_group,
+ (void *) elf_group_name (sec));
+ /* If not, create it. */
+ if (! prop_sec)
+ {
+ flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
+ flags |= (bfd_get_section_flags (sec->owner, sec)
+ & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
+
+ prop_sec = bfd_make_section_anyway_with_flags
+ (sec->owner, strdup (prop_sec_name), flags);
+ if (! prop_sec)
+ return 0;
+
+ elf_group_name (prop_sec) = elf_group_name (sec);
+ }
+
+ free (prop_sec_name);
+ return prop_sec;
+}
+
+
+flagword
+xtensa_get_property_predef_flags (asection *sec)
+{
+ if (xtensa_is_insntable_section (sec))
+ return (XTENSA_PROP_INSN
+ | XTENSA_PROP_NO_TRANSFORM
+ | XTENSA_PROP_INSN_NO_REORDER);
+
+ if (xtensa_is_littable_section (sec))
+ return (XTENSA_PROP_LITERAL
+ | XTENSA_PROP_NO_TRANSFORM
+ | XTENSA_PROP_INSN_NO_REORDER);
+
+ return 0;
+}
+
+
+/* Other functions called directly by the linker. */
+
+bfd_boolean
+xtensa_callback_required_dependence (bfd *abfd,
+ asection *sec,
+ struct bfd_link_info *link_info,
+ deps_callback_t callback,
+ void *closure)
+{
+ Elf_Internal_Rela *internal_relocs;
+ bfd_byte *contents;
+ unsigned i;
+ bfd_boolean ok = TRUE;
+ bfd_size_type sec_size;
+
+ sec_size = bfd_get_section_limit (abfd, sec);
+
+ /* ".plt*" sections have no explicit relocations but they contain L32R
+ instructions that reference the corresponding ".got.plt*" sections. */
+ if ((sec->flags & SEC_LINKER_CREATED) != 0
+ && CONST_STRNEQ (sec->name, ".plt"))
+ {
+ asection *sgotplt;
+
+ /* Find the corresponding ".got.plt*" section. */
+ if (sec->name[4] == '\0')
+ sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
+ else
+ {
+ char got_name[14];
+ int chunk = 0;
+
+ BFD_ASSERT (sec->name[4] == '.');
+ chunk = strtol (&sec->name[5], NULL, 10);
+
+ sprintf (got_name, ".got.plt.%u", chunk);
+ sgotplt = bfd_get_linker_section (sec->owner, got_name);
+ }
+ BFD_ASSERT (sgotplt);
+
+ /* Assume worst-case offsets: L32R at the very end of the ".plt"
+ section referencing a literal at the very beginning of
+ ".got.plt". This is very close to the real dependence, anyway. */
+ (*callback) (sec, sec_size, sgotplt, 0, closure);
+ }
+
+ /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
+ when building uclibc, which runs "ld -b binary /dev/null". */
+ if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
+ return ok;
+
+ internal_relocs = retrieve_internal_relocs (abfd, sec,
+ link_info->keep_memory);
+ if (internal_relocs == NULL
+ || sec->reloc_count == 0)
+ return ok;
+
+ /* Cache the contents for the duration of this scan. */
+ contents = retrieve_contents (abfd, sec, link_info->keep_memory);
+ if (contents == NULL && sec_size != 0)
+ {
+ ok = FALSE;
+ goto error_return;
+ }
+
+ if (!xtensa_default_isa)
+ xtensa_default_isa = xtensa_isa_init (0, 0);
+
+ for (i = 0; i < sec->reloc_count; i++)
+ {
+ Elf_Internal_Rela *irel = &internal_relocs[i];
+ if (is_l32r_relocation (abfd, sec, contents, irel))
+ {
+ r_reloc l32r_rel;
+ asection *target_sec;
+ bfd_vma target_offset;
+
+ r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
+ target_sec = NULL;
+ target_offset = 0;
+ /* L32Rs must be local to the input file. */
+ if (r_reloc_is_defined (&l32r_rel))
+ {
+ target_sec = r_reloc_get_section (&l32r_rel);
+ target_offset = l32r_rel.target_offset;
+ }
+ (*callback) (sec, irel->r_offset, target_sec, target_offset,
+ closure);
+ }
+ }
+
+ error_return:
+ release_internal_relocs (sec, internal_relocs);
+ release_contents (sec, contents);
+ return ok;
+}
+
+/* The default literal sections should always be marked as "code" (i.e.,
+ SHF_EXECINSTR). This is particularly important for the Linux kernel
+ module loader so that the literals are not placed after the text. */
+static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
+{
+ { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
+ { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
+ { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
+ { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
+ { NULL, 0, 0, 0, 0 }
+};
+
+#define ELF_TARGET_ID XTENSA_ELF_DATA
+#ifndef ELF_ARCH
+#define TARGET_LITTLE_SYM xtensa_elf32_le_vec
+#define TARGET_LITTLE_NAME "elf32-xtensa-le"
+#define TARGET_BIG_SYM xtensa_elf32_be_vec
+#define TARGET_BIG_NAME "elf32-xtensa-be"
+#define ELF_ARCH bfd_arch_xtensa
+
+#define ELF_MACHINE_CODE EM_XTENSA
+#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
+
+#if XCHAL_HAVE_MMU
+#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
+#else /* !XCHAL_HAVE_MMU */
+#define ELF_MAXPAGESIZE 1
+#endif /* !XCHAL_HAVE_MMU */
+#endif /* ELF_ARCH */
+
+#define elf_backend_can_gc_sections 1
+#define elf_backend_can_refcount 1
+#define elf_backend_plt_readonly 1
+#define elf_backend_got_header_size 4
+#define elf_backend_want_dynbss 0
+#define elf_backend_want_got_plt 1
+
+#define elf_info_to_howto elf_xtensa_info_to_howto_rela
+
+#define bfd_elf32_mkobject elf_xtensa_mkobject
+
+#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
+#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
+#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
+#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
+#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
+#define bfd_elf32_bfd_reloc_name_lookup \
+ elf_xtensa_reloc_name_lookup
+#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
+#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
+
+#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
+#define elf_backend_check_relocs elf_xtensa_check_relocs
+#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
+#define elf_backend_discard_info elf_xtensa_discard_info
+#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
+#define elf_backend_final_write_processing elf_xtensa_final_write_processing
+#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
+#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
+#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
+#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
+#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
+#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
+#define elf_backend_hide_symbol elf_xtensa_hide_symbol
+#define elf_backend_object_p elf_xtensa_object_p
+#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
+#define elf_backend_relocate_section elf_xtensa_relocate_section
+#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
+#define elf_backend_always_size_sections elf_xtensa_always_size_sections
+#define elf_backend_omit_section_dynsym \
+ ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
+#define elf_backend_special_sections elf_xtensa_special_sections
+#define elf_backend_action_discarded elf_xtensa_action_discarded
+#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
+
+#include "elf32-target.h"